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Abstract  
Massive Open Online Courses (MOOCs) have recently received a great deal of 

attention from the academic communities. However, these courses face low 

completion rates and there are very limited research pertaining to this problem. 

Therefore, this study uses Triandis theory to better understand variables that are 

indicative of MOOC completion. Furthermore, this study scrutinizes the quantitative 

relationship between MOOC usage and learning effectiveness. Two hundred and 

thirty-four users from selected Coursera participated in this study to evaluate the 

proposed model. The partial least squares (PLS) were used to analyze the collected 

data and test the research hypotheses. The results indicated that perceived 

consequences (including knowledge growth, social interaction, and compatibility) 

and affect have a significant impact on intention to use MOOC. In contrast, social 

factors delineated the insignificant effects on intention to use MOOC. The findings 

indicated that facilitative conditions and intentions to use MOOC have a strong and 

positive impact on the actual use of MOOC. Hypotheses regarding the influence of 

perceived consequences and the actual usage of MOOC on learning effectiveness 

were upheld. 
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1. Introduction 
In the past several months, Massive Online Open Courses (MOOCs) 

have emerged as a dominant constituent of lifelong and distance 

learning technology. MOOCs are defined as online courses without any 

prerequisites other than Internet access and interest, no participation 

limit, and free of charge (Aparicio, Oliveira, Bacao, & Painho, 2019). 

Using the contemporary growth in the development and advancement 

of educational sources equally in industry and academia, MOOCs have 

quickly transferred into a position of dominance in the scholarly 

publications, in the minds of the public, and in the mass media. This 

new advancement will precipitate the vision of having fair access to 

lifetime learning possibilities within functional reach. MOOCs present 

several useful learning activities to learners, including readings, video 

clip lectures, assignments, and assessments. It provides opportunities 

for learners to form connection and collaboration with each other via 

threaded community discussion forums and other Web 2.0 

technologies. Goel, Sabitha, Choudhury, & Mehta (2019) expressed 

that tens of thousands encouraged learners all over the world who 

cannot attend elite institutions have been discovering the MOOCs, 

without spending college tuition or obtaining a college degree, to be on 

a path towards advanced expertise and high-paying careers. MOOCs 

have experienced an extraordinary capability to attract many more 

motivated learners to the online learning community. The participants 

have rapidly grown from a small number of learners to quite a large 

number of learners with the classes getting primary registrations of > 

150K participants. The MOOCs have attracted students and learners 

from 100 to 200 countries at the same time and they easily go beyond 

national boundaries. Ma and Lee (2019) postulated that the MOOCs 

possess a couple of basic distinctions from prior educational 

technologies. First, MOOCs can be found anytime/anywhere within 

small devices that enable learners to learn simply and under a multitude 

of places, situations, and times (ubiquitous or mobility learning). 

Second, the MOOCS are socially active virtual communities of 

participants who support other learners’ learning, resolve questions, and 

add additional materials and knowledge to the class. 

Despite the worldwide enthusiastic interestof learners, educational 

institutions, and professional individuals in MOOCs, there are several 
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challenges against MOOC. The first challenge is that developing, 

updating, and delivering online classes are undertaking intensive 

resources (Siemens, 2019). However, the MOOCs have yet to obtain a 

sustainable and worthwhile revenue model. Concerns remain around the 

activity and growth of MOOC until a revenue model is established 

(Reich & Ruipérez-Valiente, 2019). The second challenge is that some 

top universities in Germany, such as Berlin, Munich, and Freiburg have 

started accepting some presented courses on Udacity─MOOCs in their 

regular curricula (Berman et al., 2017). Subsequently, the MOOCs are 

progressively challenging long-established teaching institutions and 

methods (Siemens, 2015). The third challenge, which is the focus of the 

present study, is that, on average, the completion rate of MOOC courses 

is less than ten percent and the number of dropouts for these courses are 

very high compared to traditional online learning (Chen et al., 2019; 

Jacobsen, 2019; Koutsakas, Karagiannidis, Politi & Karasavvidis, 

2020). To some degree, this issue can be owed to courses that are free 

of charge, do not award credits, and thus many learners may have 

signed up for them out of curiosity. However, the current low 

completion rates are of concern to scholars and there is a need to 

understand and explore this problem. Sari, Bonk, & Zhu (2020) and Xie 

(2019) pointed out that the completion rates of the presented courses 

should not be neglected and scrutinizing them will give input for better 

understanding of the logic behind them, and how online classes could 

be enhanced for both course leaders and students. Moreover, Reich 

(2015) suggested that the succeeding research on MOOC needs to adopt 

a wide range of designs with special attention to understand the causal 

factors that boosts student learning, as the participation and engagement 

of the learners in an MOOC setting is voluntary. These low rates do 

raise questions regarding MOOC’s effectiveness (Koutsakas et al., 

2020; H Hone & El Said, 2016). Yet, there is very little empirical 

research into MOOCs and their effectiveness for learning (Weinhardt & 

Sitzmann, 2019; Romero-Rodríguez, Ramírez-Montoya, & González, 

2020). Thus, it is important to better understand variables that are 

indicative of MOOC completion. If academics and practitioners could 

find the primary motivations and reasons for the MOOC usage, they 

could obtain more precise and intuitive information on ways to enhance 

the MOOC completion rate and decrease dropouts. Although various 
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studies have attempted to examine the MOOC, research on the 

perceptions of users pertaining to MOOC usage are scarce. In addition, 

there are only few empirical studies to identify the relationship between 

MOOC usage and learning effectiveness. The objective of the present 

study is to answer two research questions:  

 What are the determinants contributing to the completion of 

MOOCs’ courses?  

 What is the effect of MOOCs’ use on learning effectiveness?  

2. Literature Review and Hypothesis Development  
2.1. Triandis Model  

Harry C. Triandis (1980) presented a thorough model to study 

interpersonal behavior. The effectiveness of the model in assessing 

broad range of intentions consisting of  analyzing intentions of social 

trading platforms (Reith, Fischer & Lis, 2019), understanding the 

determinants of digital distraction (Chen, Nath, & Tang, 2020), and 

identifying the determinants of environmental behavior (Yuriev, 

Dahmen, Paillé, Boiral & Guillaumie, 2020). In general, the selected 

theory has been widely considered to be a base for studies in the 

information system field (Al-Shanfari, Yassin & Abdullah, 2020; 

Sanco, Harmein, & Rahim, 2019; Jeon, Kim, & Koh, 2011). The 

current study has employed only a subsection of the theory; therefore, 

it is not necessary to explain the details of the model and its thirty-four 

related hypotheses (which are not related to this study). The main 

notion of the presented model is that factors such as expected 

consequences, affect, and social issues have an impact on the 

intentions of people, and, consequently the intention impacts genuine 

behavior (Dwivedi, Rana, Jeyaraj, Clement, & Williams, 2019). In our 

study, a subsection of the theory is applied to the context of MOOC 

utilization. Specifically, the direct effect of perceived consequences, 

affect, social factors on intention are examined. Moreover, the effects 

of facilitating conditions on the actual behaviors were examined. This 

study, similar to other studies, set aside habits from the model (Jeon et 

al. 2011), given that habits (in previous uses) were within the context 

of MOOCs usage, and displayed a tautological link with the existing 

use. The following sections will discuss the details and foundations of 

our research constructs. 
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2.1.1. Perceived Consequences 

According to the base theory, expected consequences comprise an 

important indicator that affects behavior, later on renamed as perceived 

consequences (Teo, Sang, Mei, & Hoi, 2019). The perceived 

consequences originated from the expectancy theory of motivation that 

was expounded by Vroom (1964). This specific concept was 

additionally developed by Porter and Lawler (1968). The concept 

“consequences” manifests the expected merit of behavior. The 

perceived consequence is interpreted as the likelihood that a particular 

consequence might take place as an outcome of behavior (Vaterlaus, 

Spruance,Frantz, & Kruger, 2019). Kim, Cho, and Kim (2019) asserted 

that a person will be more readily involved in an action if the expected 

value of that action rises. Nguyen, Nham and Hoang (2019) described 

that the frequency and degree of knowledge sharing will rise whenever 

the perceived consequences have higher power and intensity. Perceived 

consequences have been thought to have several dimensions. Alves 

(2011) conceded that the perceived consequences probably contain 

many components and they are not unidimensional. This point is 

consistent with the empirical results and theoretical discussions of 

various studies that suggest the perceived consequences comprise 

several dimensions. Previous studies that employed our base theory in 

the context of information technology utilization identified perceived 

consequences to be complexity, long-term consequences, and near-term 

consequences (Chang & Cheung, 2001). Additionally, Jeon et al. (2011) 

launched novel multi-dimensions for the perceived consequences factor 

to investigate knowledge sharing in organizations. They included 

member-member, member-work, and organization-member aspects as 

the sub-dimensions of perceived consequences. Expected reputations, 

expected social interactions, and expected usefulness had been 

considered multidimensional perceived consequences to analyze the 

knowledge sharing behavior of information security experts in online 

communities (Tamjidyamcholo, Baba, Shuib, & Rohani, 2014). 

However, with respect to online learning and the MOOC literature, in 

the present study, the perceived consequences are introduced as a 

second-order construct including knowledge growth, social interaction, 

and compatibility.  
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Knowledge growth is explained as the knowledge seeker's 

perceived benefit of augmenting his or her personal learning and 

experience (Aleven et al. 2018). In fact, the main reason users were 

willing to participate in virtual communities is their attitudes and 

insights towards such communities, which ultimately lead to the 

exchange and generation of new knowledge and expertise (He & Wei, 

2009). The ERP knowledge update was examined by Darban, Kwak, 

Deng, Srite, & Lee (2016). Their study explained that team 

collaboration and individual effort positively influence perceived 

knowledge update. Italian mathematic teachers used MOOCs for 

developing a new theoretical framework (Taranto & Arzarello, 2019). 

Some scholars suggested that only a small proportion of MOOC 

participants go on to complete their courses and relatively little is 

known about the MOOC influential factors that influence the 

participants’ course completion (Hone & El Said, 2016). Therefore, 

the current study assumes that knowledge growth is an aspect of 

perceived consequence of the MOOCs completion. 

Nahapiet and Ghoshal (1998) maintained that the basic assumption 

of the Social Capital Theory is actually that network connections 

furnish access to resources and information. Social networking or 

interaction ties have been identified as paths to the circulation of 

resources and information (Tsai & Ghoshal, 1998). Prior research 

have presented experimental support for the effect of social 

interactions on group cohesiveness (Huang, 2009), reinforcement 

learning (Hackel, Mende-Siedlecki, & Amodio, 2020), human needs 

and satisfaction with Life in Facebook  (Houghton, Pressey, & 

Istanbulluoglu, 2020), and the quantity and quality of the distributed 

knowledge (Chang & Chuang, 2011). In this research, social 

interaction is explained as the strength of connections, the period of 

time passed, and the scope of the relationship happening among 

MOOC participants. Thus, we presume that social interaction is a first 

order factor for perceived consequence construct. 

Perceived compatibility is the extent to which the innovation is 

recognized as being consistent with the potential user’s existing values, 

previous experiences, and needs (Rogers, Singhal, & Quinlan, 2019). 

Rogers (2019) pointed out that high compatibility leads to preferable 

adoption and usage. Perceived compatibility has been proven to have 
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significant influence on e-learning utilization (Islam, 2016), information 

system success model (Isaac,  Aldholay, Abdullah, & Ramayah, 2019), 

is considered as a driving factor in the adoption of smart home 

technology (Nikou, 2019), and has a key linking mechanism between 

omni-channel experience and omni-channel shopping intention (Shi, 

Wang, Chen, & Zhang, 2020). To have an understanding of the 

participants of MOOCs utilization and completion behavior, we assume 

perceived compatibility as another aspect of the perceived 

consequences. Thus, the aforementioned explanation directs us towards 

the first hypothesis of our research as follows: 

Hypothesis 1: There is a positive relationship between 

perceived consequences (knowledge growth, social 

interaction, and compatibility) and the intention to use 

MOOC. 

2.1.2. Affect 

Affect is defined as a person’s experience of hatred, dissatisfaction, 

happiness, joy, or thrill toward a particular behavior (Kim et al., 

2019). Positive feelings accentuate the motivation to show a certain 

behavior, while negative feelings diminish the behavior motivation 

(Taherdoost, 2018). Anwar (2019) mentioned that there is an 

affirmative link between behavior and affect. Basically, it is more 

likely that behaviour will take place when the satisfaction and thrill of 

behavior are high. It is shown that pleasure and enjoyment, which are 

regarded as variables like affect, have a positive influence on 

knowledge sharing behavior of SMEs in communities of practice (Tan 

& Ramayah, 2018). In addition, the results of the study of Kgasago 

and Jokonya (2018) shows that affect has a significant effect on the 

users’ acceptance of business intelligence systems. Furthermore, it is 

believed that affect can be effective on predicting other behaviors, 

such as ERP system adoption (Chang, Cheung, Cheng, & Yeung, 

2008), internet piracy (Ramayah, Chin, & Ahmad, 2008), and 

knowledge sharing behavior (Jeon et al., 2011). Therefore, it is 

rational to examine the hypothesis that regards a positive relationship 

between affect and MOOC utilization. 

Hypothesis 2: There is a positive relationship between 

affect and the intention to use MOOC. 
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2.1.3. Social Factors 

Garay, Font, and Corrons (2019) highlighted that intentional behavior is 

directly affected by social norms, and this link relies on the messages that 

individuals receive from other people. Rejón-Guardia, Polo-Peña, and 

Maraver-Tarifa (2019) mentioned that the social norms notify others 

about what to do. The basic theory underscored this concept and 

suggested the word ‘social factors’ for this connection; propounding that 

the individual’s internalization of the reference groups’ subjective 

culture, and specific interpersonal agreements that the individual has 

made with others, in specific social situations. A subjective culture 

includes a category of beliefs, attitudes, ideals, experiences, roles, values, 

and norms, which is often recognized as the characteristic way that a 

human group views the human-made part of its setting (Jia, Guo, & 

Barnes, 2017). The subjective norm construct in the theory of reasoned 

action (TRA) behaves like social factors in the Triandis model (Ajzen & 

Fishbein, 1980). In their theory, Ajzen and Fishbein presumed that social 

norms could have an impact on behavior. The result of several empirical 

studies showed a positive connection between intentional behavior and 

social factors. In particular, the effects of social factors studied in online 

purchase intention and findings demonstrated that the social factor 

positively influenced the purchase intention (Tsai, Hung, & Yang, 2020). 

Yang and Lin (2019), using the TRA model, illustrated that social factors 

are the significant determinants of the intention to continue playing 

mobile game apps. In addition, Lo and Qu (2015) and Larue, 

Rakotonirainy, Haworth, and Darvell (2015) exerted that social norms 

have a positive impact on tourists’ shopping intentions and the drivers’ 

acceptance of intelligent transport systems, respectively. In this study, 

social factor describes the effect of friends, colleagues, subordinates, and 

superior individuals on an individual’s utilization of MOOC. According 

to our base theory and findings from prior empirical findings, the next 

hypothesis that needs to be analyzed is: 

Hypothesis 3: There is a positive relationship between 

social factors and the intention to use MOOC. 

2.1.4. Facilitating Conditions 

Faulkner, Jorgensen, and Koufariotis (2019) assumed that there is an 

affirmative connection between facilitating conditions and behavior. 

Facilitating conditions are generally believed to be an impetus to the 
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users in the context of individual usage of information systems 

(Peñarroja,Sánchez, Gamero, Orengo & Zornoza, 2019). The current 

research utilizes this specific viewpoint as a reference viewpoint. 

Triandis (1980) defined facilitating conditions as objective factors, out 

there in the environment, that several judges or observers agree that it 

makes an act easy to do. Prior empirical studies on the relationship 

between facilitating conditions and learning management system 

(Khechine, Raymond, & Augier, 2020), social enterprise consumer 

behaviors (Tsai et al., 2020), building information modeling 

acceptance (Son, Lee, & Kim, 2015), the Internet banking utilization 

(Zolait, 2014), and e-learning usage (Tarhini, Teo, & Tarhini, 2015) 

were supported. However, cultivating online communities without 

having suitable facilitating conditions may produce unforeseen 

negative outcomes, because the communities are generally vulnerable 

(Hao & Tan, 2019). In the present study, the facilitating conditions 

contain instructions or guidance that enable users to have access to the 

MOOC anytime they like, plus the support and assistance supplied 

through the community provider to make the usage of the MOOC 

easier. Hence, the following hypothesis is developed: 

Hypothesis 4: There is a positive relationship between 

facilitating conditions and the MOOC utilization. 

2.1.5. MOOCs usage and learning effectiveness  

Zulfiqar, Sarwar, Aziz, Ejaz Chandia, and Khan (2019) postulated that 

actual behavior is influenced by what people have usually done (habits), 

by their behavioral intentions, and by facilitating conditions. They 

contended that the anticipated behavior could occur if there is a high 

strength of intention and motivation. According to the TRA (Ajzen & 

Fishbein, 1980) and TAM (Venkatesh & Bala, 2008), the intention to 

use or behavioral intention can accurately predict behavior. The 

intention to use could help figure out the strength of an individual’s 

intention to commence behavior and illustrate an action. The intention 

to execute behavior is an individual’s intention to perform a certain 

behavior (Hwang, Lim, Neary, & Newton, 2018). Intention could be a 

very accurate construct when it comes to anticipating actual behavior 

(Hagger, Polet, & Lintunen, 2018). Since the quantity of online training 

and education programs have been boosted, practitioners and 
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researchers are interested in examining ways to develop and design 

effective e-learning programs. The low rates of MOOC course 

completion raise questions regarding MOOC’s effectiveness. The 

effectiveness of interactive video on e-learning (Zhang, Zhou, Briggs, 

& Nunamaker, 2006), mobile learning in the form of podcasting 

(Evans, 2008), and e-learning in construction safety (Ho & Dzeng, 

2010) have been proven. Yet, there is very little empirical research into 

MOOCs and their learning effectiveness (Haggard et al., 2013; 

Weinhardt & Sitzmann, 2019). Thus, this study is focused on 

empirically investigating the relationship between MOOC usage and its 

effectiveness on learning. With respect to the preceding discussion and 

our base model, the following hypotheses would be tested:  

Hypothesis 5: There is a positive relationship between the 

intention to use MOOC and MOOC actual usage. 

Hypothesis 6: There is a positive relationship between the 

actual usage of MOOC and learning effectiveness. 

Hypothesis 7: There is a positive and direct relationship 

between perceived consequences and learning 

effectiveness. 

3. Research Model 
The model (Figure 1) is formed based on the preceding explanation 

and discussion. It incorporates seven factors: perceived consequences, 

affect, social factor, intention to use, facilitating conditions, MOOC 

utilization, and learning effectiveness. It indicates the link between 

perceived consequences, affect, and social factor and the intention to 

use MOOCs. The figure shows the connection between the intention 

to use MOOC and the actual usage of MOOC, and the perceived 

consequences with learning effectiveness. Furthermore, it displays the 

effects of perceived consequences and the actual usage of MOOC on 

learning effectiveness. With the exception of perceived consequences, 

which have been modelled to be a formative construct, all remaining 

constructs are formulized to be reflective.  
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Fig. 1. Research model 

Seven hypotheses have been proposed. The letter H and a number 

are used to depict each hypothesis. The plus marks point to an 

affirmative connection and the arrow directions indicate the 

hypothesized connections. In this research, the subjects that are 

applied to operationalize the constructs were extracted from prior 

research and adjusted for use in the MOOC usage context. Knowledge 

growth-based consequence, social interaction-based consequence, and 

compatibility-based consequence were used as factors to construct the 

superior perceived consequences construct. The knowledge growth-

based perceived consequence was operationalized by He and Wei 

(2009). The social interaction-based perceived consequence was 

measured with items taken from Huang (2009) and Chang and Chuang 

(2011). The compatibility-based perceived consequence was 

operationalized according to Nikou (2019), and Isaac et al. (2019). 

The findings and concepts of Kim et al. (2019) were employed to 

analyze affect. The social factor was examined according to Lo and 

Qu (2015). The intention to use was measured based on the items 

extracted from Fang and Chiu (2010), and the facilitating conditions 

were assessed through items extracted from Khechine et al. (2020). 

Lastly, the measures and items used to assess learning effectiveness 

were extracted from Ho and Dzeng (2010) and Liaw (2008). The 

questionnaire items for the study constructs are illustrated in Table 1. 

H1(+)

First order construct

H6(+)

H3(+)

H2(+)

Second order construct

Knowledge growth

Social interaction

Compatibility

Affect

Social factors

Perceived consequences Learning effectiveness

MOOC actual usage Intention to use MOOC

Facilitating condition 

H4(+)

H7(+)

H5(+)
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Table 1. Questionnaire items 

Construct 

Name 
Items Alpha Mean/S.D. 

Knowledge 

growth 

1. Using Coursera can promote my knowledge 

growth and development. 
0.786 1.72/0.785 

2. Using Coursera helps me strengthen my concepts 

in my field. 
 1.91/1.019 

3. Using Coursera can sharpen my knowledge.  1.63/0.732 

Social interaction 

1. I spend a lot of time interacting with some 

participants in Coursera. 
0.914 4.42/1.685 

2. I have frequent communication with some 

participants in Coursera. 
 4.51/1.822 

3. I maintain close social relationships with some 

participants in Coursera. 
 4.88/1.758 

Perceived 

compatibility 

1. Learning material provided by Coursera is 

compatible with my needs. 
0.792 2.15/1.035 

2. Courses provided by Coursera meet my personal 

learning needs. 
 2.05/0.95 

3. The knowledge and information shared in 

Coursera’ forum fits my current needs. 
 2.45/1.217 

Affect 

1. Using Coursera to learn new things would be 

enjoyable and interesting. 
0.87 1.79/0.916 

2. Learning with Coursera is fun.  1.61/0.776 

3. 3. I feel good to use Coursera for learning.  1.37/0.852 

Social factors 

1. People who are important to me think that I 

should use Coursera. 
0.915 2.99/1.599 

2.  People who influence my behavior encourage 

me to use Coursera. 
 3.19/1.633 

3.  My colleagues think that I should use Coursera.  3.18/1.633 

Facilitating 

conditions 

1. Coursera offers technical support when needed. 0.762 2.89/1.272 

2. Specialized instruction, concerning Coursera 

usage, is available to me. 
 2.99/1.399 

3. I can get technical support by email if I have 

problems using Coursera. 
 3.21/1.407 

Intention to use 

1. I intend to use Coursera in my learning in the 

future. 
0.715 1.53/0.689 

2. I predict that I would use Coursera.  1.69/0.861 

3. I plan to use Coursera in the next (n) months.  1.44/0.712 

MOOC actual 

usage 

1. I use the Coursera very intensively. 0.917 3.13/1.517 

2. I use the Coursera very frequently.  3.05/1.517 

3. Overall, I use the Coursera a lot.  3.00/1.600 

Learning 

effectiveness 

1. I believe Coursera can assist learning efficiency. 0.835 1.81/0.831 

2. I believe Coursera can assist learning 

performance. 
 1.84/0.904 

3. I believe Coursera can assist learning motivation.  1.87/0.868 
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4. Research methodology 
4.1. Data collection  

The present study is conducted using a massive online open course 

called Coursera (https://www.coursera.org). Before conducting the 

formal and final data collection process and for having a valid research 

instrument, a pre-test and a pilot-test were carried out. One associate 

professor and an assistant professor in the information system field 

along with two postdoctoral research fellowships who were doing 

research in virtual communities pre-tested the questionnaire. 

Participants were required to remark and comment on a list of subjects 

that correlate with the constructs, the inclusion of logical consistencies, 

the ease of understanding, contextual relevance, and the sequence of 

questionnaires. Additionally, the pilot-test was carried out by twenty-

three students in research and development building in our university. A 

few small modifications had been applied to the questionnaire after 

conducting the pre-test and pilot-test; accordingly, four unnecessary 

subjects were deleted from the questionnaire. After the application of 

the minor modifications, the questionnaires were distributed for the 

purpose of collecting research data. Three sources were selected from 

Coursera groups on Facebook to collect data, including a Coursera 

closed group, Internet Technology and Security (UMich─Coursera) 

group, and Modern & Contemporary American Poetry (Coursera 

ModPo) group. First, we requested to be a member of the groups. After 

obtaining the membership of the groups, the questionnaire link was 

posted on the page of the groups. The message and post contained an 

online link of the questionnaire that was developed using Google form 

technology, and a short description about the objectives of the study. 

The participation in this study was voluntary and data collection process 

started from July 12, 2018 until September 23, 2018. In total, 241 

responses were collected. After removing seven invalid responses, 234 

valid responses remained for the main research analysis. The 

characteristics and detailed information of participants have been shown 

in Table 2. The questions were assessed by a Seven-point Likert scale 

starting from ‘‘totally disagree’’ (1) to ‘‘totally agree’’ (7). 

 

  

https://www.coursera.org/
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Table 2 . Characteristics of respondents 

Measure Items Frequency 
Percent 

(%) 
Measure Items Frequency 

Percent 

(%) 

Gender Male 159 68.0 Education High School 36 15.4 

 
Female 75 32.0 

 
Bachelor 116 49.6 

     
Master 61 26.0 

Age 
Less 

than 25 
109 46.6 

 
PhD holder 21 9.0 

 

 

25-30 

 

50 

 

21.4 

 

Occupation 

 

Student 

 

116 

 

49.6 

 
31-40 44 18.8  Employee 73 31.2 

 
Over 41 31 13.2  Professor 13 5.6 

    
 Other 32 13.6 

 

4.2. Data analysis 

As a multivariate analytic method, partial least squares (PLS) uses 

latent variables for path analytic modeling. The PLS technique is 

appropriate for theoretical development; consequently, causal models 

can simply and effectively be examined by PLS. It is additionally 

feasible to formalize both reflective and formative constructs in PLS 

(Hair, Howard, & Nitzl, 2020). SmartPLS version 3 (www.smartpls.de) 

was used to test the current research model. The model was analyzed in 

two steps. First, the evaluation of the measurement model was done, 

which consisted of the reliability and discriminant validity. Second, the 

evaluation of the structural model was undertaken, which consisted of 

the path coefficients and the R2 values. 

5. Results  
5.1. The Measurement Model 

The test of reliability was conducted by individual item loadings and 

internal consistency. Individual item loadings that are =>0.5 are believed 

to be sufficient. It is shown in Table 3 that loadings for all measurement 

subject were greater than 0.69. This demonstrates the existence of sound 

internal reliability. In addition, Cronbach's alpha was applied to assess 

internal consistency. As it is shown in Table 1, the Cronbach's alpha for 

each variable was => 0.7. The PLS used the hierarchical component 

model to analyze the second-order factors. Each item of the lower-order 

factors was used to measure second-order factors. In this study, the 

perceived consequences were used as the second order constructs.The 

lower order constructs include knowledge growth, social interaction, and 

http://www.smartpls.de/
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perceived compatibility. In order to assess convergent validity, 

Composite Reliability (CR) and Average Variance Extracted (AVE) 

were measured. Based on the suggestion of PLS, the recommended 

degree of reliability is CR=>0.7, and the recommended level of AVE is 

AVE=> 0.5. In the present study, the range of CRs were 0.838 to 0.947, 

and the range of AVEs were 0.634–0.857, where both exceeded the 

threshold values, and thus, the convergent validity is approved. The 

square root of AVE was employed to measure discriminant validity. In 

order to obtain discriminant validity, the square root of AVE should be 

more than the correlations among the constructs. The diagonal elements 

in Table 4 are the AVE’s square root. This indicates that the value of 

each AVE’s square root is greater than the off-diagonal components. 

Therefore, we conclude that there is an acceptable and logical extent of 

discriminant validity in all of the constructs.  

Table 3. Measurement analysis results 

Measures Items CR AVE Loading Standard Error t-value 

Knowledge growth KG 1 0.875 0.7 0.845 0.024 35.089 

 
KG 2 

  
0.811 0.035 23.417 

 KG3   0.854 0.025 34.424 

       Social interaction SI 1 0.946 0.853 0.922 0.222 4.158 

 
SI 2 

  
0.944 0.234 4.03 

 SI 3   0.904 0.212 4.259 

       Perceived compatibility PC 1 0.879 0.708 0.821 0.031 26.161 

 
PC 2 

  
0.906 0.015 61.848 

 
PC 3 

  
0.792 0.043 18.439 

       Affect AF 1 0.92 0.794 0.919 0.014 63.907 

 
AF 2 

  
0.92 0.024 39.086 

 AF 3   0.832 0.066 12.655 

       Social factors SF 1 0.943 0.847 0.948 0.045 20.925 

 
SF 2 

  
0.939 0.076 12.311 

 
SF 3 

  
0.873 0.118 7.419 

       Facilitating conditions FC 1 0.863 0.677 0.822 0.035 23.458 

 
FC 2 

  
0.807 0.041 19.503 

 
FC 3 

  
0.84 0.031 27.079 

Intention to use ITU 1 0.838 0.634 0.859 0.021 40.26 
 ITU 2   0.698 0.073 9.522 

 ITU 3   0.823 0.035 23.57 

MOOC actual usage MAU 1 0.947 0.857 0.888 0.022 39.493 

 
MAU 2 

  
0.943 0.013 72.479 

 
MAU 3 

  
0.946 0.009 107.017 

Learning effectiveness LE 1 0.901 0.752 0.867 0.034 25.17 

 LE 2   0.896 0.02 44.071 
 LE 3   0.843 0.028 30.476 
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Table 4. Correlation between research constructs 

 
(KG) (SI) (PC) (AF) (SF) (FC) (ITU) (MAU) (LE) 

Knowledge growth (KG) 0.837 
       

 

Social interaction (SI) 0.059 0.924 
      

 

Perceived compatibility (PC) 0.533 0.194 0.841 
     

 

Affect (AF) 0.59 0.099 0.55 0.891 
    

 

Social factors (SF) 0.211 0.318 0.35 0.357 0.921 
   

 

Facilitating conditions (FC) 0.312 0.296 0.343 0.216 0.328 0.823 
  

 

Intention to use (ITU) 0.62 -0.093 0.487 0.669 0.183 0.2 0.797 
 

 

MOOC actual usage(MAU) 0.326 0.285 0.381 0.412 0.238 0.357 0.299 0.926  

Learning effectiveness  (LE) 0.682 0.219 0.556 0.549 0.236 0.293 0.495 0.437 0.867 

Note: the bold numbers in the diagonal row are square roots of the average variance extracted. 
 

5.2. The structural model 

Obtaining satisfactory results for the reliability and validity test in the 

preceding segments lead us to examine our research hypotheses. In 

this section, the proposed model and its hypotheses are assessed using 

the Structural Equation Model (SEM). The examination of the SEM 

incorporates an evaluation of the path coefficients and R2 values. The 

path coefficients represent the relationships between the endogenous 

and independent factors. The R2 values indicate the quantity of 

variance defined by the independent factors, and reflect the predictive 

power of the model. Table 5 summarizes the results of the hypotheses. 

In Figure 2, the R2 values are represented beside each dependent 

construct. The model describes 50.1% of the variance in the intention 

to use MOOC, 17.4% of the variance in the MOOC actual usage, and 

53.7% of the variance in learning effectiveness.  

Table 5. Results of hypothesis testing 

Hypotheses Results 

Hypothesis 1. There is a positive relationship between perceived consequences and the 

intention to use MOOC. 
Supported 

Hypothesis 2. There is a positive relationship between affect and the intention to use 

MOOC. 
Supported 

Hypothesis 3. There is a positive relationship between social factors and the intention to 

use MOOC. 

Not-

supported 

Hypothesis 4. There is a positive relationship between facilitating conditions and the 

MOOC utilization. 
Supported 

Hypothesis 5. There is a positive relationship between intention to use MOOC and 

MOOC actual usage. 
Supported 

Hypothesis 6. There is a positive relationship between MOOC actual usage and learning 

effectiveness. 
Supported 

Hypothesis 7. There is a positive and direct relationship between perceived 

consequences and learning effectiveness. 
Supported 
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Fig. 2. SEM analysis results 

Figure 2 also indicates the findings of the path coefficients. The 

path coefficient from perceived consequences to intention to use 

MOOC is affirmative, and indicates a significant relationship 

(β=0.314, p<0.01). This demonstrates that the intention to use MOOC 

was statistically affected by the perceived consequences; hence 

confirming hypothesis 1. The findings illustrate that affect (β=0.505, 

p<0.01) and facilitating conditions (β=0.309, p<0.01) have a 

meaningful and significant impact on the intention to use MOOC and 

the actual usage of MOOC respectively, which verifies hypotheses 2 

and 4. Contrary to the initial assumption of this study, the social factor 

showed a negative impact on the intention to use MOOC (β=-0.108, 

p<0.05). Thus, hypothesis 3 was not supported. The SEM analysis 

approved a positive and significant link between the intention to use 

MOOC and the MOOC actual usage (β=0.237, p<0.01); therefore, 

hypothesis 5 is confirmed. Consistent with our research hypotheses, 

the path coefficients illustrate the strengths of the links between the 

perceived consequences as well as the actual usage of MOOC and 

learning effectiveness (β=0.657, p<0.01; β=0.151, p<0.01). Therefore, 

hypotheses 6 and 7 were validated. 

Knowledge growth

Social interaction

Compatibility

Affect

Social factors

Perceived consequences Learning effectiveness

MOOC actual usage Intention to use MOOC

Facilitating condition 

  *p<0.05  **p<0.01

Significant path

Non-significant path

     (t=22.400)

     (t=2.121)

     (t=15.744)

     (t=3.724)

     (t=5.076)

     (t=2.619)

     (t=13.208)

     (t=3.407)     (t=6.287)

     (t=2.209)

0.657**

R2=1.000

R2=0.501 R2=0.174

R2=0.537

0.151**

0.237**

0.309**

0.314**

-0.108*

0.505**

0.525**

0.157**

0.577**



512    (IJMS) Vol. 13, No. 3, Summer 2020 

6. Discussion  
The primary objective of the current study was to reveal and identify 

the determinants of the MOOCs usage and also to find the quantitative 

relationship between MOOC usages and learning effectiveness. To 

test the research model, an empirical study was carried out. The 

findings indicated that perceived consequences can be a significant 

indicator of intention to use MOOC. The data analysis verified that 

perceived consequences are a major component in the completion rate 

of massive open online courses; thus, it can be concluded that if the 

amount of perceived consequences are boosted, the dropout rate of the 

courses will decrease and the completion rate will be enhanced. Three 

types of consequences have been defined by the study model, 

including the knowledge growth, social interaction, and compatibility.  

As verified by the results of previous studies (Jung & Lee, 2019; 

Darban et al., 2016; Chan & Chan, 2011; He & Wei, 2009), in which 

knowledge building plays an important role in the online involvement 

of users, the results of the present research showed that knowledge 

growth has a positive impact on the intention of MOOC users. The 

results confirmed that the users of MOOC intend to enhance their own 

learning and experience and to have access to new knowledge or 

innovations. The conclusion of other relevant studies indicate that 

social interaction ties among the users of a specific community could 

be augmented via social interaction, and it is believed to be a 

meaningful indicator of collective action (Doty et al., 2020). These 

ties could be initiated among individuals with similar and exact 

resources and interests rather than different individuals (Nguyen & 

Schumann, 2019). Thus, as proven by the result of the research model, 

these ties and bonds help with the engagement and activity of the 

MOOC users. For instance, for the participants of MOOC to have easy 

interactions in discussion forums and also to have strong connections, 

they have created a special group in other virtual communities such as 

Facebook. The results of previous studies of online knowledge sharing 

(Oyemomi, Liu, Neaga, Chen, & Nakpodia, 2019), e-learning 

utilization (Islam, 2016), information system success model (Isaac et 

al., 2019), and the adoption of smart home technology (Nikou, 2019) 

confirm that when the compatibility in the provided technology is 

high, the intention to use and adopt that technology is higher. In line 
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with the past findings, the result of this study illustrated that 

compatibility has a strong and significant effect on the usage 

intentions of MOOC; therefore the presented courses and materials 

should be compatible and consistent with the expectation and needs of 

the MOOC users. Similar to the results of Anwar (2019) and Kgasago 

and Jokonya (2018), the findings of this research confirmed that the 

utilization of MOOC is stronger when users have affirmative 

sentiments toward it. The intrinsic motivations of using and adopting a 

new technology are embodied in its affect (Kim et al., 2019). Affect 

can have various impacts on the users, including energy, happiness, 

joy, and enthusiasm, indicating that the intrinsic motivations of users 

can substantially influence the MOOC utilization and completion rates 

of the provided courses. The social factor was not found to be an 

instrumental construct in MOOC utilization. This is consistent with 

the findings of Hsu and Lin (2008) and contradictory to the results of 

Tsai et al. (2020) and Yang and Lin (2019). One possible reason for 

this result can be that MOOC is seen as a community to improve 

learning and knowledge. However, when someone receives a 

suggestion to join it, they see themselves as being unknowledgeable in 

the eyes of others and need to enhance their skills, hence they might 

reject the suggestion. The second plausible reason may be due to the 

fact that MOOC is a type of professional virtual community and the 

participants of this community completely know their own benefits, 

and know where and how to attain the information and knowledge 

they require. This can be a reason why social factors were not found to 

have any effect on the indivisible behaviors. The third reason might be 

that there is no obligation or commitment to join and use MOOCs, and 

any action in this setting is voluntary. According to the findings of 

other researchers, intention to use (Hwang et al., 2018; Hagger et al., 

2018) and facilitating conditions (Tarhini et al., 2015; Zolait, 2014) 

are important indicators of MOOC actual usage. Hagger et al. (2018) 

asserted that intention would be the right factor to look at when it 

comes to anticipating behavior; accordingly the present study proved 

that when people have the intention to use MOOC, they would 

actually use MOOC. The results of facilitating conditions indicated 

that when an individual believes that there is an appropriate guidance, 

instruction, and technical support, they are more interested to use 
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MOOC. Lastly, as was explained in the preceding data analysis 

section, the results delineated that the actual utilization of the MOOC 

and perceived consequences positively and significantly affect the 

learning effectiveness. These findings are in agreement with the 

results of previous studies (Chen & Chen, 2015; Evans, 2008; Ho & 

Dzeng, 2010; Zhang et al., 2006). Therefore, the low rates of MOOC 

course completions are not because of the learning effectiveness. The 

authors believe that the MOOC providers should consider factors such 

as knowledge growth, social interaction, compatibility, affect, and 

facilitating conditions which have been confirmed to be the 

determining factors in the context of MOOCs. 

6.1. Implications 

From a theoretical perspective, the research model offers several 

important theoretical contributions. Firstly, we analyzed the MOOCs 

utilization by incorporating the important factors from the well-

established model of Triandis. In light of earlier discussions and 

arguments, perceived consequences, affect, and facilitating conditions 

were identified as the significant constructs in defining the MOOC 

usage behavior. Secondly, based on the literature, the present study 

established a novel multi-dimension for the perceived consequences 

construct, including knowledge growth, social interaction, and 

compatibility to fit the MOOC usage context. The findings illustrate 

that the users of MOOC confirm the whole dimensions of 

consequences (knowledge growth, social interaction, and 

compatibility) in their online learning activity. Thirdly, we statistically 

analyzed the influence of MOOC actual usage and perceived 

consequences on learning effectiveness. The relationship between the 

actual usage of MOOC and learning effectiveness has not been 

formerly examined. The results of this study show that MOOC 

utilization and perceived consequences can enhance learning 

effectiveness. The assumption that a high dropout rate and low 

completion rate are caused by the lack of effectiveness of the MOOC 

would be a barrier to the MOOC development and usage. Thus, there 

would be good opportunity and motivation for the MOOC usage to 

expand while this false assumption is rejected.  
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From a practical perspective, in order to increase the usage of 

MOOCs and decrease the dropout rate of the participants, the 

providers of MOOCs need to pay special attention to different 

motivational dimensions and create a suitable support system to 

intensify each motivation dimension. Hence, the administrators of the 

learning community can enhance and retain the participants by 

offering intrinsic and extrinsic motivations. This research suggests the 

following recommendations to assist practitioners in administering or 

designing better MOOCs in order to attract, retain, and increase the 

number of users. First, the research findings demonstrate that the 

knowledge growth, as one dimension of perceived consequences, has 

an influential impact on the MOOC usage. MOOCs administrator 

needs to establish a setting where the users could enhance the quantity 

and quality of the presented knowledge by presenting enough courses 

and also through inviting experienced lecturers. The findings of this 

study imply that social interaction has a positive impact on MOOC 

usage. Therefore, the administrators of the communities need to 

enhance the social interaction mechanisms of their community by 

creating user friendly discussion forums, blogs, and personal message 

boards as social interaction tools for improving virtual interaction and 

connection among users. The findings of this research show that 

compatibility is a significant element of the perceived consequences. 

Thus, MOOC developers should present courses that are compatible 

with the needs of users, industries, or organization. If the provided 

courses fulfill the current needs of users, they would be more 

motivated to use them. Additionally, the influence of the affect 

construct on MOOC utilization has been affirmed. Thus, the providers 

of MOOCs should engage the users’ sentiments and affection through 

building a community spirit. This might be attained via various 

activities such as establishing online quizzes and online competitions. 

Moreover, when there are not enough facilitating and supporting 

systems, MOOC utilization and activities could not be promoted and 

extended. Thus, it is imperative for MOOC providers to furnish 

resources, such as special guidance and instructions as well as 

supplying a support group to foster participation of people. Finally, 

the findings reject the main assumption that the low completion rate or 

high dropout rate is because MOOC is an ineffective method for 
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learning, since the erroneous assumption could impede the motivation 

of MOOC providers along with its users. Thus, community providers 

can employ this important result to expand and develop their 

community and also encourage the utilization of the MOOC. Given 

the importance of MOOC in learning accessibility and thriving, it is 

the goal of our study and its findings to be of benefit to others who are 

involved in this field theoretically and practically. 

7. Conclusion 
While MOOCs grow in popularity, the relatively low completion rate 

of learners has become a central concern. We believe that looking at 

completion rates is a starting point for a better understanding of the 

reasons behind the high dropout rate in a voluntary usage setting. In 

order to understand this phenomenon, a research model was developed 

to investigate MOOC utilization in which many important factors 

were taken into account from the Triandis model. These factors were 

believed to encourage and promote usage behavior in massive open 

online courses. In addition, the relationship between perceived 

consequences and the actual usage of MOOC with learning 

effectiveness was studied in our research model. To test our model, an 

empirical study was conducted. To evaluate the research model, 234 

users from the selected MOOC (Coursera) participated in the survey. 

The conceptual model was examined via the measurement model and 

the structural equation model. The measurement model includes 

reliability and discriminant validity. The structural equation model 

was consists of path coefficients and R2 values. The analysis of the 

model satisfactorily confirmed the validity of the proposed model. The 

results corroborate that the perceived consequences, including 

knowledge growth, social interaction, compatibility, and affect, have 

an instrumental impact on the intention to use MOOC. Contrary to our 

initial assumption, the social factor shows an inconsiderable impact on 

the context of MOOC utilization. Furthermore, the intention to use 

MOOC and facilitation conditions exhibited a positive influence on 

the actual usage of the MOOC. The findings of this study suggest that 

the perceived consequences and MOOC actual utilization have 

positive effects on learning effectiveness and significantly enhance the 

learning process. 
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