
* Corresponding author. Tel: +98-9153054931. E-mail address:  mojeddifar@arakut.ac.ir (S. Mojeddifar). 
Journal Homepage: ijmge.ut.ac.ir 

Integration of support vector machines for hydrothermal alteration 
mapping using ASTER data – case study: the northwestern part of the 

 Kerman Cenozoic Magmatic Arc, Iran

Saeed Mojeddifar a, *, Seyed Mohammad Mavadati b

a Department of Mining Engineering, Arak University of Technology, Arak, Iran 
b Department of Electrical & Computer Engineering University of Denver, Denver, Co, USA  

A B S T R A C T 

This work applies support vector machine (SVM) algorithms in two versions of singular and general SVM classifiers to map hydrothermal 
alteration zones in the northwestern part of the Kerman Cenozoic Magmatic Arc (KCMA). Three visible bands and six SWIR bands of ASTER 
images were applied as inputs for SVM classifiers. The develosped algorithms were able to classify ASTER images into hydrothermal alteration 
or non-hydrothermal alteration classes. In singular SVM, nine classifiers were able to vote individually for every pixel in the image. Then, they 
were combined through integration rules to present a final decision about every pixel. The general SVM classifier integrated nine ASTER 
bands at the signal level to produce the final decision. The classification error rate showed that the general Gaussian RBF kernel-based SVM 
classifier had higher accuracy for the classification of hydrothermal alteration zones. The SVM results were then compared with other 
classified images based on band ratio and SAM methods. The main problem associated with these methods was that vegetation covering was 
highlighted as alteration zones while the SVM algorithm could solve this issue. Also, the verification of results, based on field and laboratory 
investigations, showed the SVM method to produce a more accurate map of alteration than that obtained from the band ratio and SAM. 
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1. Introduction

Remote sensing science applies spectral signatures of minerals to
discriminate different rock types. Various attempts have been made to 
distinguish altered pixels using remote sensing methods [1, 2, 3, 4, 5, 6, 
7, 8, 9]. Hydroxyl-bearing minerals are important products of 
hydrothermal alteration. Clays, which contain Al-OH- and Mg-OH-
bearing minerals, are distinguished by an absorption peak in the 2.1–2.4 
µm (Fig. 1). On the other hand, the presence of water in vegetative 
tissues commonly may cause spectral interference with hydroxyl-
bearing minerals in the 2.1–2.4 µm (Fig. 1). Therefore, the discrimination 
between vegetation and hydroxyl-bearing minerals is a significant 
challenge in remote sensing.  

According to recent studies, differentiation between various 
alteration minerals and vegetation cover is difficult when using some 
image-processing techniques such as band ratio, principal component 
analysis, and spectral angle mapper. For example, Abrams et al. [1] 
attempted to identify hydrothermal alteration using digitally processed 
aircraft multispectral images. Kaufmann [2] applied TM images to map 
hydrothermal alteration zones. Knepper and Simpson [3] used TM 
color ratio composite images to detect hydrothermally-altered rocks. 
Bennett et al. [4] integrated TM data with field and laboratory data to 
discover alteration zones. Goosens and Kroonenberg [5] used TM ratio 
images to identify rocks overlain by residual soil. Carranza and Hale [6] 
mapped hydrothermal alteration with integrating results of TM images 
and ground data. Porwal et al. [7] implemented a neuro-fuzzy algorithm 

to provide a mineral potential map. Honarmand et al. [8] applied 
principal component analysis and spectral angle mapper to discover 
hydrothermal alteration minerals. 

Fig. 1.  Reflectance signature of common hydrothermal minerals vs. vegetation 
cover. 

Bodraddoza and Fujimitsu [9] tried to detect alteration zones using 
color composite, band ratio, principal component, least-square fitting, 
and reference spectra analysis. Another challenge about the traditional 
methods, such as band ratio and spectral angle mapper, is the erroneous 
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classification of unaltered materials as hydrothermal alteration areas. 
The present work employs the ASTER data by applying different 
support vector machine (SVM) algorithms integrated with fusion rules 
to solve this issue. SVM is an efficient technique for data classification. 
The theory of SVM is based on the idea of structural risk minimization 
(SRM)[10]. In many applications, SVM has been shown to provide 
higher performance than that usually obtained from traditional learning 
machines. It has been proved to be a powerful tool for solving 
classification problems [11]. The dataset used in this study contains 
three ASTER scenes using SWIR and VNIR bands, covering Meiduk 
porphyry copper deposit, Kader, Abdar, and Iju mineral prospects 
located in the Kerman Province, in southeastern Iran. 

2. Geology of the Area 

The case study is a part of the Iranian Cenozoic Magmatic Belt 
(CICMB), which lies parallel to the Zagros geo-suture for about 1800km 
from Western Azerbaijan (northwest of Iran) to the north of Makran 
(southeast of Iran). The CICMB is part of the Alpine-Himalayan 
orogenic belt, which extends from western Europe to Turkey, across 
Iran into western Pakistan [12]. Igneous activity in this zone 
commenced in the Eocene and continued to its climax during the mid-
Eocene volcanic eruptions and Oligo-Miocene plutonic intrusions in 
many parts of Iran [13, 14]. The study area is located in the Kerman 
Cenozoic Magmatic Arc (KCMA), which is a part of the southeast sector 
of the CICMB. The KCMA forms a northwest-southeast trending 
magmatic arc segment, about 400 km long and 40-50 km wide along the 
southern margin of the central Iran micro-continent. The geology of the 
Kerman arc segment mainly consists of an Upper Cretaceous–Eocene 
basic to felsic volcanic–sedimentary complex. The Oligo-Miocene 
granitic rocks intruded into thick sequences (15 km thick) of Eocene 
lava, pyroclastic, and volcaniclastic rocks, as well as batholiths, stocks, 
and dikes [15].  

 
Fig. 2.  Geologic map of the study area [16]. The location of the area is also 

shown on the Kerman Cenozoic magmatic Arc. 

The Cretaceous colored mélange is the oldest, and the Quaternary 
alluvial deposits and gravel fans are the youngest exposures in the study 
area (Fig. 2). Cretaceous sediments are mainly of flysch successions.  
Eocene volcanic rocks are subdivided into the Bahr-e-Aseman complex 
and the Lower, Middle, and Upper Razak complexes. These rocks are 
represented by pyroclastics, pyroxene trachyandesites, trachyandesites, 
trachybasalts, tuffaceous sediments, basaltic rocks, and (pyroxene) 
andesites. The sedimentary rocks in the volcanic-sedimentary complex 
are mainly sandstone and, less frequently, limestone. The Eocene 
volcanic sedimentary rocks are intruded by the Oligocene-Miocene 
plutons that consist of granodiorite, quartz-diorite, diorite, monzonite, 
tonalite, and granite. The volcanic rocks near these intrusive suites are 
widely metamorphosed and altered. Most of the plutonic and volcanic 
rocks are hydrothermally altered and mineralized in places. 

Argillization, sericitization, and propylitization are the most common 
types of hydrothermal alteration in the area. The Neogene sediments 
consist mainly of loosely consolidated, unsorted, and poorly stratified 
conglomerate and sandstone overlying the Eocene volcanic-
sedimentary rocks. Calcareous terraces and recent alluvium deposits are 
the main sedimentary units formed in the Quaternary. The Dehaj and 
Aj phases of volcanic activity in the form of pyroclastic, dacite, and 
basaltic rocks occurred in the Pliocene. The Meiduk, Abdar, Kader, 
Godekolvari, Iju, Serenu, Chahfiroozeh, Parkam, are the known copper 
deposits in this area [17]. 

3. Support Vector Machine Overview 

The foundations of Support Vector Machine (SVM) were developed 
by Vapnik [10] and have been applied to many pattern recognition 
applications such as classification and regression problems. SVM 
classifiers use an optimal hyperplane that maximizes the distance 
between the margins of two classes by a small number of training 
samples (support vectors). An SVM is a linear binary classifier (Fig. 3) 
that cannot classify the patterns in which data points of different classes 
overlap each other. Therefore, the kernel-based SVM would be applied 
to represent more complex shapes than linear hyperplanes. Suppose, in 
a binary classification problem, N training samples (xi ∈ Rd, (i=1,2,…,N)) 
are applied to train the SVM classifier. The aim is to find a surface for 
categorizing all of x i to the corresponding∈∈ class { 1, 1}y i    . This 

surface is defined by w ∈ Rd (normal to hyperplane) and b ∈ R (the 
amount of bias for classifying the data without errors). The decision rule 
is based on sgn[ ( )]f x , where ( )f x  is the discriminant function 
associated with the linear surface and defined as: 

( ) .f x w x b   (1) 

The SVM classifier searches to estimate w and b  so that: 

( ) 0 with 1,2,...,y w x b i Ni i     (2) 

The maximum distance between the closest training samples and the 
separating surface is used to find the best discriminant hyperplane. 
When rescaling hyperplane parameters ( ,w b ), it is possible to 

demonstrate the distance by
1

w
: 

min ( ) 1, 1,2,...,yi w xi b i N    (3) 

The margin between the two classes is
2

w
 , and the optimal 

hyperplane is determined by solving the quadratic programming 
problem: 
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For solving the above classical optimization problem, the following 
dual problem could be solved using the Lagrange formulation: 

1
: ( )

2

: 0 0, 1, 2,...,

1 1 1

1

Minimize y y x x

subject to y and i N

N N N

i i j i j i j

i i j
N

i i i

i

  

 











  




  



 



 (5) 

Quadratic programming (QP) is applied to estimate the Lagrange 
multipliers, [18]. The calculated discriminant function is associated with 
the optimal hyperplane, depends on both the Lagrange multipliers and 
the training samples, i.e. 

( ) ( . )f x y x x bi i i

i S

 




 (6) 

Where S is the subset of training samples corresponding to the non-
zero Lagrange multipliers. The Lagrange multiplier effectively weights 
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each training sample based on its importance for the discriminant 
function. The training sample with non-zero weights are called the 

support vectors and they lie precisely at the distance of 
1

w
 to the 

optimal separating hyperplane. 
 

 
Fig. 3.  The structure of SVM hyperplane. White and black circles refer to the 

classes “+1” and “-1,” respectively [19]. 

4. Fusion of Multispectral Information 

In many practical applications, a given source or sensor information 
comprises redundancy. Also, the information obtained by different tools 
provides complementary details about the objects. Removing the 
redundant information and finding the complementary parts is the final 
goal of the fusion approaches [20]. In remote sensing, the integration of 
multispectral data has been practiced to visualize target pixels. The 
current study attempts to detect the purest pixels representing alteration 
minerals using different integration levels. Employing the information 
of all ASTER bands requires the combination of useful and 
complementary information and then making a final decision. The 
pixels of ASTER bands could be integrated at four different levels: 

(a) signal-level integration 
(b) feature-level integration 
(c) matching-score-level integration 
(d) decision-level integration 
It is generally believed that a combination of integration levels as 

early as possible is more effective in a recognition system [21]. Thus, the 
present work applies signal and decision levels and compares the 
efficiency of each method based on the error rate of SVM classifiers. 
While integrating multispectral information at the signal level, the 
information is first concatenated, and then, a multi-dimensional image 
is produced accordingly. Afterward, a classifier is designed to categorize 
each pixel into a specific class. In the decision level, a special classifier is 
designed for each band, and the fusion rules (i.e., AND, OR, and 
VOTING) are applied to make a final decision about the class of pixels. 

5. Experiments and Results 

The performance of the developed SVM classifier is calculated based 
on the classification error rate. The classification error rate is computed 
based on averaging two errors: 1) false acceptance error (FA); 2) false 
rejection error (FR): 

Classification Error
2

FA FR
  (13) 

This study uses signal- and decision- level algorithms to improve the 
performance of classifiers, and finally, the best classifier is employed to 
the whole image to classify the image into two classes; hydrothermal 
alteration and non-hydrothermal alteration classes. 

5.1. ASTER Image 

ASTER is an advanced multispectral satellite imaging system that was 
launched onboard NASA's Terra spacecraft in December 1999. ASTER 
covers the VNIR (0.52 to 0.86 µm), SWIR (1.6 to 2.43 µm) and TIR (8.125 
to 11.65 µm) spectral regions with 14 channels with high spatial, spectral 
and radiometric resolution [22, 23]. The swath width is 60 km, but the 
pointing capability extends to 232 km, and the spatial resolution varies 
with wavelength region. This work applied three ASTER level 1B scenes. 
Two scenes were acquired on 18th April 2000 and another scene on 15th 
June 2007. These scenes were georeferenced by using an orthorectified 
ETM +  image,  in the UTM projection and WGS-84 ellipsoid as a datum.  
The first two were corrected for Crosstalk. Atmospheric corrections 
were also performed by using Fast Line of Sight Atmospheric Analysis 
of Spectral Hypercubes (FLAASH). The datasets were then mosaicked. 
The Internal Average Relative Reflectance (IARR) correction was also 
applied. Fig. 4 shows a false-color composite of ASTER bands 231(RGB) 
of the study area.  

 
Fig. 4. Color composite of ASTER images (band 2 in red, band 3 in green, and 

band 1 in blue). The vegetation cover is shown in green color. The yellow 
rectangles indicate the important copper deposits in the area.  

5.2. Configuration 

The train and test pixels are required for developing the SVM 
classifier. The authors analyzed the study area and clearly determined 
two classes of alteration and non-alteration in the region illustrated in 
Fig. 5. The whole image (Fig. 5) contains 551289 pixels, and the training 
polygons contain 3776 pixels. Polygons 1 and 2 represent the 
hydrothermal alteration regions that include 644 pixels, and polygons 3, 
4, and 5 are non-hydrothermal alteration regions that have 3132 pixels. 
This research randomly selected 80% of pixels of polygons to train the 
SVM classifier, and the remaining data were used to investigate the 
performance of the developed classifier. 

5.3. Classification Results: 

The VNIR + SWIR spectral regions of ASTER data (3 + 6 bands) were 
applied to implement the SVM classifier. The applied SVM can 
categorize image pixels into hydrothermal alteration or non-
hydrothermal alteration classes. This procedure is divided into two 
phases until reaching the goal. In the first phase, the SVM algorithm is 
implemented based on each band (singular SVM). It means that nine 
SVM classifiers are able to vote individually for every pixel in the image. 
Then, all votes are combined through the integration rules to present a 
final decision about every pixel. In the second phase, the spectral values 
of nine bands in each pixel are integrated at the signal level, and a nine-
dimensional image is produced by concatenating the ASTER bands 
(general SVM). Then, the structure of the SVM algorithm can be 
constructed using different structures (Linear and Nonlinear). 
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Fig. 5. Training and testing areas used for image classification (see the text). 

5.3.1. Singular SVM Classifiers 
In the first phase, this work intends to develop the SVM algorithm 

based on each ASTER band. It means that nine different SVM classifiers 
are provided to make nine binary decisions for every pixel (0 for 
hydrothermal alteration and 1 for non-hydrothermal alteration). The 
SVM algorithms were programed using the MATLAB software in linear 
and nonlinear modes. The Gaussian RBF kernel was used to construct 
the nonlinear algorithms. Sub-band SVM classifiers were evaluated 
using a test dataset. Table 1 and 2 shows the classification error rate of 
linear and Gaussian SVM algorithms, respectively. The obtained results 
indicate that the SVM classifiers of band 4 and band 7 could classify the 
test dataset with higher accuracy when both classes are considered. 
Since most of the alteration minerals show a maximum peak at range of 
1.6-1.7 µm (band 4) and a minimum peak at a range of 2.23-2.28 µm 
(band 7), the related SVM classifiers could present better results 
compared to other classifiers. If the results of SVM classifiers of classes 
1 and 2 are individually considered, the error rate of the SVM classifiers 
of band 4 and band 7 will increase. Therefore, we decided to integrate 
all of the nine classifiers using three decision rules (AND, OR, 
VOTING) to develop the final SVM classifier. Fig. 6 illustrates the block 
diagram of the described phase. The performance of the final SVM 
classifiers based on fusion rules shows that the best integration is 
obtained when the rule AND is applied.  

Table 1. Classification results of singular SVM classifiers (Linear). 

Classification 
Error Rate (%) 

SVM classifier for each ASTER Band 
1 2 3 4 5 6 7 8 9 

Total 76.58 39.41 83.21 22.48 40.87 55.02 27.51 42.19 44.31 

class 1 7.69 66.66 11.02 47.86 46.15 47.00 51.28 48.71 43.58 

class 2 89.20 34.42 91.07 17.84 39.90 56.49 23.16 41.00 44.44 

Table 2. Classification results of singular SVM classifiers (Gaussian RBF). 

Classification 
Error Rate(%) 

SVM classifier for each ASTER Band 
1 2 3 4 5 6 7 8 9 

Total 25.79 27.77 59.92 21.03 44.70 76.05 28.43 53.43 46.69 

class 1 86.29 75.80 20.96 45.16 25.80 14.51 36.29 24.19 25.00 

class 2 13.92 18.35 67.56 16.29 48.41 88.13 26.89 59.17 50.94 

 
Fig. 6. Block diagram of singular SVM classifiers. 

Table 3. Decision-level fusion of singular SVM classifiers (Linear and Gaussian 
RBF). 

Classification 
Error Rate (%) Linear SVM RBF SVM 

AND 15.47 16.40 

OR 57.40 71.16 

VOTING 39.81 40.21 

5.3.2. General SVM Classifier  
In the second phase, only one SVM classifier is developed to map 

alteration regions; therefore all of the nine ASTER bands are integrated 
at the signal level to obtain the final decision for every pixel (Fig. 7). The 
test dataset evaluated the general SVM classifier. Table 4 presents the 
results of linear and nonlinear (RBF) classifiers. Comparing Tables 3 and 
4 shows that the general SVM classifier can classify better than the 
singular one, and the performance of the general SVM classifier based 
on the RBF kernel is much reliable than the Linear SVM. Therefore, the 
general SVM classifier based on the Gaussian RBF kernel was used to 
categorize the whole image into two classes (Fig. 8).  

 
Fig. 7. Block diagram of the general SVM classifier. 

Table 4. Signal-level integration of the general SVM classifier (Linear and 
Gaussian RBF). 

Classification 
Error Rate (%) Linear SVM RBF SVM 

Total 2.69 1.69 

Region 1 4.58 3.33 

Region 2 2.31 1.35 

 

 
Fig. 8.  Classified hydrothermal (Black) and non-hydrothermal (White) regions 

by the general SVM (Gaussian RBF). 

6. Discussion 

Based on the classification error rate (Tables 4 and 5), the general 
SVM classifier based on the Gaussian RBF kernel was selected to classify 
the study area into hydrothermal alteration (black) and non-
hydrothermal alteration (white) regions (Fig. 8). The main goal was to 
detect hydrothermal alteration regions in the study area for the 
exploration of porphyry copper deposits. Iju, Serenu, Chahfiroozeh, 
Meiduk, Parkam, Kader, and Abdar are the known porphyry copper 
deposits, and according to Fig. 8, the developed algorithm could identify 
these deposits. The black polygons represent the location of each known 
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deposit, and more details about the known deposits are illustrated in Fig. 
4. The results of the general SVM classifier were compared with those 
of conventional techniques such as spectral angle mapper and band ratio 
methods. In addition, further verification was also considered through 
thin section examination and X-ray diffraction results presented by 
Mojedifar et al. [25] and Honarmand et al. [8]. They investigated the 
altered areas in both the field and the laboratory. Their studies showed 
that sericite alteration was dominant at the Iju, Serenu, Chahfiroozeh, 
Meiduk, Parkam, Kader, and Abdar porphyry copper deposits. Two 
types of phyllic alteration could be recognized in the field, including 
ferric-iron-rich and iron-oxide poor phyllic alterations. The iron-oxide-
rich phyllic zone showed a large number of iron oxide minerals on the 
surface. The common secondary minerals at the Kader, Iju, Serenu, 
Parkam, Meiduk, and Abdar deposits are in the form of goethite, 
jarosite, and minor hematite in three hydrothermal alteration zones of 
phyllic, argillic, and propylitic. Since discriminating clay minerals in thin 
sections was difficult, they analyzed the rock samples by a 
spectroradiometer. Argillic alteration is present in the deposits at Kader, 
Serenu, Meiduk, Parkam, Godekolvary, and Abdar. Propylitic alteration 
happens around most of the mineralized areas. They also studied the 
samples by a spectroradiometer. Based on their study, in the Kader area, 
the three hydrothermal alteration zones were relatively uniform over an 
area that included the phyllic, argillic, and propylitic alteration zones. 
Argillic alteration is present in the deposits at Kader, Meiduk, Parkam, 
and Abdar. The spectra of propylitic rocks indicated strong absorption 
in 2.33 μm because of the presence of chlorite and epidote (Fig. 9). A 
comparison of the altered areas in Fig. 8 with field data revealed that the 
general SVM classifier could identify alteration zones, acceptably.  

 

 
Fig. 9.  The spectra of the samples from phyllic, argillic, and propylitic zones, 

measured by a field spectroradiometer. The UTM, Zone-40 coordinates of the 
samples are illustrated on the spectra [8, 25]. 

ASTER images were also analyzed with the band ratio and spectral 
angle mapper (SAM) techniques in order to compare their results with 
the SVM classified image. SAM determines the spectral similarity 
between image pixels and reference spectra of alteration minerals 
through calculating the angle between them. This research used the 
reference spectra of muscovite driven by the USGS library to map the 
phyllic and argillic alteration zones (Fig. 10a). Also, band ratio (5+7)/6 
was calculated to map phyllic alteration areas that were exposed as 
bright pixels in Fig. 10b. A comparison of the SVM output (Fig. 8) with 
altered areas mapped through SAM (Fig. 10a) revealed that the 
vegetation cover was highlighted as alteration zones by SAM, black 
ellipses in Fig. 10a, while this issue was solved in the classified image 
obtained by SVM (Fig. 8). Also, the band ratio approach presented 
similar errors to those produced by the SAM method (Fig. 10b). 
Therefore, the general SVM classifier could be considered as an 
exploration tool in areas with similar climate and geology to those of the 
present study area.  

7. Conclusion 

The present research developed SVM algorithms in two versions of 

singular and general SVM classifiers to map hydrothermal alteration 
zones. The classification error rate showed that the general SVM 
algorithm could detect alteration minerals with higher accuracy. The 
reason could be found in the structure of developed classifiers. The 
general SVM classifies each pixel of the ASTER image using nine bands 
at the same time, while the singular SVM algorithm classifies each pixel 
individually based on every ASTER band. It means that the singular 
SVM presents nine classified images, and then they are integrated using 
integration rules. The classification error rate indicated that the general 
SVM based on the Gaussian RBF kernel could present the best results 
with an error value of 1.69%. The singular SVM showed that the best 
results were achieved when it used the ASTER bands known as the 
spectral signature of alteration minerals such as band 4 (with spectral 
resolution 1.6-1.7 µm). A comparison of the obtained results with 
traditional methods was performed in order to evaluate SVM classifiers. 
The general SVM based on the RBF method could successfully detect 
known deposits comprising alteration minerals in the study area. Also, 
the developed algorithm could differentiate alteration zones from the 
vegetation cover while SAM and band ratio methods highlighted 
vegetation as alteration regions. Therefore, this method is suggested for 
the exploration of hydrothermal alteration in other parts of the Iranian 
Cenozoic magmatic belt. 

 
 

 
Fig. 10.  (a): The result of SAM classification for phyllic alteration, overlain on 

ASTER band 1 image; (b): Phyllic alteration map by the band ratio method, the 
black ellipses, and the circle indicates alteration areas at the vegetation cover and 

sedimentary rocks, respectively. 
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