- E. Rosenzweig, Ferrohydrodynamics, Dover Publications, Mineola, New York, 1997.
- Odenbach, Colloidal Magnetic Fluids: Basics Development and Application of Ferrofluids, Springer, Berlin, Heidelberg, 2009.
- Abareshi, E.K. Goharshadi, S. MojtabaZebarjad, H. KhandanFadafan, A. Youssefi, Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids, J. Magn. Magn. Mater. 322 (2010) 3895– 3901.
- Mitamura, S. Arioka, D. Sakota, K. Sekine, M. Azegami, Application of a magnetic fluid seal to rotary blood pumps, J. Phys.-Condens. Mater. 20 (2008) 204145.
- Nkurikiyimfura, Y. Wang, Z. Pan, Heat transfer enhancement by magnetic nanofluids - a review, Renewable Sustainable Energy Rev. 21 (2013) 548–561.
- Baranwal, T.S. Deshmukh, MR-fluid technology and its application-a review, Int. J.Emerging Technol. Adv. Eng. 2 (2012) 563–569.
- Yamaguchi, I. Kobori, Y. Uehata, K. Shimada, Natural convection of magnetic fluid in a rectangular box, J. Magn. Magn. Mater. 20 (1999) 264–267.
- Yamaguchi, Z. Zhang, S. Shuchi, K. Shimada, Heat transfer characteristics of magnetic fluid in a partitioned rectangular box, J. Magn. Magn. Mater. 252 (2002) 203–205.
- P. Bednarz, C. Lei, J.C. Patterson, H. Ozoe, Effects of atransverse orizontal magnetic field on natural convection of a paramagnetic fluid in a cube, Int. J. Therm. Sci. 48 (2009) 26–33.
- Li, Y. Xuan, Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field, Exp. Therm. Fluid Sci. 33 (2009) 591–596.
- N. Afifah, S. Syahrullail, N.A. Che Sidik, Natural convection of alumina-distilled water nanofluid in cylindrical enclosure: an experimental study, J. Adv. Res. FluidMech. Therm. Sci. 12 (1) (2015) 1–10.
- M'hamed, N.A. Sidik, M.F. Akhbar, R. Mamat, G. Najafi, Experimental study on thermal performance of MWCNT nanocoolant in PeroduaKelisa 1000 cc radiator system, Int. Communication Heat Mass Transf. 24 (May 2016).
- A. Che Sidik, O.A. Alawi, Computational investigations on heat transfer enhancement using nanorefrigerants, J. Adv. Res. Des. 1 (2014) 35–41.
- A. Khattak, A. Mukhtar, S. Kamran Afaq, Application of nano-fluids as coolant in heat exchangers: a review, J. Adv. Rev. Sci. Res. 22 (1) (2016) 1–11.
- S. Nor Azwadi, I.M. Adamu, M.M. Jamil, Preparation methods and thermal performance of hybrid nanofluids, J. Adv. Rev. Sci. Res. 24 (1) (2016) 13–23.
- K. Sinz, H.E. Woei, M.N. Khalis, S.I. Ali Abbas, Numerical study on turbulent force convective heat transfer of hybrid nanofluid, Ag/HEG in a circular channel with constant heat flux. (2016), J. Adv. Res. Fluid Mech. Therm. Sci. 24 (2016) 1–11.
- G. Jehad, G.A. Hashim, Numerical prediction of forced convective heat transfer and friction factor of turbulent nanofluid flow through straight channels, J. Adv. Res. Fluid Mech. Therm. Sci. 1 (2014) 1–10.
- K. Lee, The use of nanofluids in domestic water heat exchanger, J. Adv. Res. Appl. Mech. 3 (2014) 9–24.
- B. Abubakar, N.A. Che Sidik, Numerical prediction of laminar nanofluid flow in rectangular microchannel heat sink, J. Adv. Res. Fluid Mech. Therm. Sci. 7 (2015) 29–38.
- Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer 2003; 46: 3639–53.
- Jang SP, Choi SUS. Free convection in a rectangular cavity (Benard convection) with nanofluids, Proceedings of IMECE04. Anaheim, California, USA; 2004. pp. 1–7.
- Floriana D. Stoian and Sorin Holotescu, experimental study of natural convection enhancement using a Fe3O4-water based magnetic nanofluid, journal of Nanoscience and Nanotechnology, 12 (2012) 8211-8214.
- Gul A, Khan I, Shafie S, Khalid A, Khan A (2015) Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel. PLoS ONE 10(11): e0141213. doi:10.1371/journal.pone.0141213
- Nader Ben-Cheikh, Ali J. Chamkha, Brahim Ben-Beya, Taieb Lili, Natural convection of water - Based nanofluid in a square enclosure with non-uniform heating of bottom wall, Journal of Modern Physics, 2013, 4, 147-159.
- Omid Ghaffarpasand, Numerical study of MHD natural convection inside a sinusoidally heated lid-driven cavity filled with Fe3O4 -water nanofluid in the presence of Joule heating, Applied Mathematical Modelling 40 (2016) 9165–9182.
- Neshat Rahimpour, Mostafa Keshavarz Moraveji, Free convection of water–Fe3O4 nanofluid in an inclined cavity subjected to a magnetic field: CFD modeling, sensitivity analysis, Advanced Powder Technology 28 (2017) 1573–1584.
- Abedini, T. Armaghani, Ali J. Chamkha, MHD free convection heat transfer of a water– Fe3O4 nanofluid in a baffled C-shaped enclosure, Journal of Thermal Analysis and Calorimetry, (2019) 135: 685-695.
- Keshavarz Moraveji, M,Hejazian M., Natural convection in a rectangular enclosure containing an oval-shaped heat source and filled with Fe3O4/water nanofluid. Int. Commun. Heat Mass Transf., 2013; 44:135–46.
- Rosensweig RE., Ferrohydrodynamics., London: Cambridge University Press; 1985.
- Hiegeister R, Andra W, Buske N, Hergt R, Hilger I, Richter U, et al. Application of magnetite ferrofluids for hyperthermia. J MagnMagn Mater 1999; 201:420–2.
- Nakatsuka K, Jeyadevan B, Neveu S, Koganezawa H. The magnetic fluid for heat transfer applications. J MagnMagn Mater 2002; 252:360–2.
- Shuchi S, Sakatani K, Yamaguchi H. An application of a binary mixture of magnetic fluid for heat transport devices. J MagnMagn Mater 2005; 289:257– 9.
- Sheikholeslami, D.D. Ganji, Free convection of Fe3O4-water nanofluid under the influence of an external magnetic source, J. Mol. Liq. 229 (2017) 530–540.
- Sheikholeslami, K. Vajravelu, Nanofluid flow and heat transfer in a cavity with variable magnetic field, Appl. Math. Comput. 298 (2017) 272–282.
- Mohsen Sheikholeslami, DavoodDomiriGanji, Numerical investigation of nanofluid transportation in a curved cavity in existence of magnetic source,Chem. Phys. Lett. 667 (2017) 307–316.
- Sheikholeslami, Numerical simulation of magnetic nanofluid natural convection in porous media, Phys. Lett. A 381 (2017) 494–503.
- Kandelousi M. Sheikholeslami, Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition, Euro. Phys. J. Plus (2014) 129–248.
- Sheikholeslami, M.M. Rashidi, Effect of space dependent magnetic field on free convection of Fe3O4-water nanofluid, J. Taiw. Inst. Chem. Eng. 56 (2015) 6–15.
- Venkatadri, S. GouseMohiddin and M. Suryanarayana Reddy, Numerical Analysis of Unsteady MHD Mixed Convection Flow in a Lid-Driven Square Cavity with Central Heating on Left Vertical Wall, Applications of Fluid Dynamics, Lecture Notes in Mechanical Engineering, Chapter 26 (2018) 355-370.
- B MD Hidayathulla Khan, K Venkatadri, O. Anwar Be ́g, V.Ramachandra Prasad, B. Mallikarjuna. ”Natural Convection in a Square Cavity with Uniformly Heated and/or Insulated Walls Using Marker-and-Cell Method” International Journal of Applied and Computational Mathematics, 4 (2018) 61.
- Venkatadri K, GouseMohiddin S, Suryanarayana Reddy M., Hydromagneto quadratic natural convection on a lid-driven square cavity with isothermal and a non-isothermal bottom wall, Engineering Computations, 34( 8) ( 2017 ) 2463-2478.
- Venkatadri, S. GouseMohiddin, M. Suryanarayana Reddy, Mathematical modeling of unsteady MHD double-diffusive natural convection flow in a square cavity, Frontiers in Heat and Mass Transfer, 9 (2017) No.33.
- Tanmay Basak, S. Roy, A.R. Balakrishnan, Effects of thermal boundary conditions on natural convection flows within a square cavity, International Journal of Heat and Mass Transfer 49 (2006) 4525–4535.
- C. Wan, B. S. V. Patnaik, and G. W. Wei, A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution, Numerical Heat Transfer, Part B, 2001,40, 199- 228.
- Hatami, J. Zhou, J. Geng, D. Jing, Variable magnetic field (VMF) effect on the heat transfer of a half-annulus cavity filled by Fe3O4-Water nanofluid under the constant heat flux, journal of Magnetism and Magnetic Materials, 451 (2018) 173-182.
|