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A B S T R A C T 

 

An Open-Pit Production Scheduling (OPPS) problem focuses on specifying block production scheduling to achieve the highest possible Net 
Present Value (NPV). This paper presents a new mathematical model for OPPS under uncertainty. To this end, a robust box and ellipsoidal 
counterpart approach was used. The proposed method was implemented in a hypothetical model. A Genetic Algorithm (GA) and an exact 
mathematical modeling approach were used to solve the model. It was shown that the scheduling of deterministic and robust models in 
various conditions is different. Considering the type of robust counterparts, different production plans under various conditions were 
scheduled. Furthermore, the price of robustness was determined for various levels of conservation. 
 

Keywords : Open-pit; Production scheduling; Robust counterpart; Uncertainty 

 

1. Introduction 

One of the most serious problems in mine planning is the 
optimization of mine production scheduling. In an Open-Pit Production 
Scheduling (OPPS) framework, orebody blocks are assigned to different 
production periods to achieve the maximum Net Present Value (NPV) 
of the plan subjected to the limitations of the operation. In order to 
resolve an OPPS problem, an orebody is discretized into three-
dimensional arrays, known as block models. This problem consists of 
deciding which blocks to be mined, when to be mined, and what to be 
done once they are mined. 

Concerns about significant variation in the economic parameters 
(e.g., price, cost, discount rate, and block grade changes) of the problem 
have spurred an interest in designing production scheduling under 
uncertainty. Many researchers have studied this problem under 
uncertainty using stochastic programming. Open-pit mine stochastic 
production scheduling problems are commonly addressed under ore 
grade (geological) and price uncertainties. 

For the purpose of dealing with OPPS uncertainties, convex set-based 
robust optimization can be used. Based on the box counterpart 
formulation, Robust Optimization (RO) was applied to solve the OPPS 
problem in [1]. In addition, the OPPS ellipsoidal robust counterpart in 
the Two-Dimensional (2D) format was studied in [2]. In the current 
paper, a 2D numerical study of a hypothetical open-pit mine is 
conducted to make a comparison of the solutions of the box counterpart 
and optimization model of the ellipsoidal counterpart. We considered a 
hypothetical copper deposit based on a geological block model with 200 
blocks, and set-induced robust formulations were applied to the 
production scheduling of the hypothetical mine. Production scheduling 
is highly sensitive to ore grade, commodity price, cost, mining approach, 
processing capacity and block tonnage. Here, robust counterpart 
optimization was deployed according to the box and ellipsoidal 
counterpart, and violation sources were considered in block economic 

value, mining, processing capacity and block tonnages.  
This article was prepared as follows. A summary of RO and as well as 

box and ellipsoidal sets of uncertainty with corresponding robust 
counterpart formulations are presented in Section 2. In Section 3, the 
mathematical model of the suggested uncertainty set is offered for an 
OPPS problem. The implemented results are discussed for the 
hypothetical open-pit mine as well. Finally, Section 4 presents the 
concluding and main remarks.     

2. Robust Optimization 

 The solution of a linear programming problem sometimes shows 
high sensitivity to parameter violations, in which omitting the data 
uncertainty may produce non-optimal solutions that might be even 
infeasible for practical purposes. In order to deal with uncertainties, 
several methods (e.g., fuzzy programming, stochastic programming, 
chance-constrained programming and robust optimization 
programming) can be suggested. The RO concept offers a framework to 
handle the uncertainty of parameters in optimization problems that can 
protect an optimum solution for each case of uncertainty actualization 
in a specified set of uncertainty [3]. Table 1 provides an overview of 
different robust programming concepts from 1973 until now. Note that 
OR is different from the stochastic programming with recourse. 

2.1. Robust optimization based on uncertainty set-induced 

Linear programming meets the uncertainty in the coefficients of the 
objective function, left-hand side (LHS) and right-hand side (RHS) 
constraint coefficients [14]: 
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where jx  is a continuous or an integer variable. It is possible to transform the objective function and RHS uncertainty into the LHS 
uncertainty using Eq. 2: 

Table 1. Robust programming concepts from 1973 until now. 

Reference Event Additional description 

Soyster [4] Used RO programming Achieving feasible solutions with uncertainty under all 
possible conditions 

Mulvey et al. [5] and Yu 
and Li [6] Proposed a robust stochastic optimization model Optimizing the objective function, finding a robust solution 

and making an insensitive solution to different realizations 

Ben-Tal and Nemirovski 
[7] and [8] Made a clear direction to RO for future work. Proposing a non-linear model based on an ellipsoidal 

uncertainty set 

Averbakh [3] 
Proposed a method for generating min-max regret 

solutions for problems featuring coefficients of interval 
uncertain objective function. 

 

Ghaoui et al. [9] Used worst-case probability distributions to widen the 
bounds of worst-case value-at-risk (VaR)  

Bertsimas and Sim [10] and 
[11] 

Considered the degree of conservatism of the robust 
solution 

Proposing a linear model using a set of mixed interval and 
polyhedral uncertainty 

Verderame and Floudas 
[12] 

Based on continuous and discrete uncertainty 
distributions to widen the RO framework  

Chen et al. [13] 
Demonstrated equivalency of set-based RO formulations 

and conditional VaR bound-based approximations to 
chance constraints per individual. 

 

Li Zukui et al. [14] Reviewed RO studies before 2011, and studied six 
uncertainty sets 

Presenting MILP and RO models for the uncertainty on LHS, 
RHS, and objective function of the LP model 

Li Zukui et al. [15] Considered approximate probabilistic constraints. 
Proposing a new method by using the advantage of priori and 

posteriori probability bounds, in which old RO and 
approximation frameworks were used before, respectively. 

Li Zhangzhi and Li Zukui 
[16] 

Applied the RO approximation to solve chance-
constrained programming  
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So, without loss of generality, the i-th constraint in the above linear 
programming model is assumed by considering only the LHS 
uncertainty: 

ij j i

j

a x b  (3) 

where a  is the uncertainty factor presented by:  

ˆ , ,ij ij ij ij ia a a j J     (4) 

where the nominal value of variables is denoted by ija , and îja

indicates the violations of positive constant, ij represents independent 

random variables with uncertainty, and 
iJ  indicates the index subset 

that covers all variables with uncertainty factors. To summarize 
constraint (3), it can be categorized into deterministic and uncertain 
parts for the LHS of (3) using Eq. 5: 
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(5) 

Using the set-induced RO technique and in order to avoid 
infeasibility, the goal is to find feasible solutions for any ij  in the 

determined uncertainty set: 
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2.2. Box counterpart formulation  

For Constraint (5), its corresponding box counterpart formulation 
(6) is similar to the following constraints: 

ˆ

i

ij j ij j i

j j J

a x a u b


    

j j ju x u    
(7) 

The norm  of the uncertain data vector defines the box 

uncertainty set as:    ,j iU j J    
        , where Ψ 

represents the adjustable parameter that determines the uncertainty 
size. Figure 1 shows the box uncertainty set for parameter ja  

introduced by , 1,2j jaja a j   , where ja signifies the correct value 

of the parameter, ja  indicates the nominal value for j , and ˆ
ja  

represents the uncertainty and constant violation, respectively, while the 
uncertain parameters are limited to specific intervals 

,ij ij ij ij ij ia a a a a j J      
. Therefore, ˆij ij jaij

a a    represents the 

uncertainty that is a form of box uncertainty set when

 1( . ., 1, )j ii e U j J        [17]. Soyster [4] coined the 

“interval uncertainty set” to represent the box set with 1 . 
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Figure 1. Box uncertainty set. 

The formulation of box counterpart optimization for the i-th linear 
constraint with the LHS and RHS uncertainties is obtained as: 

ˆˆ
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2.3. Ellipsoidal counterpart formulations 

The ellipsoidal uncertainty set can be defined by the 2-norm 
uncertain data vector as: 
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(9) 

where   represents the adjustable variable, which controls the 
uncertainty set size. Based on the problem geometry, 1,1j      is true 

for the limited uncertainty and when  
1/2

iJ  (where iJ  stands 

for the cardinality of the set
iJ ), the whole space of uncertainty is 

covered by the set of ellipsoid uncertainty. Figure 2 illustrates the 
ellipsoidal uncertainty set. 

 
Figure 2. Ellipsoidal uncertainty set. 

In the case of the ellipsoidal uncertainty set, represented by U, the 
following robust counterpart is obtained by incorporating 
substantiation reported in [14, 17]. Moreover, the formulations for the 
i-th linear constraint with the LHS and RHS uncertainties are as follows: 

2 2 2ˆˆ
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 

   (10) 

3. Computational study for robust mine production 
scheduling 

The OPPS problem is designed to specify a block mining sequence to 
increase the NPV as much as possible based on the constraints of 
capacity and sequencing. In a deterministic form, this problem can be 
demonstrated  as follows [18]: 

Let ijx  be decision variables, and T  be mining period counts, N  

refers to the number of blocks, ijV  is the current value of block j  in 

period i , jd  is the mass of ore  in block j, ,A A   represent the highest 

and lowest processing capacities, respectively, jv  stands for the mass of 

waste in block j , and ,C C   are mining capacity. The goal is to solve the 

following model: 
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Sequencing constraint (11.2): to access a block to be mined, mining 
the overlying must be done earlier or in the same period of that block.  

Mining capacity (11.3): Mining capacity is selected based on the 
economic and operational limitations. 

Processing capacity (11.4): Due to the sequencing constraint, ore and 
waste blocks are both mined under open-pit mining. Ore blocks are sent 
to the mineral processing plant along with waste blocks that are sent to 
the waste dumps. The volume of ore blocks must be proportional to the 
processing capacity. 

Block conservation constraint (11.5): A block is mined only once.  

where ijV ’s are subject to uncertainty and also show the true values 

of the parameters, ijV ’s represent the nominal values of the parameters. 

3.1. Formulations of Box counterpart optimization for production 
scheduling 

Here, the complete box uncertainty set containing robust counterpart 
formulation is introduced for the OPPS problem with constraints. It can 
be demonstrated by: 
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where ijV ’s represent the nominal values of the parameters,   

stands for uncertainty and ˆ, ,   , ˆˆ ˆ ˆˆ ˆ ˆ , ,,  , ij j jV r v C A AC d   represent constant 

violation of the objective function and constraint coefficients. 

3.2. Ellipsoidal counterpart optimization formulations  

Now, a generalized ellipsoidal uncertainty set is introduced, which 
incorporates robust counterpart formulation for the OPPS problem 
under constraints. 
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where ijV ’s stand for nominal values,   denotes the size of 

uncertainty and ˆ, ,   , ˆˆ ˆ ˆˆ ˆ ˆ , ,,  , ij j jV r v C A AC d   represent a constant violation 

of the constraints and objective function coefficients. 

3.3. Implementation and evaluation  

A hypothetical copper deposit economic block model is needed to 
elaborate on the details of implementing the production scheduling 
method. An open-pit mine was built using 2-D blocks. Figure 3 
illustrates the economic block model of hypothetical copper as a case 
study. A mining operation needs to be run for at least four years. The 
highest and lowest mining capacities in a year are set equal to 24 and 18 
blocks, respectively, and the highest and lowest processing capacities are 
considered to be 15 and 9 ore blocks, respectively. The discount rate is 
equal to 4%. 

It is clear that the OPPS solution is affected by block economic value 
violation, ore volume, waste volume in each period, and operation 
capacities. Box counterpart and ellipsoidal counterpart robust 
optimization are used in a systematic manner. In addition, block 
economic value (coefficients of the objective function), block weights in 
each period (LHS), mining, and proceeding capacities in each period 
(RHS) are considered as uncertain parameters. It is not possible to 
determine the exact value of grade and weight (tonnage) of blocks. 
Therefore, the violations from the operational capacities are permitted. 
It is considered equal to 0.04 and 0.08 for the violation rates of the block 
weights and operation capacities, respectively. These violation rates are 
relatively acceptable because of the mine planer’s consideration based 
on simulated grades and estimated block tonnages. In addition, the value 
0.2 is considered as the violation rate of the block economic value. 

 
Figure 3. Economic block model of the hypothetical copper mine as a scenario. 

 OPPS is a complex mine planning problem. Inspired by operation 
research problems (e.g., knapsack), several authors have developed 
linear and integer programming models to solve this problem. This 
problem, to a large size (large open-pit mine), is an NP-hard problem. 
Meta-heuristic algorithms have been recognized to be particularly 
suitable for solving NP-hard problems.  

Some of the meta-heuristics algorithms have been used in OPPS 

problems. GA is a well-known global search meta-heuristic algorithm, 
which uses population-based characteristics and improves multiple 
candidate solutions. It is used to generate near-optimal solutions with a 
small gap in an acceptable computational time. Alipour et al. [19] 
developed a new GA representation in OPPS of a hypothetical 2-
dimensional block model. In this section, the same method is used to 
solve the OPPS problem. Since the OPPS ellipsoidal robust counterpart 
is non-linear and complex, it is not possible to solve the problem with 
known methods; thus, we use the GA to solve the problem 
approximately. 

The results of production scheduling solutions in a deterministic state 
using the GA and CPLEX solvers are illustrated in Table 2. The NPVs 
measured using the CPLEX and GA solvers are 41373 and 39489 dollars 
for this case study, respectively. The computational gap between GA and 
optimal solutions are usually less than 5%. The number of the calculated 
blocks for each period are listed in Table 2.  

The trade-off mechanism between the conservation level versus the 
uncertainty and objective function values is known as the price of 
robustness. The price of mine production robustness was computed for 
2-dimensional block models of the hypothetical mine based on the 
CPLEX solver and GA solutions for quantitatively measuring the 
uncertainty and analyzing its effect on scheduling problems. The results 
of GA-based box counterpart optimization are presented in Table 3. In 
addition, similar results are presented in Table 4, according to the 
ellipsoidal counterpart.  

Table 2. Results of production scheduling solutions used by GA and CPLEX 
solver. 

Calculated Item GA CPLEX solver 

NPV ($) 39489 41373 

No. of blocks in ultimate pit limit 92 88 

No. of blocks in the first period 24 23 

No. of blocks in the second period 24 23 

No. of blocks in the third period 21 22 

No. of blocks in the fourth period 23 20 

The computational gap between GA and optimal solutions is less than 
5% for different box counterpart production scheduling. Therefore, 
according to the capability of GA in obtaining near-optimal scheduling 
with a small gap, it can be used in nonlinear ellipsoidal counterpart 
production scheduling.  

The variation of conservation level ( ,  ) versus NPV is represented 
in Figure 4. Obviously, the value of NPV attenuates by increasing the 
size of box and ellipsoidal sets ,  .  

 

 
Figure 4. NPV, based on different counterpart optimization levels.
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Table 3. Solutions summary for the box counterpart optimization model. 

Conservative level (  ) Source of violations Violation rate NPV, 
CPLEX ($) NPV, GA ($) 

Price of 
Robustness, 

CPLEX 

Price of 
Robustness, 

GA 

0, Deterministic 0 0 41373 39489 1 - 

0.2 objective function, LHS and RHS 
uncertainty 

ˆ
ijV =0.2, r̂ =0.04,  ˆ ˆ ˆ ˆ, , , 0.08C C A A    37492 35730 0.91 0.90 

0.4 objective function, LHS and RHS 
uncertainty 

ˆ
ijV =0.2, r̂ =0.04,  ˆ ˆ ˆ ˆ, , , 0.08C C A A    35394 33978 0.86 0.86 

0.6 objective function, LHS and RHS 
uncertainty 

ˆ
ijV =0.2, r̂ =0.04,  ˆ ˆ ˆ ˆ, , , 0.08C C A A    31692 30365 0.77 0.77 

0.8 objective function, LHS and RHS 
uncertainty 

ˆ
ijV =0.2, r̂ =0.04,  ˆ ˆ ˆ ˆ, , , 0.08C C A A    29579 28095 0.71 0.71 

1, Soyster model objective function, LHS and RHS 
uncertainty 

ˆ
ijV =0.2, r̂ =0.04,  ˆ ˆ ˆ ˆ, , , 0.08C C A A    28263 27273 0.68 0.69 

1.5 objective function, LHS and RHS 
uncertainty 

ˆ
ijV =0.2, r̂ =0.04,  ˆ ˆ ˆ ˆ, , , 0.08C C A A    22081 21197 0.53 0.54 

 

Table 4. Solutions summary for the ellipsoidal counterpart optimization model. 

Conservative level (   ) Source of violations Violation rate NPV, GA 
($) 

Price of 
robustness 

0, Deterministic 0 0 39489 1 

0.2 objective function, LHS and RHS uncertainty ˆ
ijV =0.2, r̂ =0.04,  ˆ ˆ ˆ ˆ, , , 0.08C C A A    36242.61 0.92 

0.4 objective function, LHS and RHS uncertainty ˆ
ijV =0.2, r̂ =0.04,  ˆ ˆ ˆ ˆ, , , 0.08C C A A    35624.52 0.90 

0.6 objective function, LHS and RHS uncertainty ˆ
ijV =0.2, r̂ =0.04,  ˆ ˆ ˆ ˆ, , , 0.08C C A A    35149.20 0.89 

0.8 objective function, LHS and RHS uncertainty ˆ
ijV =0.2, r̂ =0.04,  ˆ ˆ ˆ ˆ, , , 0.08C C A A    34922.76 0.88 

1 objective function, LHS and RHS uncertainty ˆ
ijV =0.2, r̂ =0.04,  ˆ ˆ ˆ ˆ, , , 0.08C C A A    34168.98 0.87 

1.5 objective function, LHS and RHS uncertainty ˆ
ijV =0.2, r̂ =0.04,  ˆ ˆ ˆ ˆ, , , 0.08C C A A    32622.66 0.83 

 
The final remarks of this research are presented below: 
• There is considerable disagreement between the behavior of box 

and scheduling ellipsoidal counterpart production of the same 
size. 

• The same sized box counterpart production scheduling is more 
conservative than the ellipsoidal counterpart. 

• The size of uncertainty set, violation rate of block economic 
value, block weights and operation capacities in each period are 
decision-making factors in the scheduling plan election. In other 
words, mine designers should select the scheduling plan, 
according to the defined risk index. 

• The prices of robustness are different in various cases of robust 
scheduling.  

• The optimal solution cannot be obtained within a reasonable 
amount of running time using the exact CPLEX solver solution. 
However, the capability of GA in achieving near-optimal 
scheduling with small gap is acceptable. The CPU time for this 
GA to derive optimal solutions is relatively short compared to the 
complexity of the OPPS problem. 

4. Conclusion 

In this paper, the performance of the box and ellipsoidal robust 
counterpart set were evaluated for OPPS problems. Uncertainty appears 

in constraints and objective functions. Therefore, different production 
plans should be scheduled according to various conditions. Practically, 
the schedule plan can be selected based on the degree of conservation, 
the application of uncertainty in constraints (i.e., blocks weight, mining 
and processing capacity), and objective functions (i.e., economic values 
of blocks).  

In large-scale robust mine production scheduling problems, an 
exponential increase in the problem size is encountered. Therefore, the 
use of approximation algorithms and heuristics are inevitable. In this 
research work, the GA was applied to complicated problems. By 
comparing the results of the exact linear mathematical solver using the 
CPLEX software, it was demonstrated that GA is capable of generating 
near-optimal solutions with a small error. Moreover, it could be used in 
non-linear integer programming and was an appropriate solver for 
ellipsoidal counterpart optimization formulations. The proposed 
framework can be more practically useful for solving uncertainty-based 
mine production scheduling problems in large-scale mines. 
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