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ABSTRACT ARTICLE INFO

An outer connected dominating(OCD) set of a graph
G = (V,E) is a set D̃ ⊆ V such that every vertex not in
S is adjacent to a vertex in S, and the induced subgraph
of G by V \ D̃, i.e. G[V \ D̃], is connected. The OCD
number of G is the smallest cardinality of an OCD set of
G. The outer-connected bondage number of a nonempty
graph G is the smallest number of edges whose removal
from G results in a graph with a larger OCD number.
Also, the outer-connected reinforcement number of G
is the smallest number of edges whose addition to G
results in a graph with a smaller OCD number. In 2018,
Hashemi et al. demonstrated that the decision problems
for the Outer-Connected Bondage and the
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1 Abstract continued

Outer-Connected Reinforcement numbers are all NP-hard in general graphs. In this paper,
we improve these results and show their hardness for bipartite graphs. Also, we obtain
bounds for the outer-connected bondage number.

2 Introduction

The set of terminology and notation in graph theory used in this paper follows the refer-
ence Xu [22]. Let G = (V,E) be a simple undirected graph with vertex set V and edge
set E. The degree of a vertex x ∈ V is denoted by d(x) and equals the number of its
adjacent vertices. For every vertex v ∈ V , NG(v) is the open neighborhood of v which
is defined as NG(v) = {u ∈ V : {u, v} ∈ E(G)}. Similarly, the closed neighborhood of
v, NG[v], is defined as NG[v] = NG(v) ∪ {v}. A subset S ⊆ V is a dominating set of G
if every vertex in V \ S has at least one neighbor in S. The minimum cardinality in all
dominating sets is called the domination number of the graph G and is denoted by γ(G).
Moreover, a dominating set of cardinality γ(G) is called a γ− set. Due to the widespread
applications of dominating sets and its variants, it is one of the most studied topics in
pure and applied mathematics, e.g. [5, 10,20] and references therein.
In this paper, the outer-connected domination, as a variant of dominating sets is studied.
Cyman in [4] introduced the notion of the OCD sets. Akhbari et. al. studied properties
of OCD and obtained some bounds for OCD in [1]. Keil and Pardhan in [14] studied the
problem of obtaining an OCD set for chordal graphs. A dominating set D̃ ⊆ V for a graph
G = (V,E) is called an outer-connected dominating set if the induced subgraph G[V \
D̃] is connected. the outer-connected domination number of G, γ̃c(G), is the minimum
cardinality among all outer-connected dominating sets of G [4]. An outer-connected
dominating set D̃ is called a γ̃−set of G if |D̃| = γ̃c(G). The outer-connected domination
problem seeks to obtain a γ̃ − set of G which is shown to be NP-complete for arbitrary
graphs by Cyman in [4].
There are many applications for the OCD problem in computer networks such as the
following scenario: in a client-server network, each client needs to be directly connected
to at least one server, in addition of being able to transmit data to other clients without
interrupting any servers. Mathematically, such a network topology is an OCD. Finding
a minimum cost network topology with the best number of required servers is equivalent
to solving the OCD problem [17].
In this paper, we investigate the effect of the removal and addition of edges on the OCD
number. The least number of edges whose removal from G causes an increase in the
domination number of the graph is called the bondage number of G, introduced by Fink
et al. in [6], and is denoted by b(G). The least number of edges whose addition to G causes
a decrease in the domination number of the graph is called the reinforcement number of
G, introduced by Kok and Mynhardt in [15], and is denoted by r(G). Moreover, Huang
et al. in [13] studied the reinforcement number for direct graphs. Recently, Xu in [23]
gave a review article on the bondage numbers. The NP-hardness of the reinforcement,
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the bondage, the total reinforcement, and the total bondage problems is shown in the
general case by Hu and Xu in [12]. Also, Hu and Sohn in [11] proved that these problems
for bipartite graphs are NP-complete. Hattingh et al. in [9] showed that the problem
of the restrained bondage is NP-complete, even for bipartite graphs. Also, for several
classes of graphs, they have determined the exact values of the bondage number. Lu and
et al. in [16] studied the complexity of paired bondage and p-reinforcement problems in
general graphs. Jafari Rad in [19] showed that the problems of the independent bondage,
the total restrained bondage, the k-rainbow bondage, and the paired bondage numbers
are all NP-hard, even if they are restricted to bipartite graphs. Also, he in [18] showed
that the problems of the p-reinforcement, the p-total reinforcement, the total restrained
reinforcement, and the k-rainbow reinforcement are all NP-hard for bipartite graphs.
Amjadi et al. in [2] initiated the study of the restrained k-rainbow bondage number in
graphs and presented some sharp bounds for k-rainbow bondage number. Vaidya and
Parner in [21] introduced the concept of total equitable bondage number and proved
several results for it. A linear time algorithm is proposed by Hartnell et al. in [7] to
compute the bondage number for a tree.
The least number of edges whose removal from G causes an increase in the OCD number
of the graph is called the outer-connected bondage number of G, introduced by Hashemi
et al. in [8], and is denoted by bOCD(G). The least number of edges whose addition to
G causes a decrease in the domination number of the graph is called the outer-connected
reinforcement number of G, introduced by Hashemi et al. in [8], and is denoted by
rOCD(G). They showed these problems NP-hard for general graphs. Also, they have
determined the exact values of the outer-connected bondage number for several classes of
graphs.
The classes of median graphs, partial cubes, hypercube graphs, and grid graphs are exam-
ples of bipartite graph classes [11]. The reinforcement and the bondage problems for such
graph classes are widely studied. So, we concentrate on the algorithmic complexity of
the bondage and reinforcement problems in bipartite graphs and show that the Outer-
Connected Bondage and the Outer-Connected Reinforcement problems are
NP-hard for bipartite graphs, i.e. there are not polynomial-time algorithms to answer
these problems unless P = NP.
The rest of the paper is organized as follows: In Section 2, we remind the 3−Sat problem.
The proofs for the hardness of the Outer-Connected Bondage and the Outer-
Connected Reinforcement problems in bipartite graphs are given in Sections 3 and
4, respectively. Finally, in Section 5, we obtain bounds for outer-connected bondage
number in general graphs.

3 3-Satisfiability Problem

Let U = {u1, u2, . . . , un} be a set of boolean variables. A clause over U is the disjunction of
a set of literals where each literal is either ui or ūi for 1 ≤ i ≤ n. A clause is satisfied with
respect to a truth assignment if and only if at least one of its literals is true with respect
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to that truth assignment. Let C = {C1, C2, . . . , Cm} be a collection of clauses over U .
The objective of SAT problem is to determine whether there exists a truth assignment of
boolean variables {u1, u2, . . . , un} such that all the clauses Cj for 1 ≤ j ≤ m are satisfied.
Such a truth assignment, if exists, is called a satisfying truth assignment. Given these
notations, the 3− SAT problem is defined as follows.

3− SAT Problem.
Input instance: A collection C = {C1, C2, . . . , Cm} of clauses over a finite set
of variables U such that |Cj| = 3 for 1 ≤ j ≤ m.
Question: Is there a satisfying truth assignment for C?

Theorem 3.1. The 3− SAT problem is NP-complete [3].

4 Complexity of the Outer-Connected Reinforcement

Problem for Bipartite Graphs

In this section, the outer-connected reinforcement of bipartite graphs defined as follow, is
shown to be an NP-hard problem.

Bi-Outer-Connected Reinforcement Problem.
Input instance: A positive integer k and a bipartite graph G with no isolated
vertices.
Question: Does rBOCD(G) ≤ k hold?

Theorem 4.1. The Bi-Outer-Connected Reinforcement problem is NP-hard.

Proof. We provide a polynomial time reduction from the 3 − SAT problem to the Bi-
Outer-Connected Reinforcement problem to show its NP-hardness. Let I = (U =
{u1, u2, . . . , un} , C = {C1, C2, . . . , Cm}) be a 3− SAT problem instance. We construct a
bipartite graph G such that for an arbitrary positive integer k, this instance of the 3−SAT
is satisfiable if and only if G has a Bi-outer-connected reinforcement of cardinality at most
k, i.e. rBOCD(G) ≤ k. Next, we describe the construction of G.
We add a set of vertices Ri = {ui, vi, ūi, ni, wi,mi} as well as edges (vi, ui), (vi, ūi)
,(mi, ui), (ni, ūi), (mi, wi), (ni, wi) in G in correspondence to each variable ui ∈ U for
1 ≤ i ≤ n. Also, for each clause Cj, a single vertex cj is added to G as well as edge
{cj, ui}({cj, ūi}) if the literal ui(ūi) appears in the clause Cj, for 1 ≤ j ≤ m. Moreover, a
path P = x, y, t, r is added to G and the vertices t and x are connected to every vertex
cj by adding edges. Finally, we add edges (y, ui), (y, ūi) and (y, wi) to G for 1 ≤ i ≤ n
and set k = 1.
This construction is applicable in polynomial time (which is easy to verify). Next we
show that rBOCD(G) ≤ k if and only if I = (C,U) is satisfiable by considering these three
lemmas.

Lemma 4.2. For any graph G constructed as above, we have γ̃c(G) = 2n+ 2.
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Proof. Let D̃ be a γ̃-set of G. It is clear that |D̃∩V (Ri)| ≥ 2 for 1 ≤ i ≤ n, |D̃∩N [r]| ≥ 1
and |D̃ ∩ N [x]| ≥ 1. Then, we have γ̃c(G) = |D̃| ≥ 2n + 2. On the other hand, D̃′ =
{x, r, u1, n1, u2, n2, . . . , un, nn} is an OCD set for G, which implies γ̃c(G) ≤ |D̃′| = 2n+ 2.
Thus, we have γ̃c(G) = 2n+ 2.

Lemma 4.3. Let e ∈ E(Ḡ) be an edge where γ̃c(G + e) = 2n + 1 and D̃e be a γ̃-set for
G + e. Then, |D̃e ∩ V (Ri)| = 2 for 1 ≤ i ≤ n, while cj, x, y, t /∈ D̃e for 1 ≤ j ≤ m.
Moreover, exactly one of the vertices ui or ūi are in D̃e and r ∈ D̃e.

Proof. Since the connection between the vertices in V \ D̃e is due to the vertex y, then
y /∈ D̃e. Also, t is a cut-vertex which implies t /∈ D̃e. Hence, we have r ∈ D̃e. On the
contrary, suppose that |D̃e ∩ V (R`)| < 2 for some 1 ≤ ` ≤ n. Without loss of generality,
suppose that w` ∈ D̃e. Since v` needs to be dominated by D̃e and v`, u`, ū` /∈ D̃e, then,
v` is dominated via the edge e in G + e by the set D̃e. So, one of the end-vertices of
the edge e should be v`. Also, for every i 6= `, we have |D̃e ∩ V (Ri)| ≥ 2, because
the set D̃e dominates all the vertices vi. It is clear that u` and ū` are not in the same
clause simultaneously. So, for no j, the vertex cj is adjacent to both of them. because
u` and ū` needs to be dominated by D̃e, there are two vertices cj 6= c` ∈ D̃e such that cj
and c` dominate u` and ū`. Thus, we have |D̃e| ≥ 2n + 2 which is a contradiction. So,
|V (Ri) ∩ D̃e| = 2 for 1 ≤ i ≤ n and cj, x /∈ D̃e for all j, because |D̃e| = 2n+ 1.

Lemma 4.4. rBOCD(G) = 1 if and only if the 3−SAT instance I = (C,U) is satisfiable.

Proof. Let f : U → {T, F} be a truth assignment which satisfies C. Also, suppose that
D̃′ is a subset of V (G) constructed as follows. The vertices ui, ni and r are added to D̃′

if f(ui) = T . If f(ui) = F , then we put the vertices ūi,mi, r in D̃′. Therefore, we have
|D̃′| = 2n+1. At least one of the literals in the clause Cj is true under the assignment f for
1 ≤ j ≤ m, since f is a satisfying truth assignment for I = (C,U). So, by the construction
of graph G, the vertex cj in G is adjacent to at least one vertex in D̃′. Without loss of
generality, let f(u1) = T . Hence, D̃′ is a dominating set for G + {x, u1}. On the other
hand, the induced graph G[V \ D̃′] is connected. Hence, D̃′ is an OCD set for G+ {x, u1}
and γ̃c(G+ {x, u1}) ≤ |D̃′| = 2n+ 1.
By Lemma 4.2, we have γ̃c(G) = 2n+ 2. Therefore, we obtain γ̃c(G+ {x, u1}) ≤ 2n+ 1 <
2n+ 2 = γ̃c(G) which implies that rBOCD = 1.
Conversely, suppose that rBOCD = 1, which means that there is an edge e in Ḡ where
γ̃c(G + e) = 2n + 1. Let D̃e be a γ̃-set of G + e. Then, we have |D̃e ∩ {ui, ūi}| = 1 for
1 ≤ i ≤ n by Lemma 4.3. Assume that the mapping f : U → {T, F} is defined as

f(ui) =

{
T, if ui ∈ D̃e,

F, if ūi ∈ D̃e.
(1)

We show that the truth values assigned by the mapping f satisfy every clause in C. Let
Cj ∈ C be an arbitrarily clause. Since the vertex cj in correspondence to clause Cj is not
adjacent to any members of {vi : 1 ≤ i ≤ n}, then there exists some index i such that
cj is dominated by either ui ∈ D̃e or ūi ∈ D̃e. Without loss of generality, assume cj is
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dominated by ui ∈ D̃e. So, the vertex ui is adjacent to cj, namely ui is in Cj. Because
ui ∈ D̃e, we have f(ui) = T by Equation 1. So, f satisfies the clause Cj.
Now, Suppose that the vertex cj is dominated by ūi ∈ D̃e. So, ūi is adjacent to cj, namely,
ūi is in Cj. Because ūi ∈ D̃e, by Equation 1 we have f(ui) = F , which implies that ūi
is assigned the truth value T by f . So, the clause Cj is satisfied by f . Since the clause
Cj was chosen arbitrarily, so all the clauses in C are satisfied by f . Therefore, the C is
satisfiable.

These Lemmas conclude the proof.

5 Complexity of the Outer-Connected Bondage prob-

lem for bipartite graphs

In this section, we will show that the Outer-Connected Bondage problem for bipar-
tite graphs is an NP-hard problem. Consider the following decision problem.

Bi-Outer-Connected Bondage problem for bipartite graphs.
Input Instance: A positive integer k and a bipartite graph G with no isolated
vertices.
Question: Does bBOCD(G) ≤ k hold?

Theorem 5.1. The Bi-Outer-Connected Bondage problem for bipartite graphs is
NP-hard.

Proof. Let I = (U = {u1, u2, . . . , un} , C = {C1, C2, . . . , Cm}) be an arbitrary instance of
the 3−SAT problem. For an arbitrary positive integer k, we construct a bipartite graph
G such that this instance of 3−SAT is satisfiable if and only if G has an outer-connected
bondage of cardinality of at most k, i.e. bBOCD(G) ≤ k. Next, we describe how the graph
G is constructed.
We associate a set of vertices Hi = {ui, vi, ūi, xi, yi,mi, wi, ni} and edges {xi,mi}, {yi, ni},
{ui, vi}, {ūi, vi}, {mi, wi}, {ui,mi}, {ūi, ni} , {ui, ni}, {ūi,mi} and {ni, wi} for 1 ≤ i ≤ n
to each ui ∈ U . Similarly, for each clause Cj ∈ C, a single vertex cj is associated and
edge {cj, ui}({cj, ūi}) is added if the literal ui(ūi) appears in clause Cj where 1 ≤ j ≤ m.
Then, we add the set of vertices S = {s1, s2, s3, s4} and join all the vertices s1, s3 and
s4 to the vertices cj and s2. Finally, we add a vertex t to the graph G and add edges
{t, s1}, {t, s3}, {t, s4}, {t, ui} and {t, ūi} for 1 ≤ i ≤ n. Without losing generality, assume
that k = 1. It is clear that the construction can be accomplished in polynomial time,
since the graph G contains 8n+m+5 vertices and 6m+12n+6 edges. Next we show that
bBOCD(G) ≤ 1 if and only if I = (C,U) is satisfiable by considering these five lemmas.

Lemma 5.2. For graph G constructed as above, it is the case that γ̃c(G) ≥ 4n+ 1.

Proof. Assume that D̃ is a γ̃-set of G. So, γ̃c(G) = |D̃| ≥ 4n+1, because |V (Hi)∩D̃| ≥ 4
for 1 ≤ i ≤ n, i.e. to dominate vertices vi and wi for 1 ≤ i ≤ n, we need to have at least
one non-leaf vertex and leaf vertices xi and yi in D̃. Moreover, we have |D̃∩N [s2]| ≥ 1.
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Lemma 5.3. If γ̃c(G) = 4n + 1, then cj, t /∈ D̃ for 1 ≤ j ≤ m, D̃ ∩ V (S) = {s2},
|D̃ ∩ V (Hi)| = 4 and |D̃ ∩ {ui, ūi}| ≤ 1 for 1 ≤ i ≤ n.

Proof. Because the connection between Hi and S is due to the vertex t, then t /∈ D̃.
Suppose that we have γ̃c(G) = 4n + 1. Then, |D̃ ∩ V (Hi)| = 4 for 1 ≤ i ≤ n, while
|V (S) ∩ D̃| = 1. Therefore, cj /∈ D̃ for 1 ≤ j ≤ m. Moreover, if D̃ ∩ V (S) = {s1}, then
s3 and s4 are not dominated. Hence, we have s1 /∈ D̃. Similarly, we have s3, s4 /∈ D̃.
Therefore, we have D̃ ∩ V (S) = {s2}. Since xi, yi ∈ D̃ and wi needs to be dominated by
D̃, we have |D̃ ∩ {ui, ūi}| ≤ 1 for 1 ≤ i ≤ n.

Lemma 5.4. γ̃c(G) = 4n+ 1 if and only if the 3−SAT instance I = (U , C) is satisfiable.

Proof. Let f : U → {T, F} be a truth assignment which satisfies C and D̃′ be a subset
of V (G) constructed as follows. The vertices ui and ni are added to D̃′ if f(ui) = T . If
f(ui) = F , then we put the vertices ūi and mi in D̃′. Therefore, we have |D̃′| = 2n. At
least one of the literals in Cj is assigned a satisfying value under the assignment of f for
1 ≤ j ≤ m, since f is a satisfying truth assignment for I = (U , C). So, by the construction
of G, the corresponding vertex to Cj in G is adjacent to at least one vertex in D̃′. Then,
D = D̃′∪ (

⋃n
i=1 {xi, yi})∪{s2} is a dominating set for G. On the other hand, the induced

graph G[V \ D] is connected. Hence, D is an OCD set for G and γ̃c(G) ≤ |D| = 4n+ 1.
By Lemma 5.2, we have γ̃c(G) ≥ 4n+ 1. Therefore, we obtain γ̃c(G) = 4n+ 1.
Conversely, suppose that γ̃c(G) = 4n + 1 and cj is an arbitrary vertex. By Lemma 5.3,
this vertex is adjacent to either ui ∈ D̃ or ūi ∈ D̃ because cj, s1, s3, s4 /∈ D̃. By Lemma
5.3, we have |D̃ ∩ {ui, ūi}| ≤ 1 for 1 ≤ i ≤ n. Assume that the mapping f : U → {T, F}
is defined as

f(ui) =

{
T, if ui ∈ D̃,
F, otherwise.

(2)

We show that the truth values assigned by the mapping f satisfy all the clauses I = (U , C).
We choose an arbitrary clause Cj ∈ C. Since the corresponding vertex to the clause Cj

is not adjacent to any vertices in correspondence with the set Hi \ {ui, ūi : 1 ≤ i ≤ n},
there exists an index i such that cj is dominated by either ui ∈ D̃ or ūi ∈ D̃. Without
losing generality, assume that ui ∈ D̃ dominates cj. So, ui is adjacent to cj, namely ui is
in Cj. Since ui ∈ D̃, we have f(ui) = T by Equation 2. So, f satisfies the clause Cj.
Next, suppose that the vertex cj is dominated by the vertex ūi ∈ D̃. So, ūi is adjacent to
cj, namely ūi is in Cj. Since ūi ∈ D̃, we have f(ui) = F by Equation 2 which implies that
ūi is assigned the truth value T by f , and the clause Cj is satisfied by f . Since Cj was
chosen arbitrarily, all the clauses in C are satisfiable by f , which implies that, I = (U , C)
is satisfiable.

Lemma 5.5. For all edge e ∈ E(G), we have γ̃c(G− e) ≤ 4n+ 2.

Proof. Suppose that E ′ = {{s2, s3}, {s2, s4}, {s1, cj}, {ui, vi}, {vi, ūi}, {t, s1}} and E ′′ =
E \E ′. Let e ∈ E ′′ be an edge. It is clear that the set D′ = (

⋃n
i=1 {xi, yi, wi, vi})∪{s1, s2}
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is an OCD set for G − e, since every vertex in V \ D′ is adjacent to a vertex in D′ due
to an edge in E ′. Also, the induced graph (G− e) \D′ is connected. This connectedness
is established by vertices t and si for i 6= 1, 2. Given |D′| = 4n + 2, then we have
γ̃c(G− e) ≤ 4n+ 2.
We have four cases to consider:

Case 1: Either e = {s2, s3}, e = {s1, cj} or e = {t, s1}, which impliesD′ = (
⋃n

i=1 {xi, yi, wi, vi})∪
{s3, s2} is an OCD set for G− e and γ̃c(G− e) ≤ |D′| = 4n+ 2.

Case 2: Either e = {s2, s4} which implies D′ = (
⋃n

i=1 {xi, yi, vi, wi})∪{s4, s2} is an OCD
set for G− e and γ̃c(G− e) ≤ |D′| = 4n+ 2.

Case 3: If e = {vi, ūi}, then D′ = (
⋃n

i=1 {xi, yi, vi,mi})∪{s1, s2} is an OCD set for G−e
and γ̃c(G− e) ≤ |D′| = 4n+ 2.

Case 4: If e = {ui, vi}, then D′ = (
⋃n

i=1 {xi, yi, vi, ni})∪{s1, s2} is an OCD set for G− e
and γ̃c(G− e) ≤ |D′| = 4n+ 2.

Lemma 5.6. bBOCD(G) = 1 if and only if γ̃c(G) = 4n+ 1.

Proof. First, let bBOCD(G) = 1. It follows by Lemma 5.2 that γ̃c(G) ≥ 4n + 1. Suppose
that e is an edge where γ̃c(G) < γ̃c(G − e). By Lemma 5.5, we have 4n + 1 ≤ γ̃c(G) <
γ̃c(G − e) ≤ 4n + 2. So, γ̃c(G) = 4n + 1. Let γ̃c(G) = 4n + 1, e = {s1, s2} and
γ̃c(G− e) = γ̃c(G). If D̃ is a γ̃-set of G− e, then D̃ is a γ̃-set for G of cardinality 4n+ 1.
By Lemma 5.3, we have cj, t /∈ D̃ for 1 ≤ j ≤ m, and D̃ ∩ V (S) = {s2}. So, D̃ does not
dominate the vertex s1, which is a contradiction. Therefore, we have γ̃c(G) < γ̃c(G− e).
Therefore, we obtain bBOCD(G) = 1.

So, by Lemmas 5.4 and 5.6, we have bBOCD(G) = 1 if and only if I is satisfiable.

6 Bounds in General

In this section, we obtain bounds on the outer-connected bondage number in general
graphs.

Theorem 6.1. Let G be a connected graph of order n ≥ 2. Then, bOCD(G) ≤ n− 1 and
the bound is sharp.

Proof. Suppose u and v are adjacent vertices with degrees d(u) and d(v), respectively and
d(u) ≤ d(v). If bOCD(G) ≤ d(u), then bOCD(G) ≤ n − 1. Let bOCD(G) > d(u) and E(u)
is the set of incident edges with u. Since bOCD(G) > d(u), it follows that

γ̃c(G− E(u)) = γ̃c(G), (3)
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which means
γ̃c(G \ u) = γ̃c(G)− 1. (4)

Now, suppose that D̃ is the union of all γ̃c-sets for G \ u. It is clear that no vertices in D̃
are adjacent to u in G. So, we have

v /∈ D̃, |E(u)| ≤ n− |D̃| − 1. (5)

Next, consider that
F (v) = {{v, x} ∈ E(G \ u)|x ∈ D̃}. (6)

Because v /∈ D̃, we need to have

γ̃c(G \ u− F (v)) > γ̃c(G \ u), (7)

which implies
γ̃c(G \ u− F (v)) > γ̃c(G)− 1. (8)

Then,
γ̃c(G− (E(u) ∪ F (v)) = γ̃c(G \ u− F (v))− 1 > γ̃c(G)− 1 > γ̃c(G). (9)

Therefore,

bOCD(G) ≤ |E(u) ∪ F (v)| = |E(u)|+ |F (v)| ≤ n− |D̃| − 1 + |D̃| = n− 1. (10)

Let G = Sn be a star of order n. It is easy to see that bOCD(G) = n− 1. So, the proposed
bound is sharp.

Theorem 6.2. Let G be a connected graph and u and v are adjucent vertices which
d(u) + d(v) is minimum and

1. D̃ is a γ̃-set for G \ {u, v},

2.
(
NG(u) ∪NG(v)

)
\ {u, v} 6⊆ D̃, and

3. δ(G) ≥ 2.

Then, bOCD(G) ≤ d(u) + d(v)− 1.

Proof. The proof is by contradiction. Let x = d(u) + d(v)− 1 and bOCD(G) > x. Let E ′

denote the set of edges incident with at least one of the vertices u and v. So, |E|′ = x
and γ̃c(G − E ′) = γ̃c(G). Hence, γ̃c(G \ {u, v}) = γ̃c(G) − 2. Since δ(G) ≥ 2, we have
NG(u) ∪NG(v) \ {u, v} 6= ∅. Now, the following two cases need to be considered.

Case 1: NG(u) − {v} 6⊆ D̃ which implies that there is at least one vertex w 6= v such
that w ∈ NG(u) and w /∈ D̃. So, D̃ ∪ {v} is an set for G of cardinality γ̃c(G) − 1.
This is a contradiction.
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Case 2: NG(v) − {u} 6⊆ D̃ which implies that there exists at least one vertex w 6= u
such that w ∈ NG(v) and w /∈ D̃. So, D̃ ∪ {u} is an OCD set for G of cardinality
γ̃c(G)− 1 which is again a contradiction.

Therefore, bOCD(G) ≤ x.

Corollary 6.3. If G is the connected graph of Theorem 6.2. Then, bOCD(G) ≤ δ(G) +
∆(G)− 1.

Proof. Let x, y ∈ G be vertices such that d(x) = δ(G) and y ∈ NG(x). Then, by Theorem
6.2, we have

bOCD(G) ≤ d(x) + d(y)− 1 = δ(G) + d(y)− 1 ≤ δ(G) + ∆(G)− 1. (11)

Theorem 6.4. Let G be a nonempty graph with γ̃c(G) ≥ 2. Then,

bOCD(G) ≤ (γ̃c(G)− 1)∆(G) + 1. (12)

Proof. The proof is by the induction on the OCD number of G. Suppose that γ̃c(G) = 2,
and bOCD(G) > ∆(G) + 1. So, if u ∈ V (G) is a vertex such that d(u) = ∆(G), we have
γ̃c(G \ u) = γ̃c(G)− 1 = 1. Therefore, there exists a vertex x ∈ V (G) where x 6= u which
is adjacent to all vertices in V (G \ u). This implies d(x) = ∆(G), and the adjacency
of u to every vertex in V (G \ x). Let e be an arbitrary edge incident with x. Since
bOCD(G \ u) ≥ 2, then γ̃c(G \ u) = 1 if the edge e is removed from the induced graph
G \ u. Hence there exists a vertex y 6= x such that y is adjacent to all vertices in G \ u.
Because x is the only vertex which is not in NG(u), we have y ∈ NG(u). So, we have by
contradiction γ̃c(G) = 1. So, bOCD(G) ≤ ∆(G) + 1 for γ̃c(G) = 2.
Now, suppose that H is a nonempty graph, γ̃c(H) = k ≥ 2 and bOCD(H) ≤ (k−1)∆(H)+
1. Suppose that G is a graph such that γ̃c(G) = k + 1 and bOCD(G) > k∆(G) + 1. Let
x be an arbitrary vertex in G. Then, γ̃c(G \ x) = γ̃c(G) − 1 = k. Also, bOCD(G) ≤
bOCD(G \ x) + d(x). By the hypothesis of the induction, we obtain either

bOCD(G) ≤(k − 1)∆(G \ x) + 1 + d(x)

≤(k − 1)∆(G) + 1 + ∆(G) = k∆(G) + 1.
(13)

which is a contradictory to bOCD(G) > k∆(G)+1, which concludes the proof by induction.
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