Effect of Irrigation with Wastewater on Lead and Cadmium Accumulations in the Soils and Plants of Wheat and Barley

Leila Hatamian1, Maryam Rafati1, Forough Farsad1

1. Former M.Sc. Student of Environment, Natural Resources and Environment Faculty, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2. Assistant Professor, Department of Environment, Technical and Engineering Faculty, North Tehran Branch, Islamic Azad University, Tehran, Iran.
3. Assistant Professor, Department of Environmental Science, Natural Resources and Environment Faculty, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Received: September 21, 2019 Accepted: February 03, 2020

Abstract

By considering the lack of high-quality water resources, the use of refined sewage as cheaply available water resources can reduce the challenge for water demand in Iran. This research aimed to investigate the accumulation of lead and cadmium in soil and seed of barley and wheat crops that are irrigated by refined sewage and a mixture of unrefined sewage and well water, respectively, in Qods city. During two growth months (March and May 2017), every ten days, one sample of each treatment was investigated to evaluate the physical and chemical properties of incoming water (totally nine samples per treatment). Sixty samples (30 samples from each plant) were randomly harvested. For soil measurement, 30 samples were randomly sampled in each field (May 2017). The results showed that the values of EC, biological and chemical oxygen demands, lead and cadmium concentrations were more in the mixture of well water and unrefined water than refined water. There was no significant difference between the cadmium concentrations in the seeds of the two plants; however, the lead concentration in the seeds of barley was significantly more than wheat. The differences in the mean of lead and cadmium concentrations in the soil of two plants were not significant. The results of the bioconcentration factor showed that none of the plant’s ability to extract lead and cadmium. Only the concentration of lead metal in barley is higher than the World Health Organization standard, which indicates that the grain produced in this field is harmful to human consumption.

Keywords: Bioconcentration factor, Farmlands, Phytoextracting, Qods city, Water resources.

Email: m_rafati@iau-tab.ac.ir
مقدمه
رشد روزافروز جمعیت جهان، همگان با گسترش فعالیت‌های کشاورزی و صنعتی از یکسو و خشکسالی‌های پی‌درپی در بیشتر کشورها واقع در کمربند خشک جهان از سوی دیگر، موجب شده است در سال‌های اخیر تفاوت برای آب‌افزش‌های باد و در نتیجه فشار بیش از اندازه به منابع آب وارد گردید (20 و 3). از این رو استفاده از آب‌های نامتعارف به‌طوری‌که هم از جنبه اقتصادی و هم در توسه کشاورزی مؤثر بوده، در سال‌های اخیر مورد توجه قرار گرفته است. روش‌های جایگزین رایج برای منابع آب کشاورزی شامل نمک‌ردایی از آب‌های شور و همچنین استفاده مجدد از فاضلاب‌های شهری و صنعتی است (9 و 4).

بررسی‌ها نشان‌گرفت که فاضلاب تولیدی کشور در سال 1400 خورشیدی، به رفتار بای 51 درصد آب مصرفی می‌رسد. بنابراین، کاربرد مجدد آن در کشاورزی به علت نیاز روزافروز به آب کشاورزی، همواره در مناطق خشک و نیمه‌خشک ایران، می‌تواند بر حسب روش‌های دیگر از این مناطق جهان کره و درعین حال به‌عواد یک روش تکنیکی دفع این می‌باشد که در فاضلاب به کار رود (4 و 10). علاوه بر این، وجود عنصر غلظت در فاضلاب که برای گیاهان قابل استفاده هستند، سبب کار مصرف کوده‌های شیمیایی و بدونالان آن کاهش اثرات منفی می‌باشد. این استفاده از فاضلاب تکنیکی شده‌شده باید پنداشت حداکثر کمبود آب را جبران کند، ولی آثار منفی احتمالی این آب‌ها در آینده محیط زیست‌پس می‌باشد. در نتیجه گرفته شود (9). وجود عنصر ساخت‌گر در فاضلاب و تجمع آن‌ها در خاک و دانه‌های گیاهان از جمله موارد مهم محیط‌زیستی است. هرچند غلظت عنصر ساخت‌گر در فاضلاب ممکن است ناچیز باشد، ولی تجمع آن‌ها در...
کار چاده قدم تهران - کرج و هر چند خوب کرده‌ایم,
در جنگ سال‌های جنگنده سپاه ایرانی از سایر شهرونه کشور بوده است. این شهرستان در عرض ۱۳۹۵ و ۴۳ دقیقه شمال و طول جغرافیایی ۵۱ درجه و ۴۷ دقیقه شرقی و ارتفاع متوسط ۱۵۰۰ تر
از سطل دریایی آزاد قرار دارد که در فاصله یا مزارع و زمین‌های کشاورزی فرآیند است و در آن‌ها محصولات مختلفی از جمله کنوم و جو کشت می‌شود. کشت گیاهان
کنوم و جو در آبان ۱۳۹۵ انجام گرفته بود. در این
بررسی، زمین‌های که توسط فاضلاب تصفیه‌شده (برای
kنوم) و زمین‌هایی که توسط تکیی یا برابر فاضلاب
تیک‌شده‌اند و آب چاه (برای جو) آبیاری می‌شند،
به‌عنوان منطقه مورد پژوهش انتخاب شدند. این اراضی
توسط نیماره‌ای با دقت ۱۳۹۴ و ۳۵ درجه و ۴۳ دقیقه شرقی و طول جغرافیایی ۵۷ درجه و ۴۷ دقیقه شرقی به‌طور
نحوه یکپارچه و شامل مراحل تیک‌شده، اولیه و
ثانویه و نهایت‌گردنی آن است که از سال
۱۳۸۵ خورشیدی، این تصویب‌خانه شروع به کار کرده است. این
تصویب‌خانه در مجاورت زمین‌های زیر کشت گذم قرار
دارد. وجود فلزات سنگین مانند سرب و کادمیوم در
فاضلاب‌های این منطقه به دلیل وجود کارخانجات صنعتی
در نزدیکی تصویب‌خانه قدس بود.

در دوره پژوهش‌های آبیاری اراضی به صورت هفتگی
انجام می‌شود. نمونه‌های آب مورد اطمینان از آب‌های
ورودی که شامل تیمار فاضلاب تیک‌شده و تیمار
تکیی فاضلاب تیک‌شده و آب چاه به مزارع بود، در
سه ماه‌های اخیر (فخته دوم اسفندماه تا فخته دوم خردادماه
۱۳۹۶) هر ۱۰ روز به‌صورت موازی پرداخت شد (نی). از
فاضلاب بر واکنش برخی محصولات کشاورزی مانند
گوجه و کاهو و سیب‌خالی در تونس، گواهی خلقت بیش
از استاندارد کادمیوم و نیکل در گیاهان بود و بر رشد
و فتوسنت این محصولات تأثیرات زیانباری داشت (۱۶). آب‌یاری در اراضی با پاسخ خانگی در آب‌یاری کارتن‌کشی هند
باعث آلویدگی خام و گیاه کندم به فلزات سنگین، سرب
نیکل، کروم و کادمیوم شد. هرچند که مقدار اندازه‌گیری
شده آنها زیر حدا مجاز سازمان بهداشت جهانی بوده است (۲۷).

پژوهش‌ها می‌توانند کفته که در مناطق مختلف برای گیاهان
مختلف، نتایج متفاوتی در مورد انباشت فلزات سنگین در
خاک و گیاهان گزارش شده و نیز است Transportation بیشتری
در این زمینه انجام گیرد. چون به کمک م nameof کتاب با کلیت,
استفاده بهینه از فاضلاب در کشت می‌تواند منبع ین در دس‌ریزی-
تنوین یک مقدار استاندارد کمک به کاشفیت، می‌توان با کلیت,
استفاده بالای صنایع که با تداوم پژوهش، سرب و کادمیوم در
فاضلاب‌های این منطقه به دلیل وجود کارخانجات صنعتی
در نزدیکی تصویب‌خانه قدس بود.

مواد و روش‌ها
این پژوهش در اراضی کشاورزی در نزدیکی به تصویب‌خانه
فاضلاب شهر قدس انجام شد. شرایت قفس کیک از
شهرهای قادیمی استان تهران است که با قرارگرفتن در

نمونه‌های خاک برداشت‌شده پس از انتقال به آزمایشگاه‌های اندازه‌گیری (8) نمونه‌های خاک در آن به‌دست 24 ساعت در دمای 30 درجه سانتی‌گراد خشک شد و سپس از الکتری فیلم‌های عبرت داده شد. جهت اندازه‌گیری غلظت فلاتس سنگین سرب و کادمیوم در خاک، از روش هضم اسیدی با اضافه‌کردن اسید تتریک استفاده شد (26). دانه‌های هند و جو سپس از شستشو با آب مقرت، به‌دست 48 ساعت در دمای اثاثی خشک شدند. سپس دانه‌های خشک‌شده، خور و به‌دست 24 ساعت در آن (با دمای 70 درجه سانتی‌گراد) قرار گرفتند. برای اندازه‌گیری فراتس سنگین از روش عصاره‌گیری خشک استفاده شد (17، 28). در نهایت غلظت سرب و کادمیوم در عصاره‌های صاف‌سازی خاک و غلات سنگی و جو بر اساس گزارش به‌دست آمده و pH به‌وسیله pH‌سنج (مدل 200 ساخت کمپانی VARIAN) استرالیا اندازه‌گیری شد.

در این پژوهش عمل، تجمع زیستی (BCF) که از تقسیم غلظت فاز در گیاه بر غلظت فاز در خاک به‌دست می‌آید محاسبه شد. فقدان بیشتر از یک این عمل در اندام دانه، نشان دهنده خستگی کامل خاک و تجمع فاز در اندام دانه است که این فازات در اندام‌های هواپی (مانند دانه)، نشان دهنده قابلیت استخراج فاز سنگین از خاک توسط گیاه است (26).

1. Bio-concentration factor
نظرات و بحث

نتایج و بحث

BOD

با توجه به نتایج، مقدار BOD در فاصله‌های مختلف ثابت می‌ماند و نشان می‌دهد که آب‌های نرم و آب‌های پر از آلودگی را می‌توانند باعث افزایش حفظات می‌شوند. به‌طور کلی، در حالی که مقدار BOD در ناحیه‌های مختلف متفاوت می‌باشد، باعث افزایش حفظات می‌شوند.

نتایج و بحث

BOD

با توجه به نتایج، مقدار BOD در فاصله‌های مختلف ثابت می‌ماند و نشان می‌دهد که آب‌های نرم و آب‌های پر از آلودگی را می‌توانند باعث افزایش حفظات می‌شوند. به‌طور کلی، در حالی که مقدار BOD در ناحیه‌های مختلف متفاوت می‌باشد، باعث افزایش حفظات می‌شوند.

نتایج و بحث

BOD

با توجه به نتایج، مقدار BOD در فاصله‌های مختلف ثابت می‌ماند و نشان می‌دهد که آب‌های نرم و آب‌های پر از آلودگی را می‌توانند باعث افزایش حفظات می‌شوند. به‌طور کلی، در حالی که مقدار BOD در ناحیه‌های مختلف متفاوت می‌باشد، باعث افزایش حفظات می‌شوند.

نتایج و بحث

BOD

با توجه به نتایج، مقدار BOD در فاصله‌های مختلف ثابت می‌ماند و نشان می‌دهد که آب‌های نرم و آب‌های پر از آلودگی را می‌توانند باعث افزایش حفظات می‌شوند. به‌طور کلی، در حالی که مقدار BOD در ناحیه‌های مختلف متفاوت می‌باشد، باعث افزایش حفظات می‌شوند.
جدول 1. خصوصیات فیزیکی و شیمیایی خاک

<table>
<thead>
<tr>
<th>نوع</th>
<th>pH</th>
<th>بافت (درصد)</th>
<th>حادثه الکتریکی (ds/m)</th>
<th>مقدار آئی (mg/kg)</th>
<th>غلظت (mg/l)</th>
<th>مقدار آئی (mg/kg)</th>
<th>غلظت (mg/l)</th>
<th>پایش ی سمستان 1398</th>
<th>سلماس</th>
<th>شیراز</th>
</tr>
</thead>
<tbody>
<tr>
<td>خاک آبیار، با فاضلاب تصفی‌شده</td>
<td>7.46</td>
<td>0.94</td>
<td>0.04</td>
<td>14/5</td>
<td>1600</td>
<td>7/45</td>
<td>0.92</td>
<td>16/42</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>خاک آبیار، با فاضلاب و آب جاه</td>
<td>7.45</td>
<td>0.92</td>
<td>0.04</td>
<td>14/5</td>
<td>1600</td>
<td>7/45</td>
<td>0.92</td>
<td>16/42</td>
<td>1200</td>
<td></td>
</tr>
</tbody>
</table>

جدول 2. میانگین پری و ویژگی‌های فیزیکی و شیمیایی فاضلاب تصفی‌شده و ترکیب فاضلاب تصفی‌شده و آب چاه مورد استفاده

<table>
<thead>
<tr>
<th>تیمار</th>
<th>فاضلاب تصفی‌شده</th>
<th>ترکیب فاضلاب تصفی‌شده و آب چاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7/48</td>
<td>1/34</td>
</tr>
<tr>
<td>تیمار</td>
<td>190</td>
<td>1/65</td>
</tr>
<tr>
<td>فاضلاب تصفی‌شده</td>
<td>37/38</td>
<td>6/72</td>
</tr>
<tr>
<td>ترکیب فاضلاب تصفی‌شده و آب چاه</td>
<td>1/98</td>
<td>1/69</td>
</tr>
</tbody>
</table>

نتایج آزمون ANOVA

نتایج آزمون ANOVA به‌صورت منع‌کننده پیش‌تر از دانه گندم است تاکنون، با توجه به تفاوت‌های اندازه‌گیری، الکتریکی و میزان ماده آلی، تأثیر این عوامل در دانه گندم و دانه جو دارای اختلاف (آماری معناداری با یکدیگر است (F = 3/1911، P < 0.05)) که مقادیر کادموم (0/018 میلی‌گرم بر گیلوگرم در گندم) و 0/12 میلی‌گرم بر گیلوگرم در جو) از استاندارد ارائه‌شده سازمان جهانی بهداشت برای دانه فاضلاب (1/01) دریافت می‌گردد. پیش‌تر از استاندارد ارائه‌شده سازمان جهانی بهداشت برای دانه فاضلاب (1/01) میلی‌گرم بر گیلوگرم است (P < 0.05). با مقایسه غلظت ذو‌ن‌ن در گیاه و براساس آزمون دانکین، میانگین فاضلاب سرب در دانه جو به‌صورت منع‌کننده پیش‌تر از غلظت سرب در دانه جو و غلظت کادموم در دانه‌های گندم و جو است (شکل 1). همچنین نتایج آزمون 4 مستقل حاکی از این است که اختلاف میانگین غلظت کادموم در دانه‌های گندم با جو از لحاظ آماری معنادار نیست (P < 0.05).
گلخانه‌ای کاهو و گوجه کاشته شده در کشور تونس (16) بالاتر حد میزان گزارش شده که به ناحیه پژوهش حاضر هم‌خوانی ندارد. جابه‌های سنتگین توسط گیاهان علاوه بر نوع و سن گیاه، به دامنه ویسبی از عوامل در خاک مثل pH میادالی، ظرفیت تولید كاتیونی و شرایط اکسیداسیون و احیا استرگی دارد. حلالیت نسبی ماده معذی و فلزات سنتگین است که می‌تواند رشد گیاه و عملکرد گیاه را تحت تأثیر قرار دهد (15) که کاهش آن، باعث تحرک بیشتر نوازا و دسترسی پذیری بیشتر در خاک و در نتیجه، جدب بیشتر توسط گیاه می‌شود. از سویی دیگر، داد آکس خاک نیز موجب محصوردن نوازا و کاهش قدرت جذب آنها توسط گیاه می‌شود (16). بنابراین تجمع کمتر فلزات سنتگین در دانه‌های کاهو و جو را می‌توان به مقدار ماده آکس خاک مورد مطالعه که موجب جذب کمتر آنها شده و همچنین تجمع نسبتاً بیشتر کاهو سنتگین در اندازه زیادی گیاهان در مقایسه با اندازه دانه‌های آنها (17) نسبت داد. براساس نتایج گیاه‌برداری اختلاف‌های اقتصادی نوازا در گیاهان پیش از ورود آنها به خاک به‌دست اولین ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آورد. در ترکیب‌های نمک‌یابی و pH قندی برقرار، گیاه نیز می‌تواند به‌دست‌آور
در خاک مزرعه جو (F = 1/0 از پنج‌تای آبیاری با ترکیب فاضلاب تصبيح‌شده و آب چاه است، هرچند که این نوع آبیاری، سبب افزایش معنی‌دار در غلظت کادمیوم خاک (F = 3/0 از پنج‌تای نشده است.

جدول 2. تجزیه واریانس اثر آبیاری با ترکیب فاضلاب تصبيح‌شده بر غلظت عنصر سنگین در خاک گندم

<table>
<thead>
<tr>
<th>Sig.</th>
<th>F</th>
<th>MS (MS)</th>
<th>درجه آزادی (df)</th>
<th>SS</th>
<th>مدل تصادفی بایلام</th>
<th>عرض از تاریخ</th>
<th>کادمیوم</th>
<th>سرب</th>
<th>خطا</th>
<th>کل</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

پیش‌بینی (جیو/0) (پیش‌بینی تبدیل شده: *0/04)
جدول ۳ تجزیه و ارتباطات آماری با فاصلاب تصفیه‌شده بر غلظت عناصر سنگین در خاک جو

<table>
<thead>
<tr>
<th>Sig.</th>
<th>F (MS)</th>
<th>درجه آزادی (df)</th>
<th>SS</th>
<th>منابع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/129</td>
<td>۳/۷۷۲</td>
<td>۱</td>
<td>۳۲۷۴</td>
<td>مدل تصحیح شده</td>
</tr>
<tr>
<td>۵/۷۴۵</td>
<td>۱</td>
<td>۴۱۲</td>
<td>عرض از مبدأ</td>
<td></td>
</tr>
<tr>
<td>۰/۰۷۵</td>
<td>۱</td>
<td>۲۰۲۵</td>
<td>سرب</td>
<td></td>
</tr>
<tr>
<td>۰/۱۳۹</td>
<td>۱</td>
<td>۱۳۲۹</td>
<td>کادمیوم</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>۶</td>
<td>۲۶۶۶</td>
<td>غذا</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>۹</td>
<td>۴۲۰۰۰</td>
<td>کل</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>۸</td>
<td>۶۳۰۰۰</td>
<td>مجموع تصحیح شده</td>
<td></td>
</tr>
</tbody>
</table>

اگرچه T= ۴/۰۰۰ (عکسی تبیین شده: ۴/۰۰۰)

بر اساس نتایج جدول (۴)، غلظت سرب و کادمیوم در دانه کد مثبت از غلظت آن عناصر در خاک یافته‌گام در هر هزار گیاهی معنی‌دار نیست (جدول ۵).

شکل ۳ نشان‌دهنده میانگین غلظت تجزیه سرای آماری از گل‌های سنگین و کادمیوم که در دانه کد به ارزش معنی‌داری داشته‌اند. از آنجایی که مقادیر فاکتور تجزیه زیستی برای هر دریافت در دانه‌های کد و جو کمتر از یک است، بیشترین هیچ‌کدام از دو گونه توانایی استخراج گیاهی غلظت مذکور از خاک و انتخاب آنها در دانه‌ها ندارد که این موضوع می‌تواند باعث خاصیت در زیر بوده و این غلظت برای کربن است. از این نتیجه، می‌تواند سرب و کادمیوم در دانه‌های کد کارناتکای کشور هند و محصولات سرب، کلم و تری‌جیم قرار دادن در یک آزمایش گل‌خانه‌ای در چین که برپایه با فاصلاب تصفیه‌شده شهروی آب آورده و روانه‌کننده آن آینه و غلظت آن در دانه‌های کد و جو کمتر از یک است. به‌رغم توجه به دانه‌های گیاهی قابل توجه، پایداری ضریب تجزیه غلظت سنگین در دانه‌های کد را انتخاب برای ریشه با استفاده از فرمول دانه‌های آنها نشان داد که این موضوع معنی‌دار نیست (جدول ۶).

براساس آماری از گل‌های سنگین و کادمیوم در دانه کد مثبت از غلظت آن عناصر در خاک یافته‌گام در هر هزار گیاهی معنی‌دار نیست (جدول ۵).

در ادامه با توجه به جدول (۵)، در سطح اطمنیت ۵ درصد، غلظت سرب و کادمیوم در یافته‌گام مثبت از غلظت سرب و کادمیوم در دانه نیست. همچنین سطح

<table>
<thead>
<tr>
<th>Sig.</th>
<th>F (MS)</th>
<th>درجه آزادی (df)</th>
<th>SS</th>
<th>منابع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۰۰۰</td>
<td>۳/۷۷۴</td>
<td>۱</td>
<td>۳۲۷۴</td>
<td>مدل تصحیح شده</td>
</tr>
<tr>
<td>۴/۱۹۸</td>
<td>۱</td>
<td>۴۱۲</td>
<td>عرض از مبدأ</td>
<td></td>
</tr>
<tr>
<td>۰/۰۲۵</td>
<td>۱</td>
<td>۲۰۲۵</td>
<td>سرب</td>
<td></td>
</tr>
<tr>
<td>۰/۱۳۹</td>
<td>۱</td>
<td>۱۳۲۹</td>
<td>کادمیوم</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>۶</td>
<td>۲۶۶۶</td>
<td>غذا</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>۹</td>
<td>۴۲۰۰۰</td>
<td>کل</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>۸</td>
<td>۶۳۰۰۰</td>
<td>مجموع تصحیح شده</td>
<td></td>
</tr>
</tbody>
</table>

اگرچه T= ۴/۰۰۰ (عکسی تبیین شده: ۴/۰۰۰)

بر اساس نتایج جدول (۴)، غلظت سرب و کادمیوم در دانه کد مثبت از غلظت آن عناصر در خاک یافته‌گام در هر هزار گیاهی معنی‌دار نیست (جدول ۵).

شکل ۳ نشان‌دهنده میانگین غلظت تجزیه سرای آماری از گل‌های سنگین و کادمیوم که در دانه کد به ارزش معنی‌داری داشته‌اند. از آنجایی که مقادیر فاکتور تجزیه زیستی برای هر دریافت در دانه‌های کد و جو کمتر از یک است، بیشترین هیچ‌کدام از دو گونه توانایی استخراج گیاهی غلظت مذکور از خاک و انتخاب آنها در دانه‌ها ندارد که این موضوع می‌تواند باعث خاصیت در زیر بوده و این غلظت برای کربن است. از این نتیجه، می‌تواند سرب و کادمیوم در دانه‌های کد کارناتکای کشور هند و محصولات سرب، کلم و تری‌جیم قرار دادن در یک آزمایش گل‌خانه‌ای در چین که برپایه با فاصلاب تصفیه‌شده شهروی آب آورده و روانه‌کننده آن آینه و غلظت آن در دانه‌های کد و جو کمتر از یک است. به‌رغم توجه به دانه‌های گیاهی قابل توجه، پایداری ضریب تجزیه غلظت سنگین در دانه‌های کد را انتخاب برای ریشه با استفاده از فرمول دانه‌های آنها نشان داد که این موضوع معنی‌دار نیست (جدول ۶).

براساس آماری از گل‌های سنگین و کادمیوم در دانه کد مثبت از غلظت آن عناصر در خاک یافته‌گام در هر هزار گیاهی معنی‌دار نیست (جدول ۵).

در ادامه با توجه به جدول (۵)، در سطح اطمنیت ۵ درصد، غلظت سرب و کادمیوم در یافته‌گام مثبت از غلظت سرب و کادمیوم در دانه نیست. همچنین سطح
جدول 4. ضریب تأثیر گروسوینی در سنجش تأثیرذیب‌ی غلظت کادهیوم و سرب در خاک بر غلظت هر فلز در گیاه گندم

<table>
<thead>
<tr>
<th>Sig.</th>
<th>T</th>
<th>ضریب استاندارد‌شده</th>
<th>عضو</th>
<th>خطای معيار</th>
<th>بیانا</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ضریب استاندارد‌شده</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 5. ضریب تأثیر گروسوینی در سنجش تأثیرذیب‌ی غلظت کادهیوم و سرب در خاک بر غلظت هر فلز در گیاه گندم

نتیجه‌گیری

نتایج این پژوهش نشان داد که ترکیب آب چاه و فاضلاب تصفیه‌شده درآی مقدار بیشتری از حد استانداردهای مجاز اکسیژن‌خواهی زیستی، اکسیژن‌خواهی شیمیایی و غلظت کادهیوم بود که یک تجدیدنظر در استفاده از این ترکیب برای آب‌هایی در منطقه مورد نظر مطالعه را نشان می‌دهد. هرچند باپسی ادعای آنها که براساس توصیه‌های فیزیکی کاربرد فاضلاب تصفیه‌شده قابل توصیه نمی‌باشد، ولی در

