تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,097,871 |
تعداد دریافت فایل اصل مقاله | 97,205,506 |
مدلسازی مطلوبیت زیستگاه حال و گذشته کمرکولی کوچک (Sitta neumayer) در ایران | ||
نشریه محیط زیست طبیعی | ||
مقاله 10، دوره 72، شماره 4، اسفند 1398، صفحه 543-554 اصل مقاله (1.38 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jne.2020.261462.1537 | ||
نویسندگان | ||
مسعود یوسفی1؛ افشین علیزاده شعبانی* 1؛ حسین آذرنیوند2 | ||
1دانشگاه تهران | ||
2دکتری، دانشگاه تهران | ||
چکیده | ||
امروزه مدلهای آشیان بوم شناختی کاربردهای فراوانی در بومشناسی، حفاظت و جغرافیای زیستی پیدا کردهاند. این مدلها با استفاده از نقاط حضور گونه ها و متغیرهای محیطی احتمال حضور آنها را در محدوده جغرافیایی معین برآورد می کنند. در مطالعه حاضر با استفاده از مدل مکسنت، 107 نقطه حضور و نه متغیر محیطی آشیان بومشناختی کمرکولی کوچک در ایران تهیه و مهمترین متغیرهای موثر بر توزیع گونه در سطح کشور شناسایی شد. نتایج حاصل از این مدلسازی نشان داد که رشته کوه زاگرس، رشته کوه البرز، کپه داغ و همچنین برخی کوه-های ایران مرکزی دارای بیشترین مطلوبیت زیستگاهی برای حضور گونه هستند. شاخص نرمال شده پوشش گیاهی (2/42)، ارتفاع (3/17) و متوسط بارش سالیانه (5/12) جز مهمترین متغیرهای موثر بر توزیع گونه شناسایی شدند. همچنین، در مطالعه حاضر مدل توزیع گونه در آخرین عصر یخچالی تهیه شد. مقایسه مدل توزیع گونه در شرایط حاضر و گذشته نشان داد توزیع گونه کم و بیش با توزیع آن در گذشته متفاوت بوده اما بخش عمده زاگرس در گذشته نیز برای حضور گونه مطلوبیت بالایی داشته است. از آنجایی که نتایج مطالعه حاضر نشان داد شاخص نرمال شده پوشش گیاهی مهمترین پیش بینی کننده توزیع کمرکولی کوچک در ایران است بنابراین برای مدیریت و حفاظت این گونه باید پوشش گیاهی زیستگاه آن مورد حفاظت قرار گیرد. | ||
کلیدواژهها | ||
Sitta neumayer؛ آشیان بومشناختی؛ زیستگاه؛ مکسنت؛ متغییرهای محیطی | ||
عنوان مقاله [English] | ||
Modeling present and past habitat suitability of Western Rock Nuthatch (Sitta neumayer) in Iran | ||
نویسندگان [English] | ||
Masoud Yousefi1؛ Afshin Alizadeh Shabani1؛ hosein Azarnivand2 | ||
1University of Tehran | ||
2هیات علمی | ||
چکیده [English] | ||
Ecological Niche Models (ENMs) are commonly used in ecology, conservation and biogeography. ENMs use occurrence data and environmental variables to calculate probabilities of the species’ presence in the defined geographic space. In the present study, we used Maxent, 107 occurrence records and nine environmental variables (six bioclimatic variables, altitude, slope and the normalized difference vegetation index) to develop a country level distribution model for Western Rock Nuthatch, Sitta neumayer in Iran. We determined the most important environmental predictors of species distribution in Iran. Results showed that Zagros Mountains and Alborz Mountains are the most suitable habitats for the species in Iran. Results also revealed that Normalized Difference Vegetation Index (NDVI), altitude, annual precipitation were the most important environmental variables effecting distribution of the species in Iran. In this study, we also modeled past distribution of the species during the Last Glacial Maximum. Results showed that potential distribution of Eastern Rock Nuthatch was different from its current distribution, however, most of the Zagros was suitable for the species during Last Glacial Maximum. Since our results showed that NDVI is the most important predictor of the species’s distribution in Iran and strongly affect its presence, we suggest protection of vegetation cover in the habitat of the species for conservation of Western Rock Nuthatch. | ||
کلیدواژهها [English] | ||
Sitta neumayer, Niche, Habitat, Maxent, Environmental variables | ||
مراجع | ||
Ahmadi, H., Feiznia, S., 2006. Quaternary formations (Aeoretical and Applied Principles in Natural Resources). Tehran, Iran: University of Tehran Press. Ahmadzadeh, F., Carretero, MA., Rödder, D., Harris, DJ., Freitas, SN., Perera, A., Böhme, W., 2013. Inferring the effects of past climate fluctuations on the distribution pattern of Iranolacerta (Reptilia, Lacertidae): Evidence from mitochondrial DNA and species distribution models. A Journal of Comparative Zoology 252, 141–148. Araújo, MB., Pearson, R., Thuiller, W., Erhard, M., 2005. Validation of species–climate impact models under climate change. Global Change Biology 11, 1504–1513. Asuero, A., Sayago, A., Gonzalez, A., 2006. The correlation coefficient: An overview. Critical Reviews in Analytical Chemistry 36, 41–59. Brown W.L., Wilson E.O., 1956. Character displacement. Systematic Zoology 5, 49–64. Broxton, P.D., X. Zeng, W. Scheftic, Troch., P.A., 2014. A MODIS‐based global 1‐km maximum green vegetation fraction dataset. Journal of Applied Meteorology and Climatology 53, 1996–2004. D’Amen, M., Zimmerman, N.E., Pearman, P.B., 2013. Conservation of phylogeographic lineages under climate change. Global Ecology and Biogeography 22, 93-104. Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M., Peterson, A. T., Phillips, S. J., Richardson, K., Scachetti- Pereira, R., Schapire, R. E., Soberon, J., Williams, S., Wisz, M.S., Zimmermann, N. E., 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129 – 151. Fourcade, Y., Engler, J.O., Rodder, D., Second, J., 2014. Mapping Species Distributions with MAXENT Using a Geographically Biased Sample of Presence Data: A Performance Assessment of Methods for Correcting Sampling Bias. PLoS ONE 9, e97122. Franklin, J., Potts, A.J., Fisher, E.C., Cowling, R.M., Marean, C.M., 2015. Paleodistribution modeling in archaeology and paleoanthropology. Quaternary Science Reviews 110, 1-14. Gibbard, P., van Kolfschoten, T., 2005. The Pleistocene and Holocene Epochs. In: Gradstein FM, Ogg JG, Smith AG, editors. A geologic time scale 2004. Cambridge: Cambridge University Press. Goudarzi, F., Hemami, M.R., Malekian M., Fakheran, S., 2019. Ecological characterization of the breeding habitat of Luristan newt (Neurergus kaiseri) at local scale. Journal of Natural Environment 72, 113-127. Grant P.R., 1975. The classical case of character displacement. Evolutionary Biology 8, 237-337. Guisan, A., Thuiller, W., Zimmermann, N.E., 2017. Habitat suitability and distribution models: with applications in R. Cambridge university press. Hijmans, RJ., 2015. Raster: geographic data analysis and modeling. R package. Jarvis, A., Reuter, H. I., Nelson, A., Guevara, E., 2008. Hole-filled SRTM for the globe Version 4. Available from the CGIARCSI SRTM 90m Database (http://srtm.csi. cgiar.org). Kafash, A., Kaboli, M., Köhler, G., Yousefi, M., Asadi, A., 2016. Ensemble distribution modeling of the Mesopotamian spiny-tailed lizard (Saara loricata) in Iran. An insight into the impact of climate change. Turkish Journal of Zoology 40, 262–271. Kafash, A., Malakoutikhah, Sh., Yousefi, M., Ataei, F., Heidari, H., Rastegar-Pouyani, E., 2018. The Gray Toad-headed Agama, Phrynocephalus scutellatus, on the Iranian Plateau: The degree of niche overlap depends on the phylogenetic distance. Zoology in the Middle East 64, 47-54. Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, H.P., Kessler, M. 2017. Climatologies at high resolution for the earth’s land surface areas. Scientific Data 4, 170122. Kiehl, J.T., Gent, P.R., 2004. The community climate system model, version 2. Journal of Climate, 17, 3666–3682. Laube, I., Graham, C.H., Böhning-Gaese, K., 2015. Niche availability in space and time: migration in Sylvia warblers. Journal of Biogeography 42, 1896-1906. Mandle, L., Warren, D.L., Hoffmann, M.H., Peterson, A.T, Schmitt, J., von Wettberg, E.J., 2010. Conclusions about niche expansion in introduced impatiens walleriana populations depend on method of analysis. PLoS ONE 5, e15297. Mansoori, J., 2008. A Guide to the Birds of Iran. Farzaneh Publishing, Tehran. McCormack, J.E., Zellmer, A.J., Knowles, L.L., 2010. Does niche divergence accompany allopatric divergence in Aphelocoma jays as predicted under ecological speciation? Insights from tests with niche models. Evolution 64, 1231-1244. Merow, C., Smith, M. J., Silander, J.A., 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058-1069. Mohammadi, A., M. Kaboli, S. Ashrafi, M. Mofidi-Neyestanak, Yousefi, M., Rezaei A., Stuart Y., 2016a. Trophic niche partitioning between two Rock Nuthatches (Sitta tephronota & Sitta neumayer) in a contact zone in Iran. Journal of Zoology 299, 116-124. Mohammadi, A., M. Kaboli, S. Ashrafi, M. Mofidi-Neyestanak, Yousefi, M., 2016b. Trophic niche segregation between two closely related sympatric rock nuthatches (Sitta tephronota & Sitta neumayer) in Zagrous Mountain range. Journal of Natural Environment 68, 641-652. Moradi, S., Sheykhi Ilanloo, S., Kafash, A., Yousefi, M., 2019. Identifying high-priority conservation areas for avian biodiversity using species distribution modeling. Ecological Indicators 97, 159-164. Moura, A.E., Sillero, N., Rodrigues, A., 2012. Common dolphin (Delphinus delphis) habitat preferences using data from two platforms of opportunity. Acta Oecologica 38, 24-32. Nogués-Bravo, D., 2009. Predicting the past distribution of species climatic niches. Global Ecology and Biogeography 18, 521-531. Pearman, P. B., Guisan, A., Broennimann O., Randin, C.F., 2008. Niche dynamics in space and time. Trends in Ecology & Evolution 23, 149-158. Peterson, A.T., 2011. Ecological niche conservatism: a time-structured review of evidence. Journal of Biogeography 38, 817–827. Peterson, A.T., Soberón J., Sánchez-Cordero, V., 1999. Conservatism of Ecological Niches in Evolutionary Time. Science 285, 1265-1267. Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modeling 190, 231-259. Phillips, S.J., Dudík, M., Schapire, R.E., 2017. Maxent software for modeling species niches and distributions (Version 3.4.1). Available from url: http:// bio diversity informatics.amnh.org/open_source/maxent/. Accessed on 2017-10-18. R Core Team, 2017. R: A language and environment for statistical computing. Available from: https://www.R-project.org/. Ramírez-Barahona, S., Eguiarte, LE., 2014. Changes in the distribution of cloud forests during the last glacial predict the patterns of genetic diversity and demographic history of the tree fern Alsophila firma (Cyatheaceae). Journal of Biogeography 41, 2396–2407. Safari-kang, Z., Hemami, M.R., Kouhi, M., Malekian, M., 2014. Micro habitat selection by diurnal sympatric lizard species in Kolah-Ghazi National Park. Journal of Animal Research 27, 367–376. Scott, D., Moravvej-Hamadani, H., Adhami-Mirhosseyni, A., 1975. The Birds of Iran. Iran Department of Environment, Tehran. Segura, S., Coppens d'Eeckenbrugge G., López L., Grum, M., Guarino, L., 2003. Mapping the potential distribution of five species of Passiflora in Andean countries. Genetic Resources and Crop Evolution 50, 555-566. Song, W., Kim, E., Lee, D., Lee, M., Jeon, S.W., 2013. The sensitivity of species distribution modeling to scale differences. Ecological Modelling 248, 113–118. Svenning, J.C., Fløjgaard, C., Marske, K.A., Nógues-Bravo, D., Normand, S., 2011. Applications of species distribution modeling to paleobiology. Quaternary Science Reviews 30, 2930–2947. Tondravan Zangene, M., Fakheran Esfahani, S., Poormanafi, S., Senn J., 2016. Assessment of the conservation status and habitat suitability of critically endangered Lorestan Newt (Neurergus Kaiseri) in Lorestan and Khuzestan Provinces. Iranian Journal of Applied Ecology 17, 11-24. Tucker, C.J., Pinzon, J.E., Brown, M.E., Slayback, D.A., Pak, E.W., Mahoney, R., Vermote, E.F., El Saleous, N., 2005. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing 26, 4485–4498. Varela, S., Lobo, J.M., Hortal, J., 2011. Using species distribution models in paleobiogeography: A matter of data, predictors and concepts. Palaeogeography, Palaeoclimatology, Palaeoecology 310, 451-463. Vaurie, C., 1950. Notes on some Asiatic Nuthatches and Creepers. American Museum Novitates, 1472, 1-39. Warren, D. L., Glor, R.E., Turelli, M., Funk, D., 2008. Environmental Niche Equivalency versus Conservatism: Quantitative Approaches to Niche Evolution. Evolution 62, 2868-2883. Warren, D.L., Glor, R.E., Turelli, M., 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607-611. Warren, D.L., Seifert, S.N., 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications 21, 335-342. Wellenreuther, M., Larson, K.W., Svensson, E.I., 2012. Climatic niche divergence or conservatism? Environmental niches and range limits in ecologically similar damselflies. Ecology 93, 1353-1366. Williams, J.N., Seo, C., Thorne, J., Nelson, J.K., Erwin, S., O’Brien, J.M., Schwartz, M.W., 2009. Using species distribution models to predict new occurrences for rare plants. Diversity and Distribution 15, 565–576. Yilmaz, H., Yilmaz, O.Y., Akyüz, Y.F., 2017. Determining the factors affecting the distribution of Muscari latifolium, an endemic plant of Turkey, and a mapping species distribution model. Ecology and Evolution 7, 1112-1124. Young, N., Carter, L. and Evangelista, P., 2011. A MaxEnt model v3.3.3 e tutorial (ArcGIS v10). Denver, Colorado: Natural Resource Ecology Laboratory, Colorado State University and the National Institute of Invasive Species Science. Yousefi M., Kaboli M., Eagderi S., Mohammadi A., Rezaei A., Nourani E., 2017. Micro-spatial separation and associated morphological adaptations in the original case of avian character displacement. Ibis 159, 883-891. Yousefi, M., 2014. Morphological differences between Western Rock Nuthatch Sitta neumayer and Eastern Rock Nuthatch Sitta tephronota at their contact zone in Iran: The classical case of character displacement. MSc thesis, University of Tehran. Yousefi, M., Kaboli. M., Eagderi, S., Mohammadi, A., Zarintab, M., 2016. Sexual dimorphism in Eastern Rock Nuthatch Sitta tephronotain in Iran. Journal of Natural Environment 69, 269-281. Yousefi, M., Mohammadi A., Kaboli M., Eagderi S., Rezaei. A., 2015. Morphometric variation in Sitta tephronota (Zarudny and Buturlin 1906) populations along Zagros Mountains. Taxonomy and Biosystematics 22, 23-34. | ||
آمار تعداد مشاهده مقاله: 645 تعداد دریافت فایل اصل مقاله: 728 |