تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,114,663 |
تعداد دریافت فایل اصل مقاله | 97,218,429 |
بررسی تغییرپذیری مکانی شاخصهای کیفیت خاک در کشتزارهای منطقه نظرآباد در غرب استان البرز | ||
تحقیقات آب و خاک ایران | ||
مقاله 12، دوره 51، شماره 7، مهر 1399، صفحه 1755-1768 اصل مقاله (677.12 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2020.299323.668538 | ||
نویسندگان | ||
علی رضا واعظی1؛ رسول میرخانی* 2؛ حامد رضایی3؛ لیلا اسماعیل نژاد4 | ||
1گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران | ||
2دانشجوی دکتری، گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران | ||
3موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران | ||
4گروه مهندسی علوم خاک، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران | ||
چکیده | ||
آﮔﺎﻫﻲ از ﺗﻮزﻳﻊ ﻣﻜﺎﻧﻲ کیفیت ﺧﺎک از ﻣﻬﻢﺗﺮﻳﻦ ﻣﻮﺿﻮﻋﺎت در ﺷﻨﺎﺳﺎﻳﻲ، ﺑﺮﻧﺎﻣﻪرﻳﺰی، ﻣﺪﻳﺮﻳﺖ و ﺑﻬﺮهﺑﺮداری بهینه از ﻣﻨﺎﺑﻊ خاک در هر منطقه است. در این مطالعه ویژگیهای خاک سطحی (30-0 سانتیمتر) در 95 مزرعه در منطقه نظرآباد استان البرز اندازهگیری و با استفاده از روش تجزیه به مؤلفههای اصلی (PCA)T دادههای مؤثر بر کیفیت خاک انتخاب شدند و شاخص کیفیت تجمعی وزنی (SQIw) و ساده (SQIa) و شاخص کیفیت نمورو (NQI) با استفاده از کل ویژگیها و حداقل ویژگیها تعیین شدند. تغییرات مکانی شاخصهای کیفی خاک با استفاده از فن زمینآمار تحلیل و توزیع مکانی آنها با استفاده از روش کریجینگ معمولی تعیین شد. بر اساس نتایج، شاخص SQIWحاصل از حداقل ویژگیها دقت بیشتری بر اساس آمارههای R2 برابر با 92/0، میانگین خطای مطلق (MAE) برابر با 09/0 و ریشه میانگین مربعات خطای نرمالشده (NRMSE) 01/0 داشت. بهترین مدل زمینآماری برازشیافته بر دادههای شاخص SQIWو SQIa حاصل از حداقل دادهها مدل نمایی (95/0=2R) بود و برای شاخص NQI حاصل از حداقل دادهها مدل نیمتغییرنمای کروی بهترین برازش (90/0=2R) را داشت. همچنین دامنه تأثیر شاخصهای SQIa، SQIW و NQI بهترتیب 8، 10 و 5/11 کیلومتر بود. کیفیت خاک کشتزارها بهشدت وابسته به توزیع اندازه ذرات اولیه بهویژه شن و رس با ضریب وابستگی 90/0 و 85/0 بود. این ویژگی در منطقه از شرق به غرب روند کاهشی داشت. این پژوهش نشان داد که روش زمینآمار برای بررسی تغییرات مکانی شاخصهای کیفیت خاک کاربرد دارد و نقشههای توزیع مکانی این شاخصها میتواند برای طراحی راهبردهای پایدار مدیریت خاک در کشتزارها به کار گرفته شود. | ||
کلیدواژهها | ||
"تجزیه به مؤلفه های اصلی"؛ "توزیع اندازه ذرات"؛ "توزیع مکانی"؛ "شاخص کیفیت نمورو"؛ "شاخص کیفیت تجمعی" | ||
عنوان مقاله [English] | ||
Investigating Spatial Variability of Soil Quality Indices in Nazar Abad Fields, West of Alborz Province | ||
نویسندگان [English] | ||
Ali Reza Vaezi1؛ Rasoul Mirkhani2؛ hamed rezaei3؛ leila esmaeelnejad4 | ||
1Department of Soil Science, Faculty of Agriculture, Univrsity of Zanjan, Zanjan, Iran | ||
2Ph.D. Student, Department of Soil Science, Faculty of Agriculture, Univrsity of Zanjan, Zanjan, Iran. | ||
3Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Alborz, Iran | ||
4Department of Soil Science, University of Tehran, Karaj, Iran | ||
چکیده [English] | ||
Information about the spatial distribution of soil quality is one of the most significant issues in recognition, planning, management and optimal exploitation of soil resources in each area. In the this study, the characteristics of soil surface (0-30 Cm) were measured in 95 fields in the Nazar Abad region in Alborz province and the factors influencing soil quality were selected using principal component analysis (PCA) method. In addition, the weighted additive soil quality index (SQIw), the additive soil quality index (SQIa) and the Nemero soil quality index (NQI) were determined using total data set (TDS) and minimum data set (MDS). Spatial variability of these soil quality indices were analyzed using geostatistics technique and their spatial distribution were determined using the Ordinary kriging method. Based on the results and among the soil quality indices, the SQIw obtained from the MDS, had a higher accuracy in the area with R2 of 0.89, mean absolute error (MAE) of 0.11 and normalized root mean squares error (NRMSE) of 0.1. The exponential variogram model (R2 = 0.95) indicated that the SQIw and SQIa indices using MDS had the best fitness, whereas, the spherical model (R2= 0.90) was strongly fitted to the NQI index obtained from MDS. Furthermore, the effective range of spatial variability for SQIa, SQIw and NQI indices was 8, 10 and 11.5 kilometers, respectively. Soil quality of the fields in the area was strongly related to the soil particles size distribution, especially sand and clay percentages with coefficients of 0.90 and 0.85, respectively. Soil quality value in the area decreased considerably from west to east. This study revealed that the geostatistics technique can be used for spatial analysis of soil quality indices in the area and spatial distribution maps of these indices can be effectively used to plan the sustainable soil management strategies in the fields. | ||
کلیدواژهها [English] | ||
"Principal component analysis", "Particle size distribution"", Spatial distribution"", Nemero Soil Quality Index"", Additive Soil Quality Index " | ||
مراجع | ||
Aria, P. and Mirkhani, R. (2005). Methods of Soil Physical Analysis, Technical Bulletin, Soil and Water Research Institute, IranNo: 479. (In Persian) Asghari, Sh., Dizajghoorbani Aghdam, S., Esmali Ouri, A. (2015). Investigation the spatial variability of some soil physical quality indices in fandoghlou region of Ardabil using geostatistics. Journal of Water and Soil, 28(6), 1271-1283. Bhunia, G. S. and Maiti, R. (2016). Spatial variability of soil organic carbon under different land use using radial basis function (RBF). Modeling Earth Systems and Environment, 2(1), 17. Bijanzadeh, E., Mokarram, M., and Naderi, R. (2015). Applying spatial geostatistical analysis models for evaluating variability of soil properties in eastern Shiraz, Iran. Iran Agricultural Research, 33(2), 35-46. Corwin, D. L., Lesch, S. M., Oster, J. D., and Kaffka, S. R. (2006). Monitoring management-induced spatio–temporal changes in soil quality through soil sampling directed by apparent electrical conductivity. Geoderma, 131(3), 369-387. Davatgar, N. and Ghasemi, Sh. (2016). Spatial variability and mapping of some physico-chemical properties in surface soils and Influence of land use management on them in agricultural lands south of Tehran, Iranian Journal of Soil Research, 30(2), 215-226. Doran, J. W. and Parkin, T. B. (1996). Quantitative indicators of soil quality: a minimum data set. Methods for assessing soil quality/editors, John W. Doran and Alice J. Jones; editor-in-chief SSSA, Jerry M. Bigham; managing editor, David M. Kral; associate editor, Marian K. Viney. Douaik, A., Meirvenne, V., & Tóth, T. (2011). Statistical Methods for the analysis of soil spatial and temporal variability. Principles, Application and Assessment in Soil Science, London: IntechOpen, 279-308. Girei, A. H., Abdu, N., and Abdulkadir, A. (2016). Temporal Variability of Soil Physico-chemical Properties under a Long-term Fertilizer Trial at Samaru, Northern Guinea Savanna of Nigeria. International Journal of Plant and Soil Science, 9(6), 1-10. Hamidi Nehrani, S., Askari, M. S., Saadat, S., Delavar, M. A., Taheri, M., and Holden, N. M. (2020). Quantification of soil quality under semi-arid agriculture in the northwest of Iran. Ecological Indicators, 108, 105770. Hasanipak, A. (1998). Geostatistics. Tehran University. Press, 314 p. Horwath, W. R. and Paul, E. A. (1994). Microbial biomass methods of soil analysis. Part 2. Microbiological and Biochemical Properties. Soil Science Society of America Book Series. 5, 753–773. Jolliffe, I. T. (1986). Principal components in regression analysis. In Principal component analysis (pp. 129-155). Springer, New York, NY. Journel, A. G., and Huijbregts, C. J. (1978). Mining geostatistics. Academic press. Juhos, K., Szabó, S. and Ladányi, M. (2015). Influence of soil properties on crop yield: a multivariate statistical approach, International Agrophysics, 29, 433-440. Karami, A. and Basirat, S. (2015). Geostatistical assessment of spatial variability of some surface soil properties in Arsenjan plain. Iranian Journal of Soil Research, 29(1), 59-69. Komnitsas, K., Guo, X., and Li, D. (2010). Mapping of soil nutrients in an abandoned Chinese coal mine and waste disposal site. Minerals Engineering, 23(8), 627-635. Liu, J., Wu, L., Chen, D., Li, M., and Wei, C. (2017). Soil quality assessment of different Camellia oleifera stands in mid-subtropical China. Applied Soil Ecology, 113, 29-35. Liu, X., Zhao, K., Xu, J., Zhang, M., Si, B., and Wang, F. (2008). Spatial variability of soil organic matter and nutrients in paddy fields at various scales in southeast China. Environmental Geology, 53(5), 1139-1147. Mirzaee, S., Ghorbani-Dashtaki, S., Mohammadi, J., Asadi, H., and Asadzadeh, F. (2016). Spatial variability of soil organic matter using remote sensing data. Catena, 145, 118-127. Mohammadi, J. (2006). Pedometer (Spatial Statistics), Published Pelk, Tehran, Iran. Nabiollahi, K., Taghizadeh-Mehrjardi, R., Kerry, R., and Moradian, S. (2017). Assessment of soil quality indices for salt-affected agricultural land in Kurdistan Province, Iran. Ecological Indicators, 83, 482-494. Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ. 939. US Gov. Print. Office, Washington, DC. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ. 939. US Gov. Print. Office, Washington, DC. Page, A. L., Miller, R. H. and Keeney, D. R. (1982). Methods of Soil Analysis, part 2, chemical and microbiological properties. American Society of Agronomy, Inc. Soil Science Society of America. Madison, WI. Pham. H. (2019). A New Criterion for Model Selection. Mathematics, 7, 1215; doi: 10.3390/math7121215 Qi, Y., Darilek, J. L., Huang, B., Zhao, Y., Sun, W., and Gu, Z. (2009). Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma, 149(3), 325-334. Rabbi, S. M. F., Roy, B. R., Miah, M. M., Amin, M. S., and Khandakar, T. (2014). Spatial variability of physical soil quality index of an agricultural field. Applied and Environmental Soil Science, 2014, 1-10. Rahmanipour, F., Marzaioli, R., Bahrami, H. A., Fereidouni, Z., and Bandarabadi, S. R. (2014). Assessment of soil quality indices in agricultural lands of Qazvin Province, Iran. Ecological Indicators, 40, 19-26. Ranjbar, A., Emami, H., Khorasani, R., and Karimi Karoyeh, A. R. (2016). Soil Quality Assessments in Some Iranian Saffron Fields. Journal of Agricultural Science and Technology, 18(3), 865-878. Risser, P. G. (1991). Long-term ecological research: an international perspective. Rosemary, F., Indraratne, S. P., Weerasooriya, R., and Mishra, U. (2017). Exploring the spatial variability of soil properties in an Alfisol soil catena. Catena, 150, 53-61. Sanaeinejad, S. H., Astaraei, A.R., Ghaemi, M., Siabi, N. (2010). An Investigation into spatial data variation by using geostatistics methods for soil studies. The First International Conference on Plant, Water, Soil and Weather Modeling, Chamran University. Kerman, Iran. Sánchez-Navarro, A., Gil-Vázquez, J. M., Delgado-Iniesta, M. J., Marín-Sanleandro, P., Blanco-Bernardeau, A., and Ortiz-Silla, R. (2015). Establishing an index and identification of limiting parameters for characterizing soil quality in Mediterranean ecosystems. Catena, 131, 35-45. Schöning, I., Totsche, K. U., and Kögel-Knabner, I. (2006). Small scale spatial variability of organic carbon stocks in litter and solum of a forested Luvisol. Geoderma, 136(3-4), 631-642. Shahab H., Emami H., Haghnia Gh., and Karimi A. (2011). Determining most Important Properties for Soil Quality Indices of Agriculture and Range Lands in a some Parts of Southern Mashhad. Journal of Water and Soil, 25(5), 1197-1205. Sun, B., Zhou, S., and Zhao, Q. (2003). Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma, 115(1), 85-99. SYS, C., Van Ranst, E., and Debaveye, J. (1993). Land evaluation. Part III: crop requirements. General Administration for Development cooperation, Agricultural publication, 7, Brussels Belgium 199 pp. Theodossiou, N., and Latinopoulos, P. (2006). Evaluation and optimisation of groundwater observation networks using the Kriging methodology. Environmental Modelling and Software, 21(7), 991-1000. Trangmar, B. B., Yost, R. S., and Uehara, G. (1986). Application of geostatistics to spatial studies of soil properties. Advances in agronomy, 38, 45-94 Walkley, A. and Black, I. A. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-37. Xin-Zhong, W., Guo-Shun, L., Hong-Chao, H., Zhen-Hai, W., Qing-Hua, L., Xu-Feng, L., and Yan-Tao, L. (2009). Determination of management zones for a tobacco field based on soil fertility. Computers and Electronics in Agriculture, 65(2), 168-175. | ||
آمار تعداد مشاهده مقاله: 663 تعداد دریافت فایل اصل مقاله: 401 |