Maximum Zagreb Indices Among All p—Quasi k—Cyclic Graphs

Ali Ghalavand1 and Ali Reza Ashrafi1,2

1,2Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317–53153, I R Iran.

ABSTRACT

Suppose G is a simple and connected graph. The first and second Zagreb indices of G are two degree-based graph invariants defined as $M_1(G) = \sum_{v \in V(G)} \text{deg}(v)^2$ and $M_2(G) = \sum_{e = uv \in E(G)} \text{deg}(u)\text{deg}(v)$, respectively. The graph G is called p—quasi k—cyclic, if there exists a subset S of vertices such that $|S| = p$, $G \setminus S$ is k—cyclic and there is no a subset S' of $V(G)$ such that $|S'| < |S|$ and $G \setminus S'$ is k—cyclic. The aim of this paper is to characterize all graphs with maximum values of Zagreb indices among all p—quasi k—cyclic graphs with $k \leq 3$.

Article history:
Received 14, February 2019
Received in revised form 27, October 2019
Accepted 12 November 2019
Available online 31, December 2019

Keywords: p—quasi k—cyclic graph, first Zagreb index, second Zagreb index, cyclomatic number, k-cyclic graph.

AMS subject Classification: 05C07.

1 Basic Definitions

Throughout this paper, all graphs are assumed to be finite, simple and connected. For such a graph G, the set of vertices and edges are denoted by $V(G)$ and $E(G)$, respectively. We use the notations P_n, C_n, S_n, K_n and \emptyset_n to denote the n—vertex path, cycle, star, complete and empty graphs, respectively. The cyclomatic number of G is defined as

*ali797ghalavand@gmail.com

†Corresponding author: A. R. Ashrafi. Email:ashrafi@kashanu.ac.ir
C(G) = |E(G)| − |V(G)| + 1 and if C(G) = k then we say that G is k-cyclic. If C(G) = 0, 1, 2, 3 then G is called a tree, unicyclic, bicyclic and tricyclic, respectively. The set of all k-cyclic graphs on a fixed vertex set of size n is denoted by C^k(n).

The set of all vertices which are adjacent to v in G is denoted by N_G(v). The degree of a vertex v, denoted by d_G(v) (d(v) for short), in a graph is the number of edges incident to it that clearly is the size of N_G(v). A vertex of degree one is named a pendant vertex and an edge containing a pendant vertex is called a pendant edge. The maximum and minimum degrees of vertices in G are denoted by Δ = Δ(G) and δ = δ(G), respectively.

A graph G is called a p-quasi k-cyclic, if there exists a subset S of vertices such that |S| = p, G \ S is k-cyclic and there is no a subset S’ of V(G) such that |S’| < |S| and G \ S’ is k-cyclic. The set of all such graphs is denoted by Q_pC^k(n).

Suppose G and H are two graphs. The union G ∪ H is a graph with the vertex set V(G) ∪ V(H) and edge set E(G) ∪ E(H). The join of G and H is a graph with the same vertex set as G ∪ H and E(G + H) = E(G) ∪ E(H) ∪ {xy | x ∈ V(G), y ∈ V(H)}. Our other notations are standard and can be taken from [5, 10].

The Zagreb indices are the most studied degree-based graph invariants were introduced by Gutman and Trinajstić [8], are among the most studied degree-based graph invariants. These graph invariants are defined as M_1(G) = ∑_{v ∈ V(G)} (d_G(v))^2 and M_2(G) = ∑_{u,v ∈ E(G)} (d_G(u)d_G(v)).

2 Preliminary Results

In this section, we first give a review of the most important results on Zagreb group indices of graphs and then present some results which are crucial for proving the main results of this paper.

Nikolić et al. [11], reported applications of Zagreb indices for studying molecular complexity [12], chirality [6] and ZE-isomerism [7] in mathematical chemistry. They also illustrated the applications of this invariant in QSPR by modeling the structure boiling point relationship of C_3C_8 alkanes. Their theoretical results based on Zagreb group indices were compared with experimental data.

Das et al. [2], obtained lower and upper bounds for M_1(G) in terms of |V(G)|, |E(G)|, Δ(G) and δ(G) by which it is possible to find lower and upper bounds on M_2(G). They also gave a relation between the first and second Zagreb indices of G.

Let U^3_n be the unicyclic graph obtained from the cycle C_3 by attaching $n − 3$ pendent edges to a fixed vertex of C_3. Suppose e is an edge of the complete graph K_4 and $H = K_4 \setminus e$. Construct the graph $B^{3,3}_n$ by considering a copy of $K_4 \setminus e$, a copy of $Θ_{n−4}$ and contact all vertices of $Θ_{n−4}$ to a fixed vertex of degree 3 in $K_4 \setminus e$, see Figure 1.
Figure 1: The bicyclic graph $B_{n}^{3,3}$ in Theorem 3.5.

Figure 2: The tricyclic graphs $q_{n}(n - 4, 1, 1, 1, 1)$ and $K_{n}(n - 3, 1, 1, 1)$ in Theorem 3.6.
3 Main Results

The aim of this paper is to characterize graphs with maximum values of Zagreb indices among all \(p \)-quasi \(k \)-cyclic graphs with \(k \leq 3 \).

Theorem 3.1. Let \(G \) be a \(p \)-quasi \(k \)-cyclic graph. If \(S \subset V(G) \), \(|S| = p \) and \(G - S \in C^k(n - p) \), then

1. \(M_1(G) \leq M_1(G - S) + p(4k + n^2 + 2n + p(n - 4) - p^2 - 3) \),
2. \(M_2(G) \leq M_2(G - S) + pM_1(G - S) + (k + n - p - 1)(p^2 + 2p(n - 1)) + \frac{p(p-1)(n-1)}{2} + p^2(n - p)(n - 1) \),

with equality in each if and only if \(G \cong (G - S) + K_p \).

Proof. To prove (1), we assume that \(u \in V(G - S) \) and define \(l_u \) to be the number of vertices in \(S \) adjacent to \(u \). By definition of \(M_1 \),

\[
M_1(G) = \sum_{u \in V(G - S)} d_G^2(u) + \sum_{u \in S} d_G^2(u) = \sum_{u \in V(G - S)} (d_{G-S}(u) + l_u)^2 + \sum_{u \in S} d_G^2(u).
\]

By simplifying this equality,

\[
M_1(G) = \sum_{u \in V(G - S)} (d_{G-S}(u) + l_u^2 + 2d_{G-S}(u)l_u) + \sum_{u \in S} d_G^2(u)
\]

\[
= M_1(G - S) + \sum_{u \in V(G - S)} l_u^2 + \sum_{u \in V(G - S)} 2d_{G-S}(u)l_u + \sum_{u \in S} d_G^2(u)
\]

\[
\leq M_1(G - S) + \sum_{u \in V(G - S)} p^2 + \sum_{u \in V(G - S)} 2d_{G-S}(u)p + \sum_{u \in S} (n - 1)^2
\]

\[
= M_1(G - S) + p(p - 1)p^2 + 4p(k + n - p - 1) + p(n - 1)^2
\]

\[
= M_1(G - S) + p(4k + n^2 + 2n + p(n - 4) - p^2 - 3).
\]

The equality holds if and only if for each \(u \in V(G - S) \), \(l_u = p \) and for every vertex \(u \in S \), we have \(d_G(u) = n - 1 \). This condition is satisfied if and only if \(G \cong (G - S) + K_p \), proving the first part of the theorem.

To prove (2), we assume that \(u^*v^* \) is an edge of \(G \) such that \(u^* \in V(G - S) \) and \(v^* \in S \).

By definition of \(M_2 \),
\[M_2(G) = \sum_{uv \in E(G-S)} d_G(u)d_G(v) + \sum_{uv \in E(G-(V(G)\setminus S))} d_G(u)d_G(v) + \sum_{u^*v^* \in E(G)} d_G(u^*)d_G(v^*) \]

By simplifying the last equality,

\[M_2(G) = \sum_{uv \in E(G-S)} (d_{G-S}(u)d_{G-S}(v) + d_{G-S}(u)l_v + d_{G-S}(v)l_u + l_u l_v) + \sum_{uv \in E(G-(V(G)\setminus S))} d_G(u)d_G(v) + \sum_{u^*v^* \in E(G)} (d_{G-S}(u^*)d_G(v^*) + d_G(v^*)l_{u^*}). \]

Therefore,

\[M_2(G) = M_2(G - S) + \sum_{uv \in E(G - S)} (d_{G-S}(u)v + d_{G-S}(v)l_u + l_u l_v) \]

\[+ \sum_{uv \in E(G-(V(G)\setminus S))} d_G(u)d_G(v) + \sum_{u^*v^* \in E(G)} (d_{G-S}(u^*)d_G(v^*) + d_G(v^*)l_{u^*}) \]

\[\leq M_2(G - S) + p \sum_{uv \in E(G-S)} (d_{G-S}(u) + d_{G-S}(v) + p) \]

\[+ \sum_{uv \in E(G-(V(G)\setminus S))} (n-1)^2 + \sum_{u^*v^* \in E(G)} (d_{G-S}(u^*)(n-1) + (n-1)p) \]

\[= M_2(G - S) + pM_1(G - S) + (k + n - p - 1)p^2 + \frac{p(p - 1)(n - 1)^2}{2} \]

\[+ 2p(n-1)(k + n - p - 1) + p^2(n-p)(n-1) \]

\[= M_2(G - S) + pM_1(G - S) + (k + n - p - 1)(p^2 + 2p(n-1)) \]

\[+ \frac{p(p - 1)(n - 1)}{2} + p^2(n-p)(n-1). \]

The equality is satisfied if and only if for each \(u \in V(G - S) \), \(l_u = p \) and for every vertex \(u \in S \), \(d_G(u) = n - 1 \). This condition is also equivalent to the fact that \(G \cong (G - S) + K_p \) which completes the proof. \(\square \)

Theorem 3.2. Suppose \(A = \{H_1, H_2, ..., H_r\} \subset C^k(n - p) \), \(H \in C^k(n - p) \setminus A \), \(B = \{H_i + K_p^i | i = 1, 2, ..., r\} \) and \(G \in Q_pC^k(n) \setminus B \). If \(M_1(H) < M_1(H_1) = ... = M_1(H_r) \) and \(M_2(H) < M_2(H_1) = ... = M_2(H_r) \), then
1. \(M_1(G) < M_1(H_1 + K_p) = \cdots = M_1(H_r + K_p) \).

2. \(M_2(G) < M_2(H_1 + K_p) = \cdots = M_2(H_r + K_p) \).

Proof. By Theorem 3.1(1), for each \(i, 1 \leq i \leq r \), \(M_1(H_i + K_p) = M_1(H_i) + p(4k + n^2 + 2n + p(n - 4) - p^2 - 3) \). Since \(G \notin B \), for every subset \(S \) of \(V(G) \) with this property that \(G - S \in C^k(n - p) \), we have \(G - S \notin A \) or \(G - S \in A \) and \(G \neq (G - S) + K_p \). Thus, by Theorem 3.1(1), \(M_1(G) < M_1(H_1 + K_p) = \cdots = M_1(H_r + K_p) \). To prove the second part, we apply Theorem 3.1(2) and a similar argument as above. \(\square \)

The following theorems are crucial in our next result:

Theorem 3.3. (See \([1, 3]\)). Let \(T \) be a tree of order \(n \). If \(T \) is different from \(S_n \), then \(M_1(T) < M_1(S_n) \) and \(M_2(T) < M_2(S_n) \).

Theorem 3.4. (See \([13, 14]\)). \(U^3_n \) is the unique graph with the largest Zagreb indices \(M_1 \) and \(M_2 \) among all unicyclic graphs with \(n \) vertices.

Theorem 3.5. (See \([3]\)). \(B^3_n \) is the unique graph with the largest Zagreb indices \(M_1 \) and \(M_2 \) among all bicyclic graphs with \(n \) vertices, see Figure 7.

Suppose \(q_n(n - 4, 1, 1, 1, 1) \) and \(K_n(n - 3, 1, 1, 1) \) are tricyclic graphs depicted in Figure 2.

Theorem 3.6. (See \([3]\)). Among all tricyclic graphs with \(n(\geq 5) \) vertices,

1. \(K_n(n - 3, 1, 1, 1) \) and \(q_n(n - 4, 1, 1, 1, 1) \) have the maximum values of first Zagreb index.

2. The graph \(K_n(n - 3, 1, 1, 1) \) has maximum value of the second Zagreb index.

From Theorems 3.2, 3.3, 3.4, 3.5 and 3.6, we have the following corollary.

Corollary 3.7. Suppose \(n \) is a given positive integer and \(G \in Q_p C^k(n) \). Then,

1. If \(k = 0 \) and \(n \geq p + 2 \) then \(M_1(G) \leq M_1(S_{n-p} + K_p) \) and \(M_2(G) \leq M_2(S_{n-p} + K_p) \). Hence \(S_{n-p} + K_p \) has the maximum first and second Zagreb indices in the class \(Q_p C^0(n) \) with \(n \geq p + 2 \).

2. If \(k = 1 \) and \(n \geq p + 3 \) then \(M_1(G) \leq M_1(U^3_{n-p} + K_p) \) and \(M_2(G) \leq M_2(U^3_{n-p} + K_p) \). Hence \(U^3_{n-p} + K_p \) has the maximum first and second Zagreb indices in the class \(Q_p C^1(n) \) with \(n \geq p + 3 \).

3. If \(k = 2 \) and \(n \geq p + 4 \) then \(M_1(G) \leq M_1(B^3_{n-p} + K_p) \) and \(M_2(G) \leq M_2(B^3_{n-p} + K_p) \). Hence \(B^3_{n-p} + K_p \) has the maximum first and second Zagreb indices in the class \(Q_p C^2(n) \) with \(n \geq p + 4 \).

4. If \(k = 3 \) and \(n \geq p + 5 \) then \(M_1(G) \leq M_1(K_{n-p}(n-p-3, 1, 1, 1) + K_p) = M_1(q_{n-p}(n-p-4, 1, 1, 1) + K_p) \). Hence \(K_{n-p}(n-p-3, 1, 1, 1) + K_p \) and \(q_{n-p}(n-p-4, 1, 1, 1) + K_p \) have the maximum first Zagreb index in the class \(Q_p C^3(n) \) with \(n \geq p + 5 \).
5. If \(k = 3 \) and \(n \geq p + 5 \) then \(M_2(G) \leq M_2(K_{n-p}(n-p-3,1,1,1)+K_p) \). Hence \(K_{n-p}(n-p-3,1,1,1)+K_p \) has the maximum second Zagreb index in the class \(Q_pC^3(n) \) with \(n \geq p + 5 \).

Acknowledgement. We are indebted to the referee for many insightful suggestions and helpful remarks. This research is partially supported by the University of Kashan under grant number 364988/44.

References

