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1. Introduction 

The combined materials usage is increasing gradually due to 

the inability of conventional engineering materials to meet the 

desired properties needed by the aerospace and many of other 

industries. The desired properties for aircraft, space vehicles, 

shipbuilding, automotive, civil, chemical, biomedical, energy 
sources, optical and mechanical engineering applications, can be 

achieved by employing the functionally graded materials (FGMs). 

These desired properties are attained by grading the physical 

properties in the thickness/length direction from one side to 

another side of the plate. However, in the sintering process while 

producing FGMs, micro voids and porosities may occur in the 
material. This is owing to the metal phase coagulated at very high 

temperature and ceramic phase is at a relatively low temperature. 

The presence of pores will exotically weaken the strength of the 

material [1]. So, it is essential to study the porosity effect in 

designing the FGM components.  The plates are the key elements 

in structural systems made of FGMs. So, it is important to 
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investigate the flexural response of functionally graded plates 

(FGPs) with distributed porosities. 

In the last few decades, the investigators contributed a lot in 

investigating the mechanical behavior of perfect FGPs without 
considering the porosity.  The open literature reveals that, many 

researchers have paid their attention to discuss the vibration and 

buckling responses of FGPs with porosities. A nice literature 

review of the above mentioned works may be found in the papers 

of Zenkour [8] and Merdaci [11]. Mohammadi et al. [2] analyzed 

the vibration of thin sector plates resting on a Pasternak elastic 
foundation with different sector angles and elastic parameters 

using the new version of the differential quadrature method. 

Mohammadi et al [3], also investigated the circular and annular 

graphene sheet embedded in a Visco-Pasternak foundation under 

vibration by coupling with the temperature change and under in-

plane pre-load. Safarabadi et al. [4] studied the surface effects on 
the vibration behavior of rotating nanobeam by Gurtin-Murdoch 

model. Baghani et al. [5] studied the dynamic and stability 
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In this paper, the flexural response of functionally graded plates with porosities is 
investigated using a novel higher order shear deformation theory, which considers 
the influence of thickness stretching. This theory fulfills the nullity conditions at 
the top and bottom of the plate for the transverse shear stresses, thus avoids the 
need of a shear correction factor. The effective material properties are computed 
through the rule of mixtures. The principle of virtual displacements is employed to 
derive the equilibrium equations. The Navier’s method is adopted to obtain the 
solutions in closed form for simply supported boundary conditions. The accuracy 
and consistency of the developed theory are established with numerical results of 
perfect and porous functionally graded plates available in the open literature. The 
dimensionless transverse displacements and stresses have been reported. The effect 
of even, uneven and logarithmically-uneven porosity distributions with different 
porosity volume fraction, gradation index, side-to thickness ratios and aspect ratios 
are studied. The numerical results show that, the increase of volume fraction of 
porosity increases the dimensionless transverse deflections and axial stresses, and 
decreases the transverse shear stresses. No variation of transverse shear stresses 
observed for a completely ceramic and metallic plate for all kinds of porosity 
models. The provided numerical results can be used to evaluate various plate theories 
and also to compare the results of other analytical methods and finite element methods. 
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behavior of nano-beam under the effect of magnetic field, surface 

energy and compressive axial load using the nonlocal elasticity 

theory and the Gurtin Murdoch model. Goodarzi et al. [6], 

investigated the vibration analysis of FG circular and annualar 

nano-plate embedded in a Visco-Pasternak foundation by varying 

the temperature.  

Akbas [7] investigated the influence of porosity and gradation 

index on the free vibration and bending behavior of FGPs with all 

sides are simply supported (S-S-S-S). The flexural behavior of 

FGPs with single layer and sandwich plate with porosities was 

investigated by Zenkour [8]. Nguyen et al. [9], studied the 

nonlinear response of FG plates using C0 type higher order theory. 
The bending, buckling and natural frequency analyses of nano FG 

porous plates buildup with graphene platelets were investigated by 

Li et al. [10]. Merdaci [11] analyzed the flexural response of 

rectangular FG plates with porosities by a higher order theory with 

four unknowns. Demirhan and Taskin [12] used state-space 

approach to provide benchmark results for bending and free 
vibration of FG rectangular plates with porosity. In this paper the 

inplane and transverse displacements are separated into bending 

& shear components.  

Kim et al. [13-14] presented the numerical results for bending, 

vibration & buckling of FG porous micro plates. These plate 

theories were not satisfied the nullity conditions. The effect of 
porosity, exponent index and length scale factor of the material 

were examined. Yang et al. [15] compared the bending and the 

buckling response of different form of porous FG plates with a 

traditional sandwich plate. The solutions were obtained by using 

Ritz method in combination with Chebyschev polynomials. The 

bending behavior of functionally graded sandwich plates with 
even, uneven, logarithmically uneven and linear-uneven 

porosities were investigated by Daikh et al. [16]. Merdaci and 

Belghoul [17] investigated the deflections and stresses in FG 

porous plates using sinusoidal shear deformation theory. The 

authors considered the even distribution of porosity in FG plate. 

Amir Farzam and Behrooz Hassani [18] analyzed the static 
response of FG micro plates with porosities by employing 

Isogeometric analysis and modified couple stress theory. 

In this paper, an analytical solution is developed to investigate 

the flexural behavior of porous FGPs using a hyperbolic 

trigonometric quasi 3-D higher order theory with different forms 

of porosities considering the transverse extensibility in the 
thickness direction. The present theory uses the novel shear strain 

function that assesses the boundary conditions without restrictions 

on the top and bottom of the FGPs, thus avoids the need of a shear 

correction factor. The physical properties across the thickness of 

the FG porous plates are assumed to vary according to a power 

law while the Poisson’s ratio keeps on constant. Navier solution is 
obtained in closed form for simply supported FGPs subjected to 

bi-sinusoidal load. The numerical results are compared with 3-D 

exact solutions and with other higher order theories. The influence 

of thickness ratios, aspect ratios, gradation index, and porosity 

distribution and also the volume fraction of porosity on the 

displacements and stresses are discussed in detail.  

2. Problem formulation 

Figure 1 represents a FG plate with physical dimensions, which 

contains the ceramic material at the top and the metallic material 
at the bottom. The FG plate also has porosities, which can be 

distributed evenly, unevenly or logarithmically-uneven through 

the plate thickness. 

   
Figure.1. FG plate with three types of porosity distributions 

The FG plate is subjected to bi-sinusoidal load q (x, y). The 

effective physical properties in the thickness direction of the FG 
plates for three kinds of porosity distributions within the ceramic 

and metal phases can be given as [19] 

Even porosity model: 

𝑃(𝑧) = (𝑃𝑡 − 𝑃𝑏) (
𝑧

ℎ
+

1

2
)

𝑝

+ 𝑃𝑏 −
𝜁

2
(𝑃𝑡 + 𝑃𝑏)                       (1a) 

Uneven porosity model: 

𝑃(𝑧) = (𝑃𝑡 − 𝑃𝑏) (
𝑧
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)
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)        (1b)            

Logarithmically-uneven porosity model 

𝑃(𝑧) = (𝑃𝑡 − 𝑃𝑏) (
𝑧

ℎ
+

1

2
)

𝑝

+ 𝑃𝑏 

              −𝐿𝑜𝑔 (1 +
𝜁

2
) (𝑃𝑡 + 𝑃𝑏) (1 −

2|𝑧|

ℎ
)                       (1c) 

Where,  𝑃𝑡 , 𝑃𝑏 are the properties at the top and bottom of the 

plate respectively, including the modulus of elasticity, poisons 

ratio and density,  p is the gradation index, thickness is h and 𝜁 is 

the volume fraction of porosity. 𝜁 = 0 represents the perfect FG 

plate. 

Figure 2 depicts the variation of effective Young’s Modulus of 

Al/Al2O3 prefect and FG plates with three types of porosity 

models. In this, the effective modulus of elasticity is assessed 

using the rule of mixtures with volume fraction of porosity, 𝜁 =0, 

0.1, 0.2 and 0.3 & gradation index, p=0.5, 1 & 5. It can be 

observed that the modulus of elasticity of the FG plate without 
porosity has the highest in magnitude, whereas the FG plate for 

even-porosity volume fraction   𝜁 = 0.3 has the lowest in 

magnitude for all the values of p. Moreover, at all the porosity 

volume fractions, the effective modulus of elasticity of perfect FG 

and FG plate for uneven and logarithmically-uneven distribution 

matches at the top and bottom of the plate, whereas uneven 
porosity match with even porosity in the mid surface of the FG 

plate. 

2.1. Basic assumptions 

The normal and transverse shear deformations contribute 

significantly in accurately estimating the structural response of FG 

plates. Hence the present theory considers the influence of normal 

and transverse shear deformations. 

The displacement in the x-direction is u and y-direction is v 

comprises extension, bending and shear components. 
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 �̅�(𝑥, 𝑦) = 𝑢(𝑥, 𝑦) + 𝑢𝑏(𝑥, 𝑦) + 𝑢𝑠(𝑥, 𝑦)                       (2a) 

 �̅�(𝑥, 𝑦) = 𝑣(𝑥, 𝑦) + 𝑣𝑏(𝑥, 𝑦) + 𝑣𝑠(𝑥, 𝑦)          (2b) 
 Where 

 𝑢𝑏(𝑥, 𝑦) = −𝑧𝑤𝑏,𝑥                                                                  (2c) 

𝑣𝑏(𝑥, 𝑦) = −𝑧𝑤𝑏,𝑦                                                                   (2d) 

 𝑢𝑠(𝑥, 𝑦) = −𝜓(𝑧)𝑤𝑠 ,𝑥
 &                                                         (2e) 

 𝑣𝑠 = −𝜓(𝑧)𝑤𝑠 ,𝑦
                                           (2f) 

𝜓(𝑧) = 𝑧 − 𝜍(𝑧)                                                        (2g)           

𝜍(𝑧) = zCosh (
𝑧

ℎ
) − z [Cosh (

1

2
) + (

1

2
) Sinh (

1

2
)]         (2h)  

Eq. (2h) represents the novel shear strain function that satisfies 
the nullity conditions of the transverse shear stress at the upper 

and lower side of the plate. Thus, this theory doesn’t require the 

shear correction factor. The comma followed by the subscripts 

represents differentiation with respect to the subscripts throughout 

the paper.  

The transverse displacement w contains the bending (wb), shear 
(ws) and through the thickness stretching (wt). The bending and 

shear components are functions of x and y coordinates and the 

thickness stretching component a is a function of x, y and z. 

�̅� = 𝑤𝑏(𝑥, 𝑦) + 𝑤𝑠(𝑥, 𝑦) +  𝜍(𝑧),𝑧𝜉(𝑥, 𝑦, 𝑧)                         (2i) 

𝜉(𝑥, 𝑦, 𝑧) takes account of influence of normal stress.      
The present theory involves only five unknown parameters. 

 
(a) 

 
(b) 

 
(c) 

Figure.2.Variation of Modulus of Elasticity of perfect and FG plate with 

different porosity distributions, ζ=0, 0.1, 0.2 & 0.3: (a) p=0.5;(b) p=1;(c) p=5 

2.2. Strain displacement relations 

The necessary equations are derived by assuming the strains 
are small. The strain displacement relations associated with the 

displacement model of Eqs. (2a-i), can be applied for thick to thin 

plates are as follows.  

𝜖11 = 𝑢,𝑥 − 𝑧𝑤𝑏,𝑥𝑥 − 𝜓(𝑧)𝑤𝑠,𝑥𝑥                                      (3a) 

𝜖22 = 𝑣,𝑦 − 𝑧𝑤𝑏,𝑦𝑦 − 𝜓(𝑧)𝑤𝑠,𝑦𝑦                            (3b) 

𝜖33 =  𝜍(𝑧),𝑧𝑧  𝜉           (3c) 

𝜖12 = (𝑢,𝑦 + 𝑣,𝑥) − 2𝑧𝑤𝑏,𝑥𝑦 − 2𝜓(𝑧)𝑤𝑠,𝑥𝑦        (3d) 

𝜖13 = 𝜍(𝑧),𝑧(𝑤𝑠,𝑥 + 𝜉,𝑥)           (3e) 

𝜖23 = 𝜍(𝑧),𝑧(𝑤𝑠,𝑦 + 𝜉,𝑦)           (3f) 

2.3. Stress-strain relations 

The Linear stress-strain relations are given as: 

𝑠11 = 𝑄11𝜖11 + 𝑄12(𝜖22 + 𝜖33)                                      (4a) 

𝑠22 = 𝑄11𝜖22 + 𝑄12(𝜖11 + 𝜖33)           (4b) 

𝑠33 = 𝑄11𝜖33 + 𝑄12(𝜖11 + 𝜖22)           (4c) 

(𝑠12, 𝑠13, 𝑠23)  = 𝑄66(𝜖12, 𝜖13 , 𝜖23)          (4d) 

In which, 𝑠 = {𝑠11, 𝑠22 , 𝑠33 , 𝑠12, 𝑠13, 𝑠23} and  𝜖 =
{𝜖11, 𝜖22, 𝜖33, 𝜖12, 𝜖13 , 𝜖23} are the stresses and strains with regard 

to the plate coordinating system and  

𝑄11 =
𝐸(𝑧)(1−𝜇)

(1−2𝜇)(1+𝜇)
                                         (4e) 

𝑄12 =
𝜇𝐸(𝑧)

(1−2𝜇)(1+𝜇)
             (4f) 

𝑄66 =
𝐸(𝑧)

2(1+𝜇)
             (4g) 

2.4. Equilibrium Equations of motion 

The static equilibrium equations can be obtained by 

considering the virtual work and expressed in analytic form as 

∫ ∫ ∫[𝑠11𝜖11 + 𝑠22𝜖22 + 𝑠33𝜖33 + 𝑠12𝜖12 +  𝑠13𝜖13 
𝑧𝑦𝑥

+ 𝑠23𝜖23] 𝑑𝑥𝑑𝑦𝑑𝑧 
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− ∫ ∫ 𝑞[𝛿𝑤𝑏 + 𝛿𝑤𝑠 + 𝜍(𝑧),𝑧|ℎ/2𝜉]
𝑦𝑥

𝑑𝑥𝑑𝑦=0                            (5) 

or 

∫ ∫ [𝑁1𝑦
𝛿𝑢,𝑥 − 𝑀1𝛿𝑤𝑏,𝑥𝑥𝑥

− 𝑃1𝛿𝑤𝑠 ,𝑥𝑥
+ 𝑁2𝛿𝑣,𝑦 − 𝑀2𝛿𝑤𝑏,𝑦𝑦

−

𝑃2𝛿𝑤𝑠 ,𝑦𝑦
+ 𝑆3𝛿𝜉 + 𝑁6(𝛿𝑢,𝑦 + 𝛿𝑣,𝑥) − 2𝑀6𝛿𝑤𝑏,𝑥𝑦

−

2𝑃6𝛿𝑤𝑠 ,𝑥𝑦
+ 𝑄13(𝛿𝑤𝑠,𝑥

+ 𝛿𝜉,𝑥) + 𝑄23 (𝛿𝑤𝑠 ,𝑦
+ 𝛿𝜉,𝑦) −

𝑞(𝛿𝑤𝑏 + 𝛿𝑤𝑠 + 𝜍(𝑧),𝑧|−ℎ/2
ℎ/2

𝜉)]𝑑𝑥𝑑𝑦=0                         (6) 

In which Ni, Mi, Pi,  Si, Qi denotes the forces and moment 
results which can be defined as follows 

(𝑁𝑖 , 𝑀𝑖 , 𝑃𝑖) = ∫ 𝑆𝑖𝑗(1, 𝑧, 𝜓(𝑧))
ℎ/2

−ℎ/2
𝑑𝑧,    (𝑖, 𝑗 = 1, 2, 6)        (7a) 

𝑆3 = ∫ 𝑆33
ℎ/2

−ℎ/2
𝜍(𝑧),𝑧𝑧𝑑𝑧            (7b) 

𝑄𝑗3 = ∫ 𝑆𝑗3
ℎ/2

−ℎ/2
𝜍(𝑧),𝑧𝑑𝑧            (7c) 

The equations of equilibrium are obtained from Eq. (6) by 

applying the integration by parts to the displacement gradients and 
putting the coefficients of 𝛿𝑢, 𝛿𝑣, 𝛿𝑤𝑏, 𝛿𝑤𝑠  and 𝛿𝜉 to zero, 

independently. So, according to this theory, we have 

𝛿𝑢 = 𝑁1,𝑥
+ 𝑁6,𝑦

= 0                                                              (8a) 

𝛿𝑣 = 𝑁2,𝑦
+ 𝑁6,𝑥

= 0                                                              (8b) 

𝛿𝑤𝑏 = 𝑀1,𝑥𝑥
+ 𝑀2,𝑦𝑦

+ 2𝑀6,𝑥𝑦
= −𝑞                                     (8c) 

𝛿𝑤𝑠 = 𝑃1,𝑥𝑥
+ 𝑃2,𝑦𝑦

+ 2𝑃6,𝑥𝑦
+ 𝑄13,𝑥

+ 𝑄23,𝑦
= −𝑞              (8d) 

𝛿𝜉 = 𝑄13,𝑥
+ 𝑄23,𝑦

− 𝑆3 = 0                                                   (8e) 

By putting Eq. (4a-g) into the Eq. (7a-c), and further 
substitution of the resulting equations into Eq. (8a-e) gives the 

system of equations in an abbreviated form as: 

[Θ]5×5[Δ] 5×1=[F] 5×1                                                 (9) 

Where [Θ] contains stiffness terms and {Δ} =
{𝑢, 𝑣, 𝑤𝑏 , 𝑤𝑠 , 𝜉 }𝑡  denotes the unknown amplitudes and {𝐹} =
{0,0, −𝑞, −𝑞, 0}𝑡 is the force matrix.  

3. Analytical Solutions 

In what follows, the solution for the Eq. (9) is obtained by 

prescribing the simply supported conditions at all the side edges: 

𝑁1, 𝑀1, 𝑃1, 𝑣, 𝑤𝑏 , 𝑤𝑠 , 𝑤𝑏,𝑦
, 𝑤𝑠 ,𝑦

, 𝜉 = 0 𝑎𝑡 𝑥 = 0, 𝑎  

𝑁2, 𝑀2, 𝑃2, 𝑢, 𝑤𝑏, 𝑤𝑠 , 𝑤𝑏,𝑥
, 𝑤𝑠 ,𝑥

, 𝜉 = 0  𝑎𝑡 𝑦 = 0, 𝑏.        (10) 

In accordance with Navier’s solution, the external transverse 
bi-sinusoidal load can be expressed as: 

𝑞(𝑥, 𝑦) = 𝑞𝑘𝑙𝑠𝑖𝑛(𝜑𝑥)𝑠𝑖𝑛(𝜙𝑦), (𝑘, 𝑙 = 1, 2, … . . ∞)                 (11) 

Where  𝜑 =
𝑘𝜋

𝑎
 , 𝜙 =

𝑙𝜋

𝑏
 , k and l are the mode numbers. For 

uniformly distributed, qkl can be defined as: 

𝑞𝑘𝑙 = {
16𝑞

𝑘𝑙𝜋2
, for odd k and l

0, otherwise
                                    (12) 

In accordance with Navier’s method, the assumed expressions 

for solutions that satisfy the SS conditions at all the side edges 
are as follows 

u(x, y) = 𝑢𝑘𝑙𝑐𝑜𝑠(𝜑𝑥)𝑠𝑖𝑛(𝜙𝑦)                                               (13a) 

v(x, y) = 𝑣𝑘𝑙𝑠𝑖𝑛(𝜑𝑥)𝑐𝑜𝑠(𝜙𝑦)                                               (13b) 

[𝑤𝑏(𝑥, 𝑦), 𝑤𝑠(𝑥, 𝑦), 𝜉(𝑥, 𝑦)  ] =
[𝑤𝑏𝑘𝑙 , 𝑤𝑠𝑘𝑙 , 𝜉𝑘𝑙]𝑠𝑖𝑛(𝜑𝑥)𝑠𝑖𝑛(𝜙𝑦), (𝑘, 𝑙 = 1, 2, … . . ∞)         (13c) 

Where 𝑢𝑘𝑙, 𝑣𝑘𝑙 , 𝑤𝑏𝑘𝑙 , 𝑤𝑠𝑘𝑙 , 𝜉𝑘𝑙 are the unknowns to be 

determined.  

Substitution of Eqs. (13a-c) into Eqs.(8a-e), the following 

system of equations in first order are obtained. 

[Θ̅]5×5[Δ̅]5×1 = [F]̅5×1                                                      (14) 

The elements of [Θ̅]5×5, [Δ̅]5×1 and [F̅]5×1 are given as. 

Θ11 = −(𝐴11𝜑2 + 𝐴66𝜙2)  

Θ12 = −(𝐴12 + 𝐴66)𝜑𝜙  

Θ13 = 𝐵11𝜑3 + (𝐵12 + 2𝐵66)𝜑𝜙2  

Θ14 = 𝐵11
𝑆 𝜑3 + (𝐵12

𝑆 + 2𝐵66
𝑆 )𝜑𝜙2  

Θ14 = 𝐸11𝜑  

Θ22 = −(𝐴66𝜑2 + 𝐴11𝜙2)  

Θ23 = 𝐵11𝜙3 + (𝐵12 + 2𝐵66)𝜙𝜑2  

Θ24 = 𝐵11
𝑆 𝜙3 + (𝐵12

𝑆 + 2𝐵66
𝑆 )𝜙𝜑2  

Θ25 = 𝐸12𝜙  

Θ33 = −𝐷11(𝜑4 + 𝜙4) − (2𝐷12 + 4𝐷66)𝜑2𝜙2  

Θ34 = −𝐷11
𝑆 (𝜑4 + 𝜙4) − (2𝐷12

𝑆 + 4𝐷66
𝑆 )𝜑2𝜙2  

Θ35 = −𝐺12(𝜑2 + 𝜙2)  

Θ44 = −𝐹11(𝜑4 + 𝜙4) − (2𝐹12 + 4𝐹66)𝜑2𝜙2 − 𝐿66(𝜑2 + 𝜙2)  

Θ45 = −𝐽12(𝜑2 + 𝜙2) − 𝐿66(𝜑2 + 𝜙2)  

 Θ55 = −𝐿66(𝜑2 + 𝜙2) − 𝐾11  
Where (𝐴𝑖𝑗|𝐵𝑖𝑗|𝐷𝑖𝑗 |𝐵𝑖𝑗

𝑠 |𝐷𝑖𝑗
𝑠 |𝐹𝑖𝑗|𝐸𝑖𝑗 |𝐺𝑖𝑗|𝐽𝑖𝑗|𝐾𝑖𝑗 |𝐿𝑖𝑗) =

∫
𝑄𝑖𝑗(1|𝑧|𝑧2|𝜓(𝑧)|𝑧𝜓(𝑧)|𝜓(𝑧)2|𝜍(𝑧),𝑧𝑧|𝑧𝜍(𝑧),𝑧𝑧|𝜓(𝑧)𝜍(𝑧),𝑧𝑧|𝜍(𝑧),𝑧𝑧

2
|𝜍(𝑧),𝑧

2
)𝑑𝑧   

                                                                                                                      (𝑖, 𝑗 = 1, 2, 6)

ℎ/2

−ℎ/2
 

{Δ̅} = {𝑢𝑘𝑙 , 𝑣𝑘𝑙 , 𝑤𝑏𝑘𝑙
, 𝑤𝑠𝑘𝑙

, 𝜉𝑘𝑙  }
𝑡
  

{�̅�} = {0,0, −𝑞𝑘𝑙 , −𝑞𝑘𝑙 , 0}𝑡  
 

4. Results and Discussion 

The flexural response of simply supported perfect and porous 

FG rectangular plates subjected to transverse bi-sinusoidal load is 

investigated.  In the present paper, ceramic-metal FG plates are 

considered, and their material properties are: 

Metal (Aluminium, Al): Modulus of Elasticity (Em)= 70 GPa, 

Ceramic (Alumina, Al2O3): Modulus of Elasticity (Ec)= 380 GPa 
and Poisson’s ratio (𝜇)  is assumed as 0.3. 

The displacements and stresses assessed here are reported 

using the following dimensionless forms: 

𝑊 = 𝑤 (
𝑎

2
,

𝑏

2
, 𝑧)

10𝐸𝑐ℎ3

𝑞𝑘𝑙𝑎4
                                                           (15a) 

𝑆11 = 𝑠11 (
𝑎

2
,

𝑏

2
, 𝑧)

ℎ2

𝑞𝑘𝑙𝑎2
                                                          (15b) 

𝑆22 = 𝑠22 (
𝑎

2
,

𝑏

2
, 𝑧)

ℎ2

𝑞𝑘𝑙𝑎2
                                                          (15c) 

𝑆33 = 𝑠33 (
𝑎

2
,

𝑏

2
, 𝑧)

ℎ2

𝑞𝑘𝑙𝑎2
                                                          (15d) 

𝑆13 = 𝑠13 (0,
𝑏

2
, 𝑧)

ℎ

𝑞𝑘𝑙𝑎
                                                     (15e) 

To validate the present theory, dimensionless center deflections 

and stresses of exponentially graded plates are compared with: (i) 

3-D exact solutions of the perfect plate [20]; (ii) Novel higher 
order theory, which includes new trigonometric shear strain shape 

function developed by Mantari et al. [21] and (iii) A Quasi-3D 

refined theory developed by Zenkour [8] for single layer and 

sandwich plates with porosities. 

It should be noted that 3-D elasticity solutions [20] and 

solutions of the higher order theory [21]  were obtained on the 
basis of trigonometric variation of both in-plane and transverse 

displacements along the thickness, whereas solutions of a Quasi-

3D higher order theory [8] were obtained on the basis of 

polynomial type shear strain shape function  with six unknowns.   

Table 1 consists results of dimensionless transverse center 

deflection W with and without inclusion of the porosity volume 
fraction; normal stress S22 and transverse shear stress S13 (without 

inclusion of porosity volume fraction) of exponentially graded 

plates for different thickness ratios (a/h) and exponents p.   

From the Table 1; it is observed that the present results without 

considering the porosity are agreeing well with the 3-D elasticity 

solutions and the results provided by Mantari et al. [21] and 
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Zenkour [8]. This point to the use of new shear strain shape 

function given in Eq. (2h) has an utmost effect on the accuracy of 

the results. 

The additional results of dimensionless transverse center 

deflections, and stresses in FG square plates with even, uneven 

and Logarithmically-uneven porosity models are reported in 
Tables 2-6 for perfect and porous FG plates. 

From Tables 2-6, it should be noted that, the increase of volume 

fraction of porosity increases the dimensionless transverse 

deflection and axial stress & decreases the transverse shear 

stresses. The reason for this is an increase in the volume fraction 

of porosity (ζ) results in a decrease in the Young’s modulus of the 
plate. The dimensionless deflections decrease with the increase of 

a/h, and increases with increase of p. The stresses increase as b/a 

ratio increase. We can say that the thickness ratio a/h, aspect ratio 

b/a, gradation index and porosity volume fraction have a 

considerable influence on the deflections and stresses for three 

types of distributions. 

It is also noticed from Table 6 that no variation of transverse 
shear stresses for a completely ceramic and metallic plate for all 

kinds of porosity models. The reason is that the plate is completely 

homogeneous in all the cases. The effect of shear component is to 

decrease the deflections with increase of side-to-thickness ratios. 

It is because; the shear deformation is more noticeable in thick 

plates. 

 

Table 1: Comparison study of dimensionless center deflections, axial and transverse shear stress of perfect and porous FG plate 
subjected to sinusoidal load for various exponents and aspect ratios. 

 a/h  p=0.1 p=0.3 p=0.5 p=0.7 p=1.0 p=1.5 

W 2 3-D [15]  0.57693 0.52473 0.47664 0.4324 0.37269 0.28904 

  Mantari et al[16] 0.57789 0.5224 0.47179 0.42567 0.36485 0.27939 

  Zenkour(ξ=0)[3] 0.5751 0.5199 0.4695 0.4236 0.3624 0.2781 

  Present 0.5782 0.5227 0.4721 0.4259 0.3644 0.2795 

  Zenkour (ξ=0.1) [3] 0.7182 0.6493 0.5864 0.5291 0.4526 0.3473 

  Present (ξ=0.1) 0.7221 0.6528 0.5895 0.5319 0.455 0.3491 

 4 3-D [15]  0.349 0.31677 0.28747 0.26083 0.22534 0.18054 

  Mantari et al[16] 0.3486 0.31519 0.28477 0.2571 0.22028 0.1697 

  Zenkour(ξ=0) [3] 0.3481 0.3148 0.2844 0.2568 0.22 0.1695 

  Present 0.3486 0.3152 0.2848 0.2571 0.2203 0.16972 

S22 2 3-D [15]  0.31032 0.32923 0.34953 0.37127 0.40675 0.47405 

  Mantari et al[16] 0.29244 0.31468 0.33826 0.36325 0.40405 0.47848 

  Present 0.292164 0.314372 0.337924 0.362878 0.403065 0.477919 

 4 3-D [15]  0.22472 0.23995 0.25621 0.27356 0.30177 0.35885 

  Mantari et al[16] 0.22372 0.23907 0.25544 0.27291 0.30137 0.35555 

  Present 0.222852 0.238118 0.254404 0.271791 0.300126 0.354105 

S13 10 Mantari et al[16] 0.238 0.2376 0.2368 0.2356 0.233 0.2268 

  Present 0.237453 0.237042 0.236223 0.234999 0.232423 0.226237 

 

Table 2: Effect of volume fraction exponent, porosity distribution, porosity volume fraction and side to thickness ratio on 

Dimensionless center defection in FG plate 
  

p 

  

ζ 

a/h=2 a/h=4 a/h=10 

Even Uneven Logarithmically Uneven Even Uneven Logarithmically Uneven Even Uneven Logarithmically Uneven 

0 0 0.6079 0.6079 0.6079 0.3665 0.3665 0.3665 0.2942 0.2942 0.2942 

 0.1 0.6462 0.6266 0.6262 0.3896 0.3745 0.3743 0.3128 0.2991 0.2989 

 0.2 0.6896 0.6467 0.6448 0.4157 0.3829 0.3821 0.3338 0.3041 0.3036 

 0.3 0.7393 0.6684 0.6638 0.4457 0.3918 0.39 0.3578 0.3092 0.3082 

1 0 1.0994 1.0994 1.0994 0.6916 0.6916 0.6916 0.5695 0.5695 0.5695 

 0.1 1.245 1.1625 1.1608 0.792 0.7237 0.7228 0.6563 0.5925 0.5919 

 0.2 1.442 1.2344 1.2273 0.9323 0.7598 0.7562 0.7797 0.618 0.6155 

 0.3 1.73 1.3174 1.2994 1.1474 0.8008 0.792 0.9731 0.6467 0.6406 

2 0 1.4725 1.4725 1.4725 0.8947 0.8947 0.8947 0.7225 0.7225 0.7225 

 0.1 1.7575 1.5972 1.5939 1.087 0.957 0.9554 0.8871 0.7664 0.7653 

 0.2 2.2142 1.7489 1.7333 1.4186 1.0321 1.0244 1.1815 0.819 0.8136 

 0.3 3.1694 1.9381 1.8956 2.2084 1.1249 1.1042 1.9217 0.8834 0.869 
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5 0 2.1224 2.1224 2.1224 1.1597 1.1597 1.1597 0.8741 0.8741 0.8741 

 0.1 2.7553 2.4299 2.4212 1.5032 1.2833 1.2799 1.1319 0.9434 0.9415 

 0.2 4.0171 2.866 2.8174 2.2426 1.4521 1.4336 1.7166 1.0331 1.0235 

 0.3 9.3463 3.5402 3.3734 6.7116 1.7023 1.6414 5.931 1.1567 1.1276 

10 0 2.5286 2.5286 2.5286 1.3355 1.3355 1.3355 0.9815 0.9815 0.9815 

 0.1 3.4679 3.0000 2.9861 1.7831 1.5047 1.4998 1.2838 1.0616 1.0594 

 0.2 5.6813 3.7539 3.6641 2.8284 1.7597 1.7301 1.9836 1.1686 1.1569 

 0.3 20.9018 5.1882 4.796 12.6446 2.2146 2.0929 10.1713 1.3292 1.2893 

∞ 0 3.3003 3.3003 3.3003 1.9896 1.9896 1.9896 1.5973 1.5973 1.5973 

 0.1 4.8636 3.9581 3.9384 2.9321 2.2587 2.251 2.3539 1.7522 1.748 

 0.2 9.2408 5.0546 4.9204 5.571 2.6606 2.6138 4.4724 1.95 1.9289 

 0.3 92.4079 7.3876 6.7098 55.7098 3.4109 3.2022 44.7236 2.2323 2.1628 

Table 3: Effect of volume fraction exponent, porosity distribution and porosity volume fraction on dimensionless axial stress in 
FG plate, a/h=2 

  Even Uneven Logarithmically-Uneven 

p ζ b/a=1 b/a=2 b/a=3 b/a=4 b/a=1 b/a=2 b/a =3 b/a =4 b/a =1 b/a =2 b/a =3 b/a =4 

0 0 0.2815 0.4987 0.5884 0.6278 0.2815 0.4987 0.5884 0.6278 0.2815 0.4987 0.5884 0.6278 

 0.1 0.2815 0.4987 0.5884 0.6278 0.2868 0.5076 0.5987 0.6387 0.2867 0.5074 0.5984 0.6385 

 0.2 0.2815 0.4987 0.5884 0.6278 0.2923 0.5168 0.6094 0.6501 0.2917 0.516 0.6084 0.6491 

 0.3 0.2815 0.4987 0.5884 0.6278 0.298 0.5265 0.6207 0.6621 0.2968 0.5245 0.6183 0.6596 

1 0 0.4444 0.7806 0.9198 0.981 0.4444 0.7806 0.9198 0.981 0.4444 0.7806 0.9198 0.981 

 0.1 0.4685 0.8239 0.971 1.0357 0.4586 0.8042 0.9472 1.0101 0.4582 0.8036 0.9465 1.0093 

 0.2 0.5026 0.8857 1.0442 1.1139 0.474 0.8298 0.9769 1.0416 0.4725 0.8273 0.974 1.0385 

 0.3 0.5553 0.983 1.1595 1.2371 0.4911 0.8579 1.0094 1.076 0.4875 0.8519 1.0025 1.0687 

2 0 0.5314 0.9292 1.0933 1.1654 0.5314 0.9292 1.0933 1.1654 0.5314 0.9292 1.0933 1.1654 

 0.1 0.5812 1.0191 1.1995 1.2787 0.5548 0.9676 1.1377 1.2125 0.5542 0.9666 1.1366 1.2113 

 0.2 0.6652 1.1748 1.3842 1.4761 0.5819 1.0116 1.1884 1.2661 0.5792 1.0072 1.1834 1.2607 

 0.3 0.8594 1.55 1.8321 1.9557 0.6137 1.063 1.2474 1.3284 0.6067 1.0517 1.2346 1.3148 

5 0 0.6592 1.137 1.3333 1.4196 0.6592 1.137 1.3333 1.4196 0.6592 1.137 1.3333 1.4196 

 0.1 0.7483 1.2866 1.5073 1.6042 0.7019 1.2008 1.4054 1.4952 0.7008 1.1991 1.4035 1.4932 

 0.2 0.9198 1.5827 1.853 1.9715 0.7579 1.2821 1.4962 1.5901 0.7519 1.2735 1.4866 1.5801 

 0.3 1.7245 3.1501 3.7245 3.9755 0.8385 1.3953 1.6213 1.7202 0.819 1.3682 1.5915 1.6893 

10 0 0.7763 1.3467 1.5815 1.6846 0.7763 1.3467 1.5815 1.6846 0.7763 1.3467 1.5815 1.6846 

 0.1 0.8989 1.5486 1.8153 1.9324 0.8338 1.4313 1.6765 1.7841 0.8322 1.429 1.6739 1.7814 

 0.2 1.1426 1.9432 2.2697 2.4129 0.916 1.5468 1.8042 1.917 0.9067 1.5339 1.79 1.9023 

 0.3 2.5893 4.4839 5.2393 5.5684 1.0586 1.7378 2.0122 2.1322 1.0205 1.6875 1.9577 2.0759 

  

Table 4: Effect of volume fraction exponent, porosity distribution and porosity volume fraction on dimensionless axial stress in 
FG plate, a/h=4 

  Even Uneven Logarithmically-Uneven 

p ζ b/a=1 b/a =2 b/a =3 b/a =4 b/a =1 b/a =2 b/a =3 b/a =4 b/a =1 b/a =2 b/a =3 b/a =4 

0 0 0.2156 0.4348 0.5249 0.5645 0.2156 0.4348 0.5249 0.5645 0.2156 0.4348 0.5249 0.5645 

 0.1 0.2156 0.4348 0.5249 0.5645 0.2191 0.4417 0.5332 0.5734 0.219 0.4416 0.533 0.5732 

 0.2 0.2156 0.4348 0.5249 0.5645 0.2228 0.4489 0.5418 0.5826 0.2224 0.4482 0.541 0.5818 

 0.3 0.2156 0.4348 0.5249 0.5645 0.2266 0.4563 0.5507 0.5922 0.2258 0.4548 0.5489 0.5902 

1 0 0.333 0.6726 0.8126 0.8742 0.333 0.6726 0.8126 0.8742 0.333 0.6726 0.8126 0.8742 

 0.1 0.3521 0.7111 0.859 0.924 0.3421 0.6905 0.8341 0.8972 0.3419 0.6901 0.8335 0.8966 

 0.2 0.3798 0.7668 0.9261 0.9961 0.352 0.7096 0.857 0.9218 0.351 0.7078 0.8548 0.9194 
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 0.3 0.4244 0.8562 1.0337 1.1116 0.3626 0.7302 0.8816 0.9482 0.3603 0.7258 0.8764 0.9426 

2 0 0.3928 0.7906 0.9545 1.0265 0.3928 0.7906 0.9545 1.0265 0.3928 0.7906 0.9545 1.0265 

 0.1 0.4325 0.8699 1.0498 1.1288 0.4073 0.8185 0.9877 1.0621 0.4069 0.8178 0.9869 1.0612 

 0.2 0.5039 1.0123 1.2209 1.3125 0.4237 0.8496 1.0249 1.1019 0.422 0.8465 1.0212 1.098 

 0.3 0.685 1.3736 1.6546 1.7778 0.4424 0.8851 1.0671 1.1471 0.4384 0.8774 1.058 1.1373 

5 0 0.4695 0.9396 1.1332 1.2183 0.4695 0.9396 1.1332 1.2183 0.4695 0.9396 1.1332 1.2183 

 0.1 0.5287 1.0547 1.2711 1.3662 0.4896 0.9756 1.1756 1.2636 0.4891 0.9746 1.1746 1.2624 

 0.2 0.6511 1.2925 1.5555 1.671 0.5135 1.0167 1.2238 1.3147 0.511 1.0126 1.2189 1.3096 

 0.3 1.4132 2.8063 3.3701 3.6167 0.5439 1.0664 1.2811 1.3754 0.5369 1.0552 1.2683 1.3619 

10 0 0.5595 1.1227 1.3549 1.4569 0.5595 1.1227 1.3549 1.4569 0.5595 1.1227 1.3549 1.4569 

 0.1 0.6359 1.2715 1.5334 1.6485 0.5848 1.1676 1.4077 1.5132 0.5841 1.1664 1.4063 1.5118 

 0.2 0.7818 1.5493 1.865 2.0037 0.6156 1.2184 1.4666 1.5757 0.6124 1.2133 1.4607 1.5695 

 0.3 1.8652 3.6278 4.3407 4.6525 0.66 1.2839 1.5403 1.6529 0.6489 1.2682 1.5229 1.6348 

Table 5: Effect of volume fraction exponent, porosity distribution and porosity volume fraction on dimensionless axial stress in 
FG plate, a/h=10 

  Even Uneven Logarithmically-Uneven 

p ζ b/a=1 b/a =2 b/a =3 b/a =4 b/a =1 b/a =2 b/a =3 b/a =4 b/a =1 b/a =2 b/a =3 b/a =4 

0 0 0.1988 0.4183 0.5085 0.5481 0.1988 0.4183 0.5085 0.5481 0.1988 0.4183 0.5085 0.5481 

 0.1 0.1988 0.4183 0.5085 0.5481 0.2019 0.4247 0.5163 0.5565 0.2018 0.4245 0.5161 0.5563 

 0.2 0.1988 0.4183 0.5085 0.5481 0.205 0.4313 0.5242 0.5651 0.2047 0.4306 0.5235 0.5642 

 0.3 0.1988 0.4183 0.5085 0.5481 0.2083 0.438 0.5325 0.5739 0.2076 0.4366 0.5308 0.5721 

1 0 0.3047 0.6448 0.7849 0.8465 0.3047 0.6448 0.7849 0.8465 0.3047 0.6448 0.7849 0.8465 

 0.1 0.3225 0.682 0.83 0.8951 0.3124 0.6611 0.8047 0.8678 0.3122 0.6606 0.8042 0.8673 

 0.2 0.3486 0.7361 0.8956 0.9657 0.3206 0.6783 0.8257 0.8905 0.3198 0.6767 0.8237 0.8883 

 0.3 0.3912 0.8235 1.0011 1.0792 0.3294 0.6968 0.8481 0.9146 0.3276 0.6929 0.8434 0.9095 

2 0 0.3568 0.7542 0.9179 0.9898 0.3568 0.7542 0.9179 0.9898 0.3568 0.7542 0.9179 0.9898 

 0.1 0.3938 0.8306 1.0103 1.0892 0.3687 0.779 0.948 1.0222 0.3684 0.7784 0.9472 1.0214 

 0.2 0.4618 0.9693 1.1776 1.2691 0.382 0.8065 0.9813 1.0581 0.3807 0.8038 0.978 1.0545 

 0.3 0.6392 1.3267 1.6074 1.7304 0.397 0.8374 1.0187 1.0983 0.3937 0.8307 1.0106 1.0897 

5 0 0.4188 0.8865 1.0792 1.164 0.4188 0.8865 1.0792 1.164 0.4188 0.8865 1.0792 1.164 

 0.1 0.4695 0.9918 1.207 1.3016 0.4323 0.9144 1.1132 1.2006 0.4319 0.9137 1.1123 1.1997 

 0.2 0.5777 1.2129 1.474 1.5886 0.4466 0.9439 1.149 1.2391 0.4452 0.9411 1.1455 1.2354 

 0.3 1.3267 2.711 3.2718 3.5172 0.462 0.9751 1.1867 1.2797 0.4588 0.9686 1.1788 1.2712 

10 0 0.5014 1.0623 1.2937 1.3954 0.5014 1.0623 1.2937 1.3954 0.5014 1.0623 1.2937 1.3954 

 0.1 0.5646 1.1961 1.4566 1.5711 0.5172 1.0956 1.3343 1.4392 0.5168 1.0948 1.3333 1.4382 

 0.2 0.6819 1.4404 1.753 1.8904 0.5326 1.1277 1.3734 1.4814 0.5312 1.1248 1.3698 1.4776 

 0.3 1.6548 3.3827 4.0841 4.3912 0.5471 1.1562 1.4077 1.5184 0.5442 1.1508 1.4013 1.5114 

Table 6: Effect of volume fraction exponent, porosity distribution and volume fraction of porosity on Dimensionless transverse 
shear stress in FG plate, a/h=10 

  Even Uneven Logarithmically-Uneven 

p ζ b/a=1 b/a =2 b/a =3 b/a =4 b/a =1 b/a =2 b/a =3 b/a =4 b/a =1 b/a =2 b/a =3 b/a =4 

0 0 0.2375 0.3801 0.4276 0.4472 0.2375 0.3801 0.4276 0.4472 0.2375 0.3801 0.4276 0.4472 

 0.1 0.2375 0.3801 0.4276 0.4472 0.2326 0.3723 0.4188 0.4380 0.2327 0.3725 0.4190 0.4382 

 0.2 0.2375 0.3801 0.4276 0.4472 0.2273 0.3638 0.4093 0.4280 0.2278 0.3646 0.4102 0.4290 

 0.3 0.2375 0.3801 0.4276 0.4472 0.2215 0.3545 0.3989 0.4171 0.2227 0.3565 0.4011 0.4194 

2 0 0.2174 0.3480 0.3915 0.4095 0.2174 0.3480 0.3915 0.4095 0.2174 0.3480 0.3915 0.4095 

 0.1 0.2139 0.3424 0.3852 0.4028 0.2032 0.3252 0.3659 0.3827 0.2036 0.3258 0.3666 0.3834 
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 0.2 0.2087 0.3340 0.3757 0.3929 0.1858 0.2973 0.3345 0.3498 0.1876 0.3002 0.3378 0.3532 

 0.3 0.1993 0.3190 0.3589 0.3754 0.1639 0.2623 0.2951 0.3086 0.1688 0.2702 0.3040 0.3179 

5 0 0.1917 0.3069 0.3452 0.3610 0.1917 0.3069 0.3452 0.3610 0.1917 0.3069 0.3452 0.3610 

 0.1 0.1785 0.2857 0.3214 0.3362 0.1630 0.2609 0.2935 0.3069 0.1638 0.2622 0.2950 0.3085 

 0.2 0.1538 0.2462 0.2770 0.2897 0.1214 0.1944 0.2187 0.2287 0.1261 0.2018 0.2271 0.2375 

 0.3 0.0872 0.1395 0.1570 0.1642 0.0554 0.0887 0.0998 0.1044 0.0719 0.1152 0.1296 0.1355 

10 0 0.2101 0.3363 0.3784 0.3957 0.2101 0.3363 0.3784 0.3957 0.2101 0.3363 0.3784 0.3957 

 0.1 0.2006 0.3211 0.3613 0.3778 0.1777 0.2844 0.3200 0.3346 0.1786 0.2859 0.3217 0.3364 

 0.2 0.1789 0.2864 0.3222 0.3370 0.1247 0.1996 0.2246 0.2348 0.1310 0.2098 0.2360 0.2468 

 0.3 0.0616 0.0987 0.1110 0.1161 0.0206 0.0330 0.0371 0.0388 0.0494 0.0791 0.0890 0.0931 

  0 0.2375 0.3801 0.4276 0.4472 0.2375 0.3801 0.4276 0.4472 0.2375 0.3801 0.4276 0.4472 

 0.1 0.2375 0.3801 0.4276 0.4472 0.2052 0.3284 0.3695 0.3864 0.2062 0.3300 0.3712 0.3882 

 0.2 0.2375 0.3801 0.4276 0.4472 0.1492 0.2388 0.2686 0.2809 0.1562 0.2499 0.2812 0.2941 

 0.3 0.2375 0.3801 0.4276 0.4472 0.0243 0.0390 0.0438 0.0458 0.0612 0.0980 0.1102 0.1153 

 

Figure 3 shows the through-the-thickness distribution of 

dimensionless deflections of square FG plate in the thickness 

direction for a/h=10 with several values of p and 𝜁. 

From Figure 3a it is seen that the deflection increases as p 

increases for 𝜁 = 0. The influence of porosity distribution and the 
volume fraction of porosity are illustrated in Figures 3b-d. The 

increase of 𝜁 value increases the deflection. The maximum center 

deflection occurs at the plate center for all types of porosity 

distributions and porosity volume fractions and varies 

symmetrically about the mid plane through-the-thickness of the 

plate for fixed p=0.5 (see Figures 3b-d). However the maximum 
center deflection hasn't occurred at the plate center for perfect FG 

plates. This is because of the inhomogeneity of the plate material. 

Also seen that, the even porosity distribution shows larger 

deflection compared to uneven and logarithmically-uneven 

distribution values in the thickness direction of all porosity 

volume fractions. 

The distribution of dimensionless axial stress S11 of very thick 

(a/h=4) rectangular (b/a=3) FG plate in the thickness direction is 

portrayed in Figure 4 for several values of p and 𝜁. The axial 

stresses are tensile and compressive at the upper and lower surface 

of the plate respectively, for three types of distributions and 

porosity volume fraction values. The increase of the porosity 
volume fraction results in increase of axial stress. This can be 

defended by the fact that the porosity lessens the rigidity of the 

plate. From Figure 4a, it is noteworthy to see that the stress 

increases with increase of exponent p. The difference in axial 

stress is more in even distribution compared to other two 

distributions. The volume fraction of porosity 𝜁  of even porosity 
distribution (see Figure 4b) has no influence on axial stress in two 

positions, S11=-0.26 at z/h=-0.23and S11=0.31 at z/h=0.325. 

Whereas the porosity volume fraction 𝜁 of uneven (see Figure 4c) 

and logarithmic-uneven (see Figure 4d) porosity distribution has 

no influence on axial stress in three positions, S11=-0.37 at z/h=-

0.2711, S11=0.05 at z/h=-0.1211 and S11=0.5 at z/h=0.39. & 

S11=0.27 at z/h=-0.365, S11=-0.1291 at z/h=0.045 and S11= 0.52 at 

z/h=0.39 respectively.  

The distribution of normal stress S33 in the thickness direction 
of very thick (a/h=4) rectangular (b/a=3) FG plate is shown in Fig. 

5 for several values of p and 𝜁. The volume fraction of porosity 

has no influence on normal stress S33 in three positions for uneven 

and Logarithmically-uneven distribution (see Figures. 5c-5d)  

respectively, are S33=-0.0677 at z/h=-0.3,  S33=-0.0697 at 

z/h=0.06, S33=0.016 at z/h=0.45 & S33= -0.0677 at z/h=-0.29, 
S33=-0.066  at z/h=0.07,  S33=0.016, at z/h=0.45. 

Lastly, Figure 6 illustrates the distribution of dimensionless 

transverse shear stress S13 of FG rectangular (b/a=3) in the 

thickness direction for a/h=4 with different values of p and 𝜁. The 

transverse shear stress S13 increases as p=0, 1 and 2 while it 

decreases as p=5 and 10 (see Figure. 6a). The maximum values of 
transverse shear stress for perfect, even, uneven and logarithmic-

uneven distributions at p=2 respectively, are S13=0.4962 at 

z/h=0.2, S13=0.5835 at z/h=0.2 and 𝜁 = 0.2, S13 =0.5752 at 

z/h=0.2 and 𝜁 = 0.3 & S13 =0.5645 at z/h=0.3 and 𝜁 = 0.3 (see 

Figures. 5a-d). From Figures 6b-d, it is observed that the 

transverse shear stress increases as 𝜁 increases.  The porosity 
volume fraction 𝜁  of even porosity distribution (see Figure. 6b) 

has no influence on transverse shear stress in one position, 

S13=0.4325 at z/h=0.05. Whereas the porosity volume fraction 𝜁 

of uneven (see Figure. 6c) and logarithmic-uneven (see Figure. 

6d) porosity distribution has no influence on transverse shear 

stress in two positions respectively, are S13=0.114 at z/h=-0.3375, 
S13=0.468 at z/h=0.11 & S13=0.115 at z/h=-0.34 S13=0.47 at 

z/h=0.115. 
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Figure. 3. Distributions of dimensionless deflection through the thickness of square (a) perfect FG plate; (b) FG Plate with Even porosity distribution; (c)  FG 

Plate with the uneven porosity distribution; (d) FG Plate with Logarithmic-uneven porosity distribution  for  p=0.5 (a/h=10)
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(a) (b) 

 

 

(c) (d) 

Figure.4. Distributions of dimensionless axial stress through the thickness of Rectangular (b/a=3) (a) perfect FG plate; and (b) FG plate with the Even porosity 

distribution; (c) FG plate with the uneven porosity distribution; (d) FG plate with Logarithmic-uneven porosity distribution for p=2 (a/h=4) 
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(a) (b) 

  
(c) (d) 

Fig.5. Distributions of dimensionless normal stress S33 through the thickness of Rectangular (b/a=3) (a) perfect FG plate; and (b) FG plate with the Even 

porosity distribution; (c) FG plate with the uneven porosity distribution; (d) FG plate with Logarithmic-uneven porosity distribution for p=2 (a/h=4) 
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(a) (b) 

 

 

(c) (d) 

Figure 6. Distributions of dimensionless Transverse shear stress through the thickness of Rectangular (b/a=3) (a) perfect FG plate; and (b) FG plate with the 

Even porosity distribution; (c) FG plate with the uneven porosity distribution; (d) FG plate with Logarithmic-uneven porosity distribution for p=2 (a/h=4) 
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the properties of FG plates with porosities. The present theory is 

validated with the results available in the open literature. The 

numerical results estimated by the present theory are accurate in 

estimating the flexural response of perfect and porous FG plates. 

The influence of thickness ratio a/h, aspect ratio b/a, gradation 

index p, and porosity volume fraction of the flexural response of 
FG plates are studied. Also, the provided numerical results can be 

used to evaluate various plate theories and also to compare the 

results provided by other analytical methods and finite element 

methods. Based on the present work, it can be concluded that the 

present theory allows examining the flexural behavior of porous 

FG plates produced by sintering process. 
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