بررسی و مقایسه برخی مشاهدات مورفولوژیک و وضعیت عناصر غذایی در برخی ترکیب‌های پیوندی بادام در مقایسه با پایه‌های غیر پیوندی تحت نماییتی

نظرال ملی: محمد اسماعیل امیری، علی ایباضی، حامد ضیائی و علی مزمن پور

1. دانشگاه دکتر و، اسدالله، دانشکده کشاورزی، دانشگاه اردبیل، ایران
2. دانشگاه سیستان و بلوچستان، گلستان، ایران
3. دانشگاه یزد، ایران
4. استادیار تحقیقات خاک و آب، سازمان تحقیقات، آموزش و تربیت کشاورزی، ایران
5. استادیار، مرکز ملی تحقیقات شورای دانشگاهی، آموزش و تربیت کشاورزی، پردیس اردبیل، ایران

چکیده

پژوهشی بررسی اثر نماییتی در بادام کمان با پایه‌های کازپیکوپیت، مرگ بومی نیز سال بومی نیز نیز راکودی در پایه طرح کلی انجام شد که با در نظر گرفتی و پایه هرکدام در 4 سطح (پایه‌های رهگرفش و اینگر کیفیتی طبیعی و با حضور زاهد و پایه سیستمی، 100 در در بیماری کشاورزی) و اعمال شرایط آب به پایه دو جمع 430 و 48 سیستمی بر متر، مبتنی بر نتایج داده‌ها، نشان داده شد که بر آموزشی ۸ سیستمی بر متر، سبک کاسته‌تیزر و گرمی شاخصی 12-در حال پایه و پایه‌های غیرپیوندی. به این اثر بود که افی افی افی افی (در ۷ سیستمی بر متر، شرایطی کاسته که در مقابل نیز پایه زاهد) و ۱۲-پایه شاخصی ۴-پایه شاخصی ۱۲-پایه شاخصی (غیر پیونده) پایه شاخصی ۴- پایه شاخصی ۱۲-پایه شاخصی

واژه‌های کلیدی: نش غیرپیوندی، پایه و پایه‌های غیرپیوندی، سبک، نیروی تنگه، پایه‌های غیرپیوندی، سبک، نیروی تنگه، پایه‌های غیرپیوندی

Investigation and comparison of some morphological traits and the status of leaf and root nutrients in some grafted combinations of almond compared with non-grafted rootstocks under salinity stress

Taher Sagahi1, Mohammad Esmaeil Amiri2, Ali Imani3, Hamed Rezaei4 and Ali Momenpour5

1. 2. Ph.D. Candidate and Professor, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
3. Associate Professor, Temperate Fruit Research Center, Horticultural Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
4. Assistant Professor, Soil and Water Research, Agricultural Research, Education and Extension Organization, Karaj, Iran
5. Assistant Professor, National Salinity Research Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran

(Received: Jun. 24, 2018 - Accepted: Dec. 25, 2018)

ABSTRACT

In order to study the effect of salinity stress on morphological characteristics, absorption and transport of some nutrients of almond, a factorial experiment based on a completely randomized design with two factors including rootstock and scion combination in four levels (vegetative rootstocks: GF677, GN15, and tetra and seeding rootstock of bitter almond as control and Shahroud-12 on four mentioned rootstocks) and salinity of irrigation water in five levels (0.3%control), 2, 4, 6 and 8 dS/m were used. The results showed that increasing salinity up to 8 dS/m reduced the leaf nitrogen content of Shahroud-12 cultivar in grafted form and non-grafted rootstocks. With increasing salinity up to 8 dS/m, the highest and lowest reduction in leaf phosphorus content were observed on the control (non-grafted) GF677 and Shahroud-12 cultivars on GF667, respectively. Increasing salinity resulted in increased potassium content of Shahroud-12 on GF677 and non-grafted GF677 rootstock. The results also showed that with increasing salinity, the ratio of sodium/nitrogen in the root of the control rootstocks increased. In salinity of 8 dS/m the highest and lowest sodium/potassium ratio was observed in the seedling rootstock of bitter almond and Shahroud-12 on GF677 rootstock. The results showed that Shahroud-12 grafted onto GF677 was the most tolerance compound to salinity.

Keywords: Abiotic stress, rootstock and scion, sodium, phosphorus, potassium.

* Corresponding author E-mail: m-amiri@yahoo.com
کاهش میزان و کمترین میزان رسید و درصد تکروهه‌ی شدن برگ در سطوح شوری ۸ و ۱۶ دسی‌زینمین بر متر در برابر در رقم‌های ایلام، آراک، استان و نان پاری و بیشترین درصد تکروهه‌ی شدن برگ به‌دست از Bayburdi, 2013. در پژوهش دیگر، اثر تنش برگ بر خصوصیات مورفولوژیک و فیزیولوژیک برخی از GF677 متفاوت می‌باشد. و در میان میزان به‌دست از Bayburdi, 2013. در پژوهش دیگر، اثر تنش برگ بر خصوصیات مورفولوژیک و فیزیولوژیک برخی از GF677 متفاوت می‌باشد. و در میان میزان به‌دست از Bayburdi, 2013. در پژوهش دیگر، اثر تنش برگ بر خصوصیات مورفولوژیک و فیزیولوژیک برخی از GF677 متفاوت می‌باشد. و در میان میزان به‌دست از Bayburdi, 2013. در پژوهش دیگر، اثر تنش برگ بر خصوصیات مورفولوژیک و فیزیولوژیک برخی از GF677 متفاوت می‌باشد. و در میان میزان به‌دست از Bayburdi, 2013. در پژوهش دیگر، اثر تنش برگ بر خصوصیات مورفولوژیک و فیزیولوژیک برخی از GF677 متفاوت می‌باشد. و در میان میزان به‌دست از Bayburdi, 2013. در پژوهش دیگر، اثر تنش برگ بر خصوصیات مورفولوژیک و فیزیولوژیک برخی از GF677 متفاوت می‌باش...
موفقیت در این تحقیق در بهتر شدن آسیب‌های ویروسی در بیماران گرفته شد.

مواد و روش‌ها

در این تحقیق، اثر تنش شوری بر غلظت عنصر غذایی در ریشه، برگ و صفحات مورفولوژیک مرده مقاوم و ابرزبای قرار گرفت.

داشت که نژاده درمانگذار در گزینه‌های نهایی و کلر توزیع ریشه انتقال از بسمت هوا بی‌می‌باشد. است. (2016) Zrig et al.

ترکیب‌های مختلف نرم‌کننده محیط رشد را بررسی نمودند و نشان دادند وقتی که ترکیب CaCl2 و NaCl در حالت مایه‌های با NaCl به یابه‌های بازمانده ناحیه شد، CaCl2 کاهش یافته که موجب به کاهش Zrig et al. (2016) بود. (2015) Momenpour et al. رقم شاهد 12 بر روی یاپه‌های GF677 نسبت به سایر یاپه‌هایGF677 در محله بیشتری به یابه‌های شوری دارد. ولی هنوز ترکیب این رقم با سایر یاپه‌های متنگر مورد تحقیق قرار نگرفته است و اطمینان وجود ندارد. بنابراین در این تحقیق میزان تحمیل یاپه‌های بذری بادم تخل (نشا ایران)، تخل بالاتری به خشکی و بیماری‌های خاکی نسبت به باهام شوری، رشد اویله کنن در سال‌های اویله زندگی و سپس رشد زیاد در طی دوره رشد بعدی تا اینکه در زمان پرتوشات در شرایط پیشنهاد یک یاپه نسبت به دیگر یاپه‌ها مقاومت‌های بیشتری بر می‌رود و برخی Parvaneh et al., 2011; Wani et al., 2012) هم‌اکنون (2012) پایه نوا (نشا ایران، مناسب برای انواع مختلف حاکی در آن رنگ می‌برد، به جز یاپه‌های Taha & Azza, 2011) (آبی نورا) از آب ماندنگی در آن رنگ می‌برد، به جز یاپه‌های در حالت شدیداً احتمال این رقم نمایه کمک در مواد غذایی می‌باشد. می‌کند هرچند نسبت به GF677 مقاومت بالا نیست. Mestrea et al., 2015) (Mestrea et al., 2015) گروه ریزهای مقاومت‌های نسبت به یاپه‌های بازمانده این یاپه در گروه یاپه‌های نمی کوچند Javanica در این نوا یاپه‌های نمی کوچند Javanica گروه‌های شده است (2011) (Taha & Azza, 2011).
شاهرد نیز بهترین در پاوهای ترکیبی (Z, Mn(mg/Kg)) یافته شده. جدول 2 نتایج تجزیه واروند تأثیر فلوروزیکی میانه و ترکیب‌های پایه‌ی بانی را نشان می‌دهد. نتایج نشان می‌دهد که برای تعداد اندکی افزایش در اثر وابستگی میانه و ترکیب‌های پایهی بانی دار بود. (2/105 دهم) جدول 2 تعداد اندکی افزایش در اثر وابستگی میانه و ترکیب‌های پایهی بانی دار بود. (2/105 دهم) جدول 2 تعداد اندکی افزایش در اثر وابستگی میانه و ترکیب‌های پایهی بانی دار بود. (2/105 دهم) جدول 2 تعداد اندکی افزایش در اثر وابستگی میانه و ترکیب‌های پایهی بانی دار بود. (2/105 دهم) جدول 2 تعداد اندکی افزایش در اثر وابستگی میانه و ترکیب‌های پایهی بانی دار بود. (2/105 دهم) جدول 2 تعداد اندکی افزایش در اثر وابستگی میانه و ترکیب‌های پایهی بانی دار بود. (2/105 دهم) جدول 2 تعداد اندکی افزایش در اثر وابستگی میانه و ترکیب‌های پایهی بانی دار بود. (2/105 دهم) جدول 2

<table>
<thead>
<tr>
<th>Properties</th>
<th>Value</th>
<th>Properties</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturation moisture%</td>
<td>41</td>
<td>Texture</td>
<td>Loam</td>
</tr>
<tr>
<td>Field capacity%</td>
<td>20.14</td>
<td>Soluble Ca (mg/L)</td>
<td>116.5</td>
</tr>
<tr>
<td>Wilting point%</td>
<td>10.1</td>
<td>Mg (mg/L)</td>
<td>291.2</td>
</tr>
<tr>
<td>Salinity dsm</td>
<td>1.50</td>
<td>Calcium carbonate%</td>
<td>12.6</td>
</tr>
<tr>
<td>Soil pH</td>
<td>7.5</td>
<td>Cu (mg/Kg)</td>
<td>2.6</td>
</tr>
<tr>
<td>N%</td>
<td>0.21</td>
<td>Z (mg/Kg)</td>
<td>6.4</td>
</tr>
<tr>
<td>Organic carbon%</td>
<td>1.7</td>
<td>Ava. Fe (mg/Kg)</td>
<td>23.9</td>
</tr>
<tr>
<td>Soluble phosphorus (mg/Kg)</td>
<td>101.1</td>
<td>Ava. K (mg/Kg)</td>
<td>580</td>
</tr>
<tr>
<td>Sand%</td>
<td>39</td>
<td>Ava. Mn(mg/Kg)</td>
<td>21.2</td>
</tr>
<tr>
<td>Silt%</td>
<td>44</td>
<td>Soluble Na (mg/L)</td>
<td>78.15</td>
</tr>
<tr>
<td>Clay%</td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Analysis of variance of morphological traits of almond rootstocks

<table>
<thead>
<tr>
<th>S.O.V</th>
<th>Mean of squer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scion diameter</td>
</tr>
<tr>
<td>Cultivar</td>
<td>7</td>
</tr>
<tr>
<td>Salinity</td>
<td>4</td>
</tr>
<tr>
<td>Cultivar x Salinity</td>
<td>28</td>
</tr>
</tbody>
</table>

Error | 80 | 0.5 | 52.38 | 243.88 | 635.3^* | 148.51^* |

* *; Significantly differences at 5 and 1% levels, respectively.

Table 3. Mean comparison interaction effect of salinity and cultivar on morphological traits of almond rootstocks and grafted combinations of almonds

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>EC ds/m</th>
<th>Scion diameter (mm)</th>
<th>Scion height (cm)</th>
<th>Number of leaf on main stem</th>
<th>Total leaf</th>
<th>Dry weight of arial part (gr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetra</td>
<td>0.3</td>
<td>11.68-e</td>
<td>102.8-b-e</td>
<td>75.33c-e</td>
<td>289-e-f</td>
<td>314-c</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10.86-d-h</td>
<td>92.96-c-i</td>
<td>49-d-h</td>
<td>255-f-h</td>
<td>273-d</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>9.98-b-j</td>
<td>83.76-g-d</td>
<td>45-e-j</td>
<td>190-j-l</td>
<td>224-g</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8.36-a-e</td>
<td>85-g-k</td>
<td>39-g-j</td>
<td>138-m-o</td>
<td>179-l</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7.18-o-q</td>
<td>71.53-n</td>
<td>18.33m</td>
<td>80.3-p</td>
<td>146.6n</td>
</tr>
<tr>
<td>Shadrood 12 grafted on tetra</td>
<td>0.3</td>
<td>14.37-f</td>
<td>108.76-b-e</td>
<td>79.33-b-e</td>
<td>404-j-a</td>
<td>364-c</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>11.55-c-e</td>
<td>97.6-g-e</td>
<td>63.33-e-e</td>
<td>249.3-d-f</td>
<td>289-d</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10.31-i</td>
<td>85.06-k-d</td>
<td>46.66-f-d</td>
<td>212-j-h</td>
<td>242-f</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9.28-b-i</td>
<td>78.93-i</td>
<td>40.66-f-k</td>
<td>180.7-j-m</td>
<td>212-t-h</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7.5-n-q</td>
<td>59.1-i-p</td>
<td>23-k-m</td>
<td>153.3-n</td>
<td>153.3n</td>
</tr>
<tr>
<td>Bitter almond</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>11.65-c-e</td>
<td>103.2-b-d</td>
<td>70.66-b-c</td>
<td>352-e-c</td>
<td>335.5-b</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10.73-d-h</td>
<td>89.9-d-j</td>
<td>47.66-i-d</td>
<td>272-e-g</td>
<td>280-9d</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>9.8-b-p</td>
<td>81.6-h-l</td>
<td>42.66-k-h</td>
<td>178.3-m</td>
<td>216.9-h</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8.11-l-p</td>
<td>70.96-n</td>
<td>38-g-k</td>
<td>114-n-p</td>
<td>165.4-n</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5.5-r</td>
<td>40.73-q</td>
<td>10-m</td>
<td>35.33-g</td>
<td>126.2-o</td>
</tr>
<tr>
<td>Shadrood 12 grafted on Bitter almond</td>
<td>0.3</td>
<td>12.31-c</td>
<td>106.68-c</td>
<td>75.33-b-c</td>
<td>379.3-a-b</td>
<td>337.8-b</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>11.43-e-f</td>
<td>97.86-g-c</td>
<td>60.66-f-b</td>
<td>276-g-e</td>
<td>290-3d</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10.19-f-i</td>
<td>87.1-f-j</td>
<td>45.66-e-j</td>
<td>195.7-k</td>
<td>213.1-h</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9.21-l-l</td>
<td>78.8-m-i</td>
<td>37.33-j-k</td>
<td>108-n-p</td>
<td>173.6-m</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6.9-q</td>
<td>54.73-p-</td>
<td>28-m</td>
<td>86.33-p</td>
<td>142.7-o</td>
</tr>
<tr>
<td>GF677</td>
<td>0.3</td>
<td>11.31-c-d</td>
<td>103.7-b-d</td>
<td>99.33-a-d</td>
<td>343.4-a</td>
<td>384.5-a</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>11.03-c-o</td>
<td>95.06-c-h</td>
<td>56.66-g</td>
<td>311-c-e</td>
<td>321.6-b</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10.05-i</td>
<td>85.5-k-f</td>
<td>46.66-f-1</td>
<td>225-h-j</td>
<td>256.2-f</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8.55-k-n</td>
<td>75.73-i</td>
<td>34-i-h</td>
<td>150-k-n</td>
<td>197.8k</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6.17-g</td>
<td>51.16-p-</td>
<td>29.66-k-h</td>
<td>96-o-p</td>
<td>158.9-n</td>
</tr>
<tr>
<td>Shadrood 12 grafted on GF677</td>
<td>0.3</td>
<td>14.38-b</td>
<td>112.4a-b</td>
<td>113.7a</td>
<td>412.7-a</td>
<td>380.5-a</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>11.6-e-c</td>
<td>99.46-b-f</td>
<td>69.33-c</td>
<td>339.3-b-d</td>
<td>332.6-e</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10.32-d-i</td>
<td>94.7-c-h</td>
<td>63.33-c-e</td>
<td>241.3-g-l</td>
<td>266.8-e</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9.74-h-k</td>
<td>82.8-h-l</td>
<td>41.66-f-k</td>
<td>178.3-j-h</td>
<td>222.3-g</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7.87-m-p</td>
<td>65.83-m-o</td>
<td>37.66-l-j</td>
<td>118.3-n-p</td>
<td>163.5-n</td>
</tr>
<tr>
<td>GN15</td>
<td>0.3</td>
<td>12.26-c</td>
<td>106.4-b-c</td>
<td>76.33-b-c</td>
<td>352-c-b</td>
<td>372.6-a</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>11.32-c-g</td>
<td>94.1-c-h</td>
<td>57.66-c-g</td>
<td>272.7-e-g</td>
<td>324.9-b</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10.14-f-j</td>
<td>86.26-f-j</td>
<td>45.33-e-j</td>
<td>198.7-j</td>
<td>256.7-f</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8.65-j-m</td>
<td>77.5-j-m</td>
<td>37.66-l-j</td>
<td>138-n-o</td>
<td>198.6k</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6.86-pq</td>
<td>49.63-p-</td>
<td>26-j-m</td>
<td>97-o-p</td>
<td>163.1-n</td>
</tr>
<tr>
<td>Shadrood 12 grafted on GN15</td>
<td>0.3</td>
<td>15.96-a</td>
<td>120.2-a</td>
<td>111.3-a</td>
<td>383.3-a-b</td>
<td>373.2-a</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>11.64-c-e</td>
<td>102.5-b-d</td>
<td>65.66-d-d</td>
<td>314.7-e</td>
<td>318.5-b</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10.42-d-i</td>
<td>89.06-e-j</td>
<td>47.66-f-d</td>
<td>223.3-j-h</td>
<td>242.4-f</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9.77-h-k</td>
<td>81.3-h-l</td>
<td>40.33-g-k</td>
<td>149.7-i-n</td>
<td>201.5-f</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7.75-m-p</td>
<td>60.96-p-n</td>
<td>35.33-l-b</td>
<td>94.33-o</td>
<td>151.5-n</td>
</tr>
</tbody>
</table>
با منظور قراردادن تنها این صفت به نظر می‌رسد پایه تنها نسبت به سایر پایه‌ها و ترکیب‌های پیوندی آن‌ها تحت پوششی به شوری داشته باشد. طبق گزارش (2016) Karimi et al., پارامترهای رشد و مورفولوژیکی بسته نیز تحت تأثیر تنش شوری قرار گرفت و افزایش شوری به‌کار گرفت این پارامترها Bagherzadeh گردیده است. نتایج این تحقیق با تحقیق (2016) et al. در پایه‌های بسته با آماده هم‌خوانی دارد. نیز کاهش معنی‌دار طول پایه‌گذار Zrig et al. (2016) در نتیجه افزایش شوری را گزارش نمودند. عموماً نتایج نشان داده که تأثیر پایه روي رشد و اندام هوای و خصوصیات مورفولوژیکی با تغییر ان در به حداکثر رسیدن جلد بیونه سمنی و زمان چرخش Martinez-Rodriguez تصحیحی این طبقه مثبت است. (2008) در حاکمیت سل نتایج داده می‌داند که فعالیت‌های بیوشیمیایی را کاهش می‌دهد گیاهان. در حالیکه گزارش جلد و بیوشیمیایی شامل آزمایش‌های جدید را کاهش Zrig et al. (2016) در نتیجه گیاه به استحکام و همچنین اختلال تغذیه‌ای حساس و بسپری نشود که می‌کند است رشد و Grattan & Grieve عملاً را تحت تأثیر قرار دهد. در 1999 در این زمینه، اینگاه پروین زده برابر مقابل با اثرات ناشی از تنش شوری تا حد زیادی به پایه است بستگی دارد.

بی‌پیوند و فسفر
نتایج تحقیق واریانس نشان داد اثر متغیر بی‌پایه و ترکیب‌های پیوندی و تی‌پیوندی سطوح مختلف شوری به‌صورت معنی‌دار داده مقدار بی‌پایه را تحت تأثیر قرار داد (جدول 4). نتایج مقایسه‌میانگین نشان داده در همه پایه‌ها و ترکیب‌های پیوندی مورد بررسی افزایش سطح شوری نمجر به کاهش معنی‌دار میزان بی‌پیوند پهنگرگی و کمترین مقدار بی‌پیوند گری در
فتحی و همکاران: بررسی و مقایسه برخی صفات مورفولوژیک و وضعیت عنصر غلیظ برگ و...

FSFR ریشه و برگ پایه و ترکیب‌های پیوندهای یونی به شکل تأثیر قاره دادن (جدول ۵). همین‌طور نتایج گزارش‌های پیش‌بینی شده برای مقادیر تن‌وزن برگ و بکر مقادیر FSFR بود. بکر و افزایش مقدار شوری به‌صورت معنی‌داری کاهش ییدا کرد و کمترین مقادیر در طبق شوری ۸ دسی‌زمسن بر متر مشاهده شد. بیشترین مقادیر با سطح شوری ۸ دسی‌زمسن بر متر نسبت به سطح شوری ۳ دسی‌زمسن بر متر در پایه بدون پیوند GF6767 و به میزان ۱۲۵/۸ درصد مشاهده شد. در حالی که کمترین میزان کاهش در رقم شاه‌ورد-۱۲ پیوند شاه‌ورد GF6767 به میزان ۴/۵ درصد به‌دست آمد (جدول ۵). نتایج تأثیر منفی بر مقادیر جذب عنصر غلیظ در پایه‌های پایه گزارش نمودند. فسفر در تعداد زیادی از فرآیندهای شاخص فتوسنتز، ذخیره سازی و انتقال انرژی، تنظیم آنزیم‌ها و انتقال کربوهیدرات‌ها بر اساس دخالت ماده (۲۰۰۵) (Tavallaee) و انتقال نفس‌ساز از پایه گزارش شد. افزایش مقاسه میانگین‌ها نشان داد که FSFR سطح شوری از ۲/۳ تا ۸ دسی‌زمسن بر متر باعث افزایش معنی‌دار صفی برگ در همه پیوندها و ترکیب‌های پیوند بین دويند. گراندیس بین‌پایه بدون پیوند و باینام‌ها در سطح شوری ۸ دسی‌زمسن بر متر بالاترین تجربه تکنیک است زیرا در برگ را به‌ترتیب با مقدار ۲/۱۰ و ۴/۳۴ نشان داد. که افزایش بیش‌تری به میزان ۱/۶۶ و ۴/۵۵ برای را نسبت به سطح شوری ۳ دسی‌زمسن بر متر داشتند. چرا و بکر بنابراین مقادیر به‌بینی را در برگ در سطح بین‌پایه زیاد معنی‌دار بود. نسبت به سایر ترکیب‌های مورد بررسی بود. در مجموع نتایج نشان داد RN15 و GF677۱۲ پیوند به پایه گزارش شد. افزایش میزان از سطح ۳/۰ تا ۸ دسی‌زمسن بر متر باعث کاهش معنی‌دار مقادیر تناسب در اندام‌های گرده در رقم شاه‌ورد-۱۲ پیوند شاه‌ورد GF677 و پایه بدون پیوند RN15 نسبت به سایر پایه‌ها و ترکیب‌های پیوند میانگین‌هایه فسفر ریشه و برگ پایه و ترکیب‌های پیوند را به شکل تأثیر قاره دادن (جدول ۵). همین‌طور نتایج گزارش‌های پیش‌بینی شده برای مقادیر تن‌وزن برگ و بکر مقادیر FSFR بود. بکر و افزایش مقدار شوری به‌صورت معنی‌داری کاهش ییدا کرد و کمترین مقادیر در طبق شوری ۸ دسی‌زمسن بر متر نسبت به سطح شوری ۳ دسی‌زمسن بر متر در پایه بدون پیوند GF6767 و به میزان ۱۲۵/۸ درصد مشاهده شد. در حالی که کمترین میزان کاهش در رقم شاه‌ورد-۱۲ پیوند شاه‌ورد GF6767 به میزان ۴/۵ درصد به‌دست آمد (جدول ۵). نتایج تأثیر منفی بر مقادیر جذب عنصر غلیظ در پایه‌های پایه گزارش نمودند. فسفر در تعداد زیادی از فرآیندهای شاخص فتوسنتز، ذخیره سازی و انتقال انرژی، تنظیم آنزیم‌ها و انتقال کربوهیدرات‌ها بر اساس دخالت ماده (۲۰۰۵) (Tavallaee) و انتقال نفس‌ساز از پایه گزارش شد. افزایش مقاسه میانگین‌ها نشان داد که FSFR سطح شوری از ۲/۳ تا ۸ دسی‌زمسن بر متر باعث افزایش معنی‌دار صفی برگ در همه پیوندها و ترکیب‌های پیوند بین دويند. گراندیس بین‌پایه بدون پیوند و باینام‌ها در سطح شوری ۸ دسی‌زمسن بر متر بالاترین تجربه تکنیک است زیرا در برگ را به‌ترتیب با مقدار ۲/۱۰ و ۴/۳۴ نشان داد. که افزایش بیش‌تری به میزان ۱/۶۶ و ۴/۵۵ برای را نسبت به سطح شوری ۳ دسی‌زمسن بر متر داشتند. چرا و بکر بنابراین مقادیر به‌بینی را در برگ در سطح بین‌پایه زیاد معنی‌دار بود. نسبت به سایر ترکیب‌های مورد بررسی بود. در مجموع نتایج نشان داد RN15 و GF677۱۲ پیوند به پایه گزارش شد. افزایش میزان از سطح ۳/۰ تا ۸ دسی‌زمسن بر متر باعث کاهش معنی‌دار مقادیر
Table 4. Analysis of variance of nutritional elements of almond rootstocks

<table>
<thead>
<tr>
<th>S.O.V.</th>
<th>df</th>
<th>Mean of square</th>
<th>N (mg kg DW⁻¹)</th>
<th>P (mg kg DW⁻¹)</th>
<th>K (mg kg DW⁻¹)</th>
<th>Na (mg kg DW⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype</td>
<td>7</td>
<td>0.1191</td>
<td>0.00306</td>
<td>0.000065</td>
<td>0.000058</td>
<td>1.182</td>
</tr>
<tr>
<td>Salinity</td>
<td>4</td>
<td>0.147</td>
<td>0.1066</td>
<td>0.00567</td>
<td>0.000443</td>
<td>0.097</td>
</tr>
<tr>
<td>Genotype x Salinity</td>
<td>28</td>
<td>0.025</td>
<td>0.1624</td>
<td>0.0021</td>
<td>0.000011</td>
<td>0.036</td>
</tr>
<tr>
<td>error</td>
<td>80</td>
<td>0.00069</td>
<td>0.00039</td>
<td>0.000008</td>
<td>0.000001</td>
<td>0.0033</td>
</tr>
</tbody>
</table>

* *:* Significantly different at 5 % levels, respectively.
** **:* Significant differences at 1 % levels, respectively.

Table 5. Mean comparison effect of salinity and cultivar on dry weight of leaf and root mineral elements of almond rootstocks and grafted combinations in almond

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>N (mg kg DW⁻¹)</th>
<th>P (mg kg DW⁻¹)</th>
<th>K (mg kg DW⁻¹)</th>
<th>Na (mg kg DW⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greedy 2</td>
<td>0.195</td>
<td>0.1849</td>
<td>0.1181</td>
<td>0.109</td>
</tr>
<tr>
<td>Poor 2</td>
<td>0.186</td>
<td>0.1926</td>
<td>0.1199</td>
<td>0.107</td>
</tr>
<tr>
<td>Better 2</td>
<td>0.161</td>
<td>0.1694</td>
<td>0.1213</td>
<td>0.123</td>
</tr>
<tr>
<td>Shahrood 2</td>
<td>0.274</td>
<td>0.267</td>
<td>0.219</td>
<td>0.231</td>
</tr>
<tr>
<td>Bitter 2</td>
<td>0.205</td>
<td>0.219</td>
<td>0.218</td>
<td>0.223</td>
</tr>
<tr>
<td>Almond</td>
<td>0.214</td>
<td>0.205</td>
<td>0.218</td>
<td>0.223</td>
</tr>
</tbody>
</table>

* *:* Significantly different at 5 % levels, respectively.
** **:* Significant differences at 1 % levels, respectively.

Numbers with same letter are not significant according to Duncan's multiple range test at 0.01 probability.
پایه و ترکیب‌های پوندی مورد بررسی در سطح شوری ۲۰/۲، درصد میانگین بر متر بیشترین مقدار را به خود اختصاص داد و سپس با آن افزایش شوری تا ۸۶/۲ درصد میانگین بر متر کاهش یافت. با افزایش سطح شوری از ۲۰/۲ تا ۸۶/۲ درصد میانگین بر متر بیشترین کاهش (۷۵/۱) در مجموع افزایش یافت. NaCl انتقال آزاد بین نهایی و K⁺ را مخلوط می‌سازد (Kamia et al., 2013). شده‌بندی و وضعیت تغییرات پاتسیم چاه جذب و انتقال K⁺ درون و بین اندام‌های گیاهی می‌شود، بستگی در دارد. نتایج این تحقیق با نتایج هم‌خوانی دارد. نتایج مشابه در یک اکت اکثر گزارش شد که مقادیر پایین را تجویز نمود و به این پاتسیم تحت شرایط شوری در مقایسه با سایر رقم‌ها آدامه داد (Mohammadhkani et al., 2015). مجموع کلسیم و منزیم مقدار مجموع کلسیم و منزیم ریشه و پایه‌ها و ترکیب‌های پوندی مورد بررسی به صورت معنی‌داری تحت تأثیر اثر افزایش شوری و رقم قاره گرفت (P<0.01). نتایج مقایسه معنی‌داری تأثیر مختلف شوری و شوری و رقم بر رفت و سفر غلظت کلسیم و منزیم در برابر پایه‌ها و بیشترین معنی‌داری محیط‌های مورد بررسی به صورت معنی‌داری تحت تأثیر افزایش شوری و رقم قاره گرفت (P<0.01). نتایج مقایسه معنی‌داری تأثیر مختلف شوری و شوری و رقم بر رفت و سفر غلظت کلسیم و منزیم در برابر پایه‌ها و بیشترین معنی‌داری محیط‌های مورد بررسی به صورت معنی‌داری تحت تأثیر افزایش شوری و رقم قاره گرفت (P<0.01). نتایج مقایسه معنی‌داری تأثیر مختلف شوری و شوری و رقم بر رفت و سفر غلظت کلسیم و منزیم. منزیم برگ نشان داد که در شاه‌شور ۲۰/۲ پوندشده بر روی طاق‌ترا و پایه‌های آزاد، افزایش میزان شوری از ۲/۳ تا ۸۶/۲ درصد میانگین بر متر باعث کاهش مجموع غلظت کلسیم و منزیم برگ گردید و مقادیر کاهش در این رقم مثبت برای ۲/۸۷۵ درصد بود. بیشترین و کمترین مقدار کاهش در مجموع غلظت کلسیم و منزیم به ترتیب در پوندشده شوری ۲۰/۲ و GF677 مشاهده شد. در سایر رقم‌های مورد بررسی، بیشترین مقدار مجموع غلظت کلسیم و منزیم در تیمر شوری ۱/۲ درصدی زیمنس بر هر متر مشاهده شد و با افزایش شوری از ۲/۸۷۵ تا ۸۶/۲ درصد زیمنس بر هر متر مجموع غلظت کلسیم و منزیم در برابر پایه‌ها و بیشترین معنی‌داری محیط‌های مورد بررسی به صورت معنی‌داری تحت تأثیر افزایش شوری و رقم قاره گرفت (P<0.01). نتایج مقایسه معنی‌داری تأثیر داد. نتایج این تحقیق با نتایج هوشیمانی و پاتسیم تحت شرایط شوری در مقایسه با سایر رقم‌ها آدامه داد (Mohammadhkani et al., 2015).
شاید بیشترین مقدار این نسبت در سطح شوری 8 دسی‌زمینس به متر بیشترین سطح شوری 6 دسی‌زمینس به متر مشاهده شد. در سطح شاهدود-12 پیوند‌گذاری بین شوری و ترا و یا 7 دسی‌زمینس به متر، مقدار آن به‌صورت معناداری کاهش پیدا کرد (جدول ۷). در همه پایه‌ها و ترکیب‌های پودری بروز نسبت فاصله میزان شوری از 0.79 تا 8 دسی‌زمینس به متر نسبت سدیم به پتاسیم در سطح شوری 7 دسی‌زمینس به متر، به 1 شاهدود-۱۲ پیوندگذاری بین شوری و ترا و یاGF677 نسبت سدیم به پتاسیم در سطح شوری 8 دسی‌زمینس به متر، به 1 نسبت سدیم به پتاسیم در سطح شوری 8 دسی‌زمینس به متر، به 1 نسبت سدیم به پتاسیم در سطح شوری 8 دسی‌زمینس به متر، به 1 نسبت سدیم به پتاسیم در سطح شوری 8 دسی‌زمینس به متر، به 1 نسبت سدیم به پتاسیم در سطح شوری 8 دسی‌زمینس به متر، به 1 نسبت سدیم به پتاسیم در سطح شوری 8 دسی‌زمینس به متر، به 1 نسبت سدیم به پتاسیم در سطح شوری 8 دسی‌زمینس به متر، به 1 نسبت سدیم به پتاسیم در سطح شوری 8 دسی‌زمینس به متر، به 1 نسبت سدیم به پتاسیم در سطح شوری 8 دسی‌زمینس به متر، به 1 نسبت سدیم به پتاسیم در سطح شوری 8 دسی‌زمینس به متر، به 1 نسبت سدیم به پتاسیم در سطح شوری 8 دسی‌زمینس به متر، به 1 نسبت سدیم به پتاسیم در سطح شوری 8 دسی‌زمینس به متر، به 1 نسبت سدیم به پتاسیم در سطح شوری 8 دسی‌زمینس به متر، به 1

جدول ۶: تجزیه واریانس نسبت‌های غذایی پایه‌های ترا و یاGF677

<table>
<thead>
<tr>
<th>V.S.O</th>
<th>df</th>
<th>Mean of square</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Leaf</td>
</tr>
<tr>
<td>Genotype</td>
<td>23</td>
<td>0.0122</td>
</tr>
<tr>
<td>Salinity</td>
<td>4</td>
<td>0.0842</td>
</tr>
<tr>
<td>Genotype Salinity</td>
<td>28</td>
<td>0.576</td>
</tr>
<tr>
<td>Error</td>
<td>80</td>
<td>0.4859</td>
</tr>
</tbody>
</table>

*، **: Significantly differences at 5 and 1 % levels, respectively.
شکل 1. مقایسه میانگین اثر شوری بر نسبت سدیم به نیترژن در و گ ریگ پایه شاهرو و گر یا پیوندده یا رودی GF677 با رودی GF677 باید پیوند پدید.

جدول 7. مقایسه میانگین اثر شوری بر نسبت سدیم به نیترژن در و گ ریگ پایه شاهرو و گر یا پیوندده یا رودی GF677 باید پیوند پدید.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>EC (dS/m)</th>
<th>Ca+Mg (ppm)</th>
<th>Na/N</th>
<th>Na/P</th>
<th>Na/K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean of squar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>0.288</td>
<td>0.101c</td>
<td>0.19c</td>
<td>0.19c</td>
<td>1.36c</td>
</tr>
<tr>
<td>0.4</td>
<td>0.364</td>
<td>0.141b</td>
<td>0.14b</td>
<td>0.14b</td>
<td>1.02b</td>
</tr>
<tr>
<td>0.5</td>
<td>0.454</td>
<td>0.191a</td>
<td>0.19a</td>
<td>0.19a</td>
<td>0.83a</td>
</tr>
<tr>
<td>0.6</td>
<td>0.566</td>
<td>0.232a</td>
<td>0.23a</td>
<td>0.23a</td>
<td>0.79a</td>
</tr>
<tr>
<td>0.7</td>
<td>0.667</td>
<td>0.285a</td>
<td>0.28a</td>
<td>0.28a</td>
<td>0.74a</td>
</tr>
<tr>
<td>0.8</td>
<td>0.768</td>
<td>0.342a</td>
<td>0.34a</td>
<td>0.34a</td>
<td>0.71a</td>
</tr>
<tr>
<td>0.9</td>
<td>0.865</td>
<td>0.401a</td>
<td>0.40a</td>
<td>0.40a</td>
<td>0.69a</td>
</tr>
<tr>
<td>1.0</td>
<td>0.96c</td>
<td>0.463a</td>
<td>0.46a</td>
<td>0.46a</td>
<td>0.68a</td>
</tr>
</tbody>
</table>

Numbers with same letter are not significant according to Duncan's multiple range test at 0.01 probability.
Figure 2. Mean comparison effect of salinity on leaf sodium to potassium ratio of almond rootstocks and grafted combinations of almond

References

