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Abstract

One of the key issues in mining is the hauling system. Truck and shovels are the
most widely used transportation equipment in mines. In this paper, a two-phase
simulation-based optimization is presented to maximize utilization of hauling
system in the largest Iranian open-pit copper mine. In the first phase, The OptQuest
for Arena software package was used to solve the optimization problem to provide
an optimal production quantity. In the second phase, the haulage system problem in
the open-pit was modeled by bi-objective optimization programing by means of
meta-modeling approach. Meta-modeling approach could estimate the exact total
production quantities, and solved the problem by determining the optimal value of
shovels using the design of experiments. The efficient solution of the bi-objective
problem was obtained using e-constraint method. The results of the proposed
approach were compared with the current situation, where the total production had
increased by 21% (equivalent to 10K tons) through the proposed approach.
Therefore, calculations in this mine show that how the proposed framework can
improve the production and productivity of haulage system.
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1. Introduction

Mining is a worldwide industry, and mineral resources comprise one
of the most important and fundamental bases of the economy of each
country. Todays, mining ores are considered as one of the sources of
income generation in the world. The mining sector, as one of the
substructures of the economy, plays a major role in supplying the raw
materials of other industries, and the development of investment in
this sector can lead to the acquisition of appropriate added value in
many other parts of the economy of a country. Thus, the role of mines
and resources in the economic growth of any country is indisputable.
Undoubtedly, the proper utilization of mines in the country is
considered as a positive and important factor in economic growth and
development (Eskandari, Darabi, & Hosseinzadeh, 2013). However,
mining projects in general and open-pit mines in particular have high
operating costs. On average, 50% of operating costs are in open-pit
mines and even 60% in big open mines include transportation costs
and material hauling (Afrapoli & Askari-Nasab, 2019). Among all the
operations of the materials management in the open-pit mines, hauling
enjoys the highest operational costs (Curry, Ismay, & Jameson, 2014).
Thus, optimal mining plans and proper fleet management have a
significant impact on the operational efficiency of a mine. Generally,
the common goal of managing mine systems is to optimize production
and productivity based on real-time data. For this purpose, the multi-
stage optimization approach is common. In this approach, the solution
to each step is used in the next step, which is divided into three sub-
issues, including the shortest route model, the optimization of truck
and shovel assignment, and the optimization of truck dispatch time.
The shortest route model determines the best route between the two
points in a mine. In the optimization of the allocation of trucks and
shovels, the resources are diverted to drilling operations based on
truck loading. The issue of the allocation of trucks in mines is often
considered as an allocation problem, or sometimes a transportation
problem (Afrapoli & Askari-Nasab, 2019).

Planning in a mine is a very complex duty. It is known that traditional
techniques are not suitable for the evaluation of complex system such as
the open-pit mine (Dengiz, Tansel & Belgin, 2016), as mines have
several stochastic characteristics. Therefore, simulation is an appropriate
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tool to overcome the complexities of systems, and is an easy way to
understand system behavior (Abolghasemian, Eskandari, & Darabi,
2018). However, the important drawback of simulation is that it is
computationally time consuming. Therefore, a mathematical model of the
simulation model, a surrogate one called meta-model, is needed to
replace the simulation model. Thus, in this paper, a two-phase
simulation-based optimization is presented to maximize utilization and
improve the productivity of hauling system in the largest Iranian open-pit
copper mine. This proposed framework is a useful tool for reducing the
variable space of a complex system. The main advantage of the proposed
framework is that it can carry out production planning verification. To
solve the existing problem with the proposed framework, it is necessary
to develop an optimization program and a mathematical model. For this
purpose, the optimization framework has been developed by OptQuest
tools for Arena. OptQuest is a tool that is linked with simulation software
such as the Arena and can perform simultaneous simulation and
optimization for different scenarios (Zeinali, Mahootchi, & Sepehri
2015). Also, a mathematics model approximated by a surrogate model is
called a Meta-Model because in simulation-based optimization problems,
the objective function is stochastic with random characteristics and
uncertain conditions. Therefore, objectives can be clearly specified when
the simulationist run the simulation model with different scenario to find
setting that fit objectives. Simulation-based optimization is an appropriate
tool for achieving such goals Barton (2009).

The remainder of this paper is organized as follows. A literature
review of important topics is provided in section 2, while the details of
the case study are described in Section 3. In section 4, the two-phase
simulation-based optimization is described. In addition, the
experiments to demonstrate the utility of the two-phase simulation-
based optimization are detailed in section 4. Finally, the conclusion is
presented in Section 5.

2. Literature review

The two-phase simulation-based optimization presented in this paper is
very similar to the hierarchical production planning (HPP) framework
that has been part of many efforts to solve integrated programming and
scheduling problems. Generally, in simulation-based optimization, the
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simulation model is considered as a black box. The output of each
simulation is generated through an algorithm defined in the software to
determine the best possible system response, subject to all aspects
defined in the objective function and the constraints. The simulation-
based optimization is the optimization of an objective function subject
to the constraints, where both of them can evaluated through a
stochastic simulation. Therefore, the simulation-based optimization is a
concept for methods used to optimize stochastic simulation (Amaran,
Sahinidis, Sharda, & Bury, 2017). A discrete-event simulation-based
optimization is illustrated in Fig. 1. The results of the simulation
replications provide an approximate of a performance measure. The
estimate values are then reported into a control module. The control
modules suggest filtration to create new parameters in the deterministic
optimization model. The iterative process ends after a stopping criterion
is met (Shishvan & benndorf, 2019). In this regard, Glover, Kelly, and
Laguna (1996), Tekin and Sabuncuoglu (2004), and Amaran et al.
(2017) discussed the introduction of the simulation-based optimization
algorithms and applications. Simulation software packages employ
optimization packages embedded in them to optimize the stochastic
simulation model (Eskandari, Mahmoodi, Fallah, & Geiger, 2011).
According to Law (2007), there are some optimization software
packages such as AutoStat®, Extend Optimizer®, OptQuest®,
SimRunner®, and Witness Optimizer® that use different search
strategies. Moreover, Fu (2002) introduced software that can be used to
optimize the simulation model. The OptQuest tool and Sim Runner
software are the most popular simulation software used in this field.
Jafferali, Venkateshwaran, and Son (2005) compared the performance
of OptQuest and SimRunner in determining the optimal timing for
manufacturing systems. They determined that OptQuest software would
get the best near-optimum value. In addition, Eskandari et al. (2011)
evaluated and compared two simulation-based optimization software
packages, namely OptQuest and witness optimizer, to determine their
performance based on the quality of the obtained solutions in a
reasonable computational effort. Jerbi, Ammar, Krid, and Salah (2019)
evaluated and compared Taguchi method and OptQuest to a flexible
manufacturing system performance optimization context, based on
simulation.
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Fig. 1. Simulation-based optimization mechanism

Other studies conducted by the researchers in this area in recent
years regarding the problem of production planning and hauling in
mines are divided into two categories including one-stage and multi-
stage methods (Nageshwaraniyer, Son, & Dessureault, 2013a). Thus,
multi-stage methods are able to cover the production targets well. The
multi-stage method divides the allocation problem into two sub-issues.
The first one is the production problem that is at the forefront of
attention, and the second is the loading of hauling. Among the
published papers, a lot of attention has been paid to the heuristic
methods for solving the problem of loading the truck dispatching. For
example, He, He, Wei, Lu, and Huang (2010) described the manner of
constructing the truck-dispatching model and the application of
genetic algorithm (GA). Their results showed that using GA to
optimize mine vehicle dispatching is feasible and effective. Subtil,
Silva, and Alves (2011) proposed a multi-stage approach for dynamic
truck dispatching in a real open-pit mine. In the first stage of this
approach, they define the optimal number of trucks that maximize the
total production by a robust linear programming. In the second stage,
they present a dynamic dispatching heuristic to computational
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simulation and multi-criterion optimization techniques for decision
making for truck dispatching. Results show that their proposed
approach generates efficient dispatch decision for truck in a real case.
Although, in small-scale problems exact methods are better than
heuristic methods, they are considered as solutions to the problem of
allocation because they are used for the desired measures such as
maximizing production or minimizing equipment and some inactivity
such as waiting time for trucks or the idle time of shovels. These
methods do not provide an optimal solution such as an exact method
for the problem, but provide a near-optimal solution (Zhang & Xia,
2015). Afrapoli and Askari-Nasab (2019) examined suchlike models
and algorithms used in the mining system. Himebaugh (1980)
designed the self-control system for optimal truck allocation to
increase productivity. White, Arnold, and Clevenger (1982)
introduced the first model of the network to dispatch a truck to shovel
in a truck-shovel system for open pit mines. Hodson and Barker
(1985) developed the model of White et al. (1982) in two stages. At
the first stage, each load would load a given number of trucks. At the
second stage, trucks would be assigned to specified regions. White,
Olson, and Vohnout (1993) developed the Hodson and Barker (1985)
model. They used dynamic programming to allocate truck to the route
so that the length of the queue and the waiting time for loading and
unloading time could be reduced. Sgurev et al. (1989) studied the
control of the time of industrial trucks in open pits. Alarie and
Gamacheh (2002) studied the existing solving methods for dispatching
trucks in open pits. Barnes, King, and Johnson (1997) studied the
analysis of open-pit mine systems using probabilistic techniques.
Koenigsberg (1982) studied truck-shovel system for an open mine
through the application of the queuing theory and mathematical
programming. Mena, Zio, Kristjanpoller, and & Arata (2013)
presented simulation-based optimization framework for allocating
trucks by route based on their operating performance. In the problem
of their study, equipment availability is a variable and maximizing the
overall efficiency is the problem objective. Their results show that the
simulation-based optimization provides an initial set of decision
variables. In their framework, when events occur (e.g. failure of truck)
during the simulation model run, the simulation-based optimization



A Two-Phase Simulation-Based Optimization of Hauling System in Open-Pit Mine 711

model provides a new set of variables to the simulation model.
Nageshwaraniyer, Son, and Dessureault (2013b) considered a robust
simulation-based optimization framework for a truck-shovel system in
open-pit mine. Maximizing the value revenue obtained from the
delivered trains to customers was the objective function problem. The
response surface method (RSM) was applied to define the variance
expression of the objective function problem under different
parameter setting of the simulation model. Upadhyay and Askar-
Nasab (2018) presented a simulation-based optimization framework to
account for uncertainties in mining operations for robust short-term
productions planning and proactive decision-making. This framework
used a discrete event simulation (DES) model of mine operations that
worked with a goal-programming based mine operational optimization
tool to develop an uncertainty short-term schedule. This framework
helped the planner to make a good decision to gain the mine
operational and short-term  objectives. Upadhyay, Tabesh,
Badiozamani, and Askari-Nasab (2019) presented a simulation-based
optimization framework to approximate the efficiency of truck-shovel
system for open-pit mine in Alberta. Historical data were used to fit
probability distributions for haulage cycle components and mine road
network and long-term production schedule were the main inputs to
the model. The developed model was sufficiently validated through
implementing it on a real case. Ozdemir and Kumral (2019) provided
a dual-level dispatch system to maximize the efficiency of the truck-
shovel system. Shishvan and Benndorf (2019) discussed a matter of
dispatching materials in a coalmine by involving a combination of
simulation and solution to a transport problem. In Moniri-Morad,
Pourgol, Aghababaei, and Sattarvand (2019), the truck allocation
problem is analyzed using the simulation-based optimization. The
Proposed model provides an integrated simultaneous structure
between optimization and discrete-event simulation that could identify
the bottleneck process. Minimizing the total number of trucks is
considered as the objective function. Akhtari and Sowlati (2020),
proposed the integrated hybrid model based on the optimization-
simulation approach. The hybrid model is applied in Canada. The
results show that the proposed model could affect the long-term
investment decision.
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Considering the review of the theoretical sources in the literature,
the planning of hauling in the mine can be categorized into a probable
planning category. In this case, given that it is very difficult to express
the flow details in the actual mine in the problem, it is necessary to
construct a system simulation model including decision variables for
problem solving. In addition, in previous studies, the simulation-based
optimization using the meta-model is not considered. Therefore, it is
necessary to provide a simulation-based optimization framework to
measure the hauling performance in the mine using surrogate model.

3. Case Study
Details of copper mining are described in this section.

3.1. Sarcheshmeh copper mine complex

Sarcheshmeh copper mine complex is located in Kerman province in
the southwest of Iran. Sarcheshmeh has a big open mine, and it is
considered the second largest copper mine in the world. The mine is
located 65 kilometers southwest of Kerman city and 50 kilometers
south of Rafsanjan city. The average altitude of the area is about 2600
meters; the highest point is about 3000 meters. In this mine, geology
and canalization departments form the primary part of the ore
extraction process, which consists of digging and excavation data
collection, data analysis, and information updating related to the
results of data processing provided to the engineering department to
develop the excavation plans. In this section, mid-term plans are
designed. The operational department is responsible for implementing
excavation plans of the planning department. After excavation, the
type of extracted minerals should be specified. In general, we
classified the extracted minerals in four categories, namely sulfide ore
with a copper grade of more than 0.7%, oxide ore with a copper grade
between 0.25% and 0.7%, Low-grade ore with a copper grade
between 0.15% and 0.25% and Waste with a copper grade of less than
0.15%. The ratio of extraction of various types of ores in this mine is
45%, 5%, 44%, and 6%, respectively. Based on the various types of
ore, a transfer and storing ores strategy is selected for extractive ores.
The first type of mineral is sulfide ore, which is first transported to a
crusher station after loading. In this mine, there is a crusher machine
with a capacity of 60,000 tons per day. Subsequently, the material is
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transported to a copper storage with 150,000 tons capacity. After
harping, the substance is stored in a soft copper storage. Oxide ores,
Low-grade ores, and wastes are transported to their dumping site. The
conceptual model of the material handling system in the Sarcheshmeh
copper mine is shown in Figure 2. In addition, the operating cost of
each hour of Shovels is shown in Table 1, where U; is the highest
acceptable level for shovels, and L; is the lowest acceptable level for
shovels. Furthermore, current number columns represent the current
number of shovels used in the mineral complex, and cost columns
represent the hourly cost of each shovel. Sarcheshmeh copper mine
complex management has considered limitations to maximize the
amount of production and income mining as (1) the number of
available shovels is limited, (2) the amount of sulfide ore loaded from
extraction sources should be based on mine capacity, (3) the amount
of sulfide ore, oxide, low grade, and extracted wastes should be based
on the present demand, and (4) the total cost of present loading in the
mine, which includes the costs of loading materials into trucks with
shovels, should be minimized.

Drilling grade ore

| —

I}
. Loading
Odde ore
e oW oxide ore v

S
Ty
Loading

waste

e
Low-zrads o Loading low- _‘

Sulfidz ore Waste——————— o]

Loading
sulfide ore

Crushing

Fig. 2. The conceptual model in the Sarcheshmeh copper mining complex
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Table 1. The specifications for the equipment needed for the truck to be moved
(Eskandari et al., 2013)

Shovel types U; L; r?uun?l;% Cost ($)
Shovel 1-4m?3 11 9 10 45
Shovel 2-9.5m3 9 7 8 69
Shovel 3-15.5m? 9 7 8 67
Shovel 4-17m3 2 1 1 118

3.2. Symbolization
Table 2 indicates the symbols used for the variables and parameters

used in the developed model.

Table 2. Symbols

Variables Variables Descriptions
TP Total productions (tons)
X; Number of shovel types i, i =1,2,3,4
TC; Total crusher input (tons)
Sout Sulfide ore output (tons)
Oput Oxide ore output (tons)
Loyt Low-grade ore output (tons)
Wastes output (tons)
Wout
Parameters Parameters Description
C; Cost of shoveli($),i=1,2,3,4
B Auvailable budget ($)
C. Maximum crusher capacity (ton)
Ls, Ug Minimum and maximum amount of sulfide Ore
that can be excavated, respectively (tons)
Ly, U, Minimum and maximum amount of oxide ore
that can be excavated, respectively (tons)
L, U, Minimum and maximum amount of low-grade
ore that can be excavated, respectively (tons)
Minimum and maximum amount of wastes that
Ly, U, can be excavated, respectively (tons)
Other factors Parameter Description
. Maximum amount of ore types that can be
Upper mine plan
excavated

Minimum amount of ore types that can be

Lower mine plan
excavated
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4. Two-phase Simulation-Based Optimization Framework
Two-phase simulation-based optimization framework is described in
this section to increase the revenue of the mine in each shift. In the
first phase, the optimum production control of the current situation in
the mine is presented. In addition, the value of near-optimum
controlled variables in the simulation model is calculated based on the
available demand and integrated capacity. Solving problem
determines the value of decision variables in the limited capacity of
the crushing station. The decision variables are the value of sulfide,
oxide, low-grade, and waste ore production and the total crusher input.
Figure 3 shows the first phase architecture.

Data and

. . Cutput
inf - Simulation

Optimizer
tool

(OptQuest®)

Fig. 3. First phase simulation-based optimization structure

After determining the optimal values obtained from first phase, the
optimal production plan is set for the system. Then, in the second
phase, a surrogate model based on the meta-modeling approach is
developed to define the deterministic function. A meta-modeling
optimization flowchart is shown in Figure 4. According to Barton and
Meckesheimer (2006), a meta-modeling optimization has the
following key elements.

Identifying a meta-model form: The identification of the meta-
model form for the estimation of functions is carried out randomly or
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due to its popularity in the area with which the problem is associated
(Chugh, Sindhya, Hsksnen, & Miettinen, 2019).

Designing the experiment: the meta-model form determines the
design of the simulation experiment, which in turn determines the
input combination of the simulation model (Kleijnen, 2016).

Fitting the meta-model and validation: First, we should run the
simulation model to determine the response for fitting the meta-model.
Second, from the data we obtain the approximate for the parameter value
of the meta-model (e.g., least square estimate). Then we evaluate these
estimates using mathematical and statistical criteria. Next, we should
determine the meta-model validity measures with respect to the
simulation model, first for the validity data set and then for the data set
used for fitting the meta-model (Kleijnen & Sargent, 1997).

Optimization: there are many mathematical techniques for
optimizing the decision variables of functions such as simplex, genetic
algorithm, simulated annealing, and Tabu search.

- Determining D ¢ Estimate the
| Start the efficient esign o . model Fit the model
- factor SIELLET ) coefﬁuents
h 4
- - Determinin
A Y © gl Is model e
| Finish  4—{ thevalue |&YV=— . <+— Validation
< 4 . valid?
. o function
| b

Fig. 4. Meta-modeling optimization structure

4.1. Simulation-Based Optimization in the First Phase

In this section, we discuss the optimization of production at
Sarcheshmeh copper mine complex to increase revenue of the mine in
each shift. For this purpose, the OptQuest optimization tool available in
the Arena software was used at the first phase of the proposed
framework. OptQuest is an innovative way to search for an optimized
strategy that performs searches by estimating the output of the
simulation model. OptQuest tool uses intelligent search methods such
as scatter search, Tabu search, and neural network. Scatter search is the
main search strategy and is applied to create a set of initial solutions and
the best subset vectors to be the reference solutions. Then, the algorithm



A Two-Phase Simulation-Based Optimization of Hauling System in Open-Pit Mine 717

forms the linear combination of subsets of current reference points and
creates new points. Next, the scatter search chooses a combination of
the best solutions. Scatter search uses them as initial points, and the
iterative process ends after a stopping criterion is met. Tabu search uses
adaptive memory to prevent the search from reinvestigating solutions
that have already been evaluated. Neural network is used to screen out
non-dominated solutions and to function as a prediction model to
approximate the objective function (Eskandari et al., 2011). Therefore,
OptQuest provides a potential solution to the model developed in the
Arena software. OptQuest carefully analyzes the simulation results and
provides a potential new solution through the clever search that it
performs (Afrapoli & Askari-Nasab, 2019). To use OptQuest, we
should first define the structure of the optimization problem. In other
words, the decision variables and the target function should be defined
to increase the value of monthly production based on the plans and
capacity of the mine by determining the optimal value for the decision-
making variables in the extraction process at the Sarcheshmeh copper
mine complex. In fact, more revenue can be obtained through more
production. For this purpose, upper and lower limits of the decision
variables are placed in OptQuest as predetermined parameters. In Table
3, these values are shown. Also, the general structure of the planning
problem which is presented in Equations (1-7) is shown to maximize
the monthly production of an integrated OptQuest product.

MaxTP = Total Production 1)
4

st iZ:;Tci <C, )

L <S,, <U, (3)

L, <0, <U, (4)

L <L, <y, (5)

L, <W,, <U, (6)

TCi ’ Sout' Oout’ Lout’ W, 20 (7)

out —
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Table 3. Predetermined parameters in OptQuest optimization

Parameter ppper I._ower Unit
mine plan mine plan

crusher capacity 60000 0 Tons

sulfide ore output 35000 20000 Tons

oxide ore output 20000 15000 Tons

low-grade ore output 3500 3000 Tons

wastes output 1500 0 Tons

Applying the specified settings and defining the problem, the
model was implemented in OptQuest. The best simulation value in
replication round 85 was obtained from among the 25 possible
solutions that can be found in a set of defined equations. In this
replication round, the production was 57799 tons, the low-grade ore
was 3043 tons, oxide ore was 15336 tons, sulfide ore was 31254 tons,
and the waste was 1196 tons. In addition, the amount of the optimum
input to the crusher station was 57897 tons. The details of other
solutions obtained in the problem are shown in Appendix A. All the
values in Appendix A are rounded up. Figure 5 shows the total
production per replication of the simulation.

Objective Values

Simulation
Fig. 5. Total production of the system in each replication of simulation

Table 4 indicates a comparison between the current and optimal
production situations. Further, the optimal situation is balanced
against the current situation. According to the obtained combination,



A Two-Phase Simulation-Based Optimization of Hauling System in Open-Pit Mine 719

the output increases by 10000 tons, which indicates a 21% increase in
the revenues. Total revenue is calculated by multiplying the per ton
price in total production. Copper per ton price is 6000 dollars".

Table 4. A comparison between the current and optimal production status

Total
Status Variables TP revenue
(%)

Lout Oaut Soul: Wout Tcin
Current 4749 6094 15121 9019 35000 47703 286218000
Optimum 57799 346794000

3043 15336 31254 1196 57897

4.2. Simulation-based optimization using meta-model at the second phase
A simulation model is an alternative for the real system, which is
defined for a subset of input variables, and the simulation model
response as a function of this subset. A meta-model is an abstract
model of the subset of simulation input variables that can describe the
real system function. In this paper, the construction of a meta-model
was performed based on the mathematical method (Madu, 1990). The
simulation model was made to determine the system outputs to get the
variable response for different scenarios. The four factors are as
follows:

X;: Number of shovels type 1,

X,: Number of shovels type 2,

X5: Number of shovels type 3,

X4: Number of shovels type 4,

The acceptable bounds for variables were 9 < X; <11« 7< X, <
9¢ 7<X3<9 and1 <X, <2 These factors were independent
variables which were used as input variables in the simulation model to
construct the amount of production as the dependent variable. All of the
possible combinations of four independent variables and their output
results were aggregated 3 x 3 x 3 x 2 = 54 and used to fit the meta-
model. However, it takes a lot of time to collect such amount of data to
estimate the regression equation, especially when the number of factors

1. https://www.tgju.org/basemetal
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is high. Madu (1990) and Kleijnen and Standridge (1988) used a full
factorial design to provide a valid meta-model overnight. The full
factorial is a design of experiment consisted of two factors for each one,
and since the response of such a design needs a 2x2x...x2 = 2k
experiment, it is called 2. When, there are k factors in an operation,
this design needs the least number of runs. The level of each factor can
be quantitative or qualitative. In this study, this design required 16
combinations, in which only the upper and lower bounds of each factor
were used in the simulation for data gathering. First, the validation was
done by comparing the simulation results and the data obtained from
the actual system through the simulation model t-test (Dengiz, Bektas,
& Ultanir, 2006). The confidence intervals of the simulation results can
be calculated at 95% confidence level. These confidence intervals are
used to compare the simulation model results with the data obtained
from the actual system. In order to estimate the number of replications,
the average half-width of each confidence interval for all replications is
calculated by trial-and-error approach until that it is less than 5% of the
average mean, and the length of running time of the simulation model is
smooth (Zeinali et al., 2015). Therefore, each combination of factors
was performed 10 times for 30 days to ensure that the accuracy of the
error in estimating the average production rate was less than 0.05. In
addition, the warm-up period was set for the simulation run to omit any
bias at the process. To measure warm-up period steady-state analysis is
necessary. To analyze the steady state of system performance, the batch
mean method was used. According to this method, a single sufficiently
long run was determined from the plots of performance measure and
their correlogram across the simulation for various lags using the results
of Analyzer of ARENA software. Dengiz and belgin’s (2014) steady-
state analysis indicates that the warm-up period of system is 4 days,
which should be considered in the settings of the simulation model. A
full factorial design based on two levels, four variables, and 10
replicates are shown in the design of experiment table in Appendix B.
Furthermore, the main effects of the four factors, as well as the
interaction between the factors in the regression model are shown in
Equation (8).

TP =B, L X + 22 B Xy + 22 B Xije + Proaa X X, X X +e (8)
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Where TP is total production, B, is the constant value of the
regression meta-model, B; is the main effect of factors coefficient, s;;
is two factor interaction coefficient, f;;, is three factor interaction
coefficient, f;,34 IS four factor interaction coefficient, and ¢ is partial
error at the regression model. The simulation results for 2% = 16 is
the compiled design point (see Appendix B), and the coefficients of 8
are estimated for the regression meta-model. The results of the
experiment were statistically analyzed using the DX software, and are
shown in Table. 5.

Table 5. Statistical analysis of regression meta-model

Sentence Effect Coefficient Value F P-values
Constant 47898 39382.25 5.52 0.01
X -327.94 -1640.25 11.96 0.01
X, -44.69 2331.81 0.22 0.65
X; 33.56 827.37 0.12 0.73
X, -185.94 8055.37 3.75 0.09
X1X;3 240.19 240.19 6.25 0.04
XX, -203.06 -406.12 4.47 0.05
X, X5 -297.06 -297.06 9.57 0.01
X5X, -273.06 -546.12 8.08 0.02

The first column in Table 5 indicates the main effects and all of the
significant interactions. In the second column, the potential effect of
sentences is shown. In addition, the effects coefficients are shown in
the third column, and the probability values and P-values are shown in
the last two columns, respectively. According to the results shown in
Table 5, the statistical value obtained for the model is 5.52, which
indicates that the model is significant. In fact, according to the F-
values, only 1.82% of the model may be disturbed within the defined
range. The P-values of the sentences under 0.05 in Table 5 are
meaningful, and the P-values of the sentences greater than 0.1
indicates that the sentence is not meaningful. Although X, and X; are
not meaningful, we used them for analysis in the model, because these
variables are the system decision variables and we intended to
calculate their optimal value in the future. The results of Auto-Select
regression model in DX software fits the polynomial regression model
as Equation (9).
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TP =39382.25-1640.25X, + 2331.81X,, +827.3X, +8055.37X,, + o
240.19X, X, —406.12X, X, —297.06 X, X, —546.12X,X,, 9)

The statistical P-value for a meaningful model was set as 0.01. In
the regression model, the interaction effects indicate the simultaneous
effect of the corresponding variations of decision variables on the
response level. The meta-model presented in Equation (9) is made
using the real-world simulation model as evaluated in this paper. By
clarifying this equation, we can obtain the best possible combination
of the decision variables through optimizing the model under
management constraints after its validation.

4.3. Meta-model validation

The simulation model validity shows how the model can reflect the
behavior of the real system. The meta-model validity is accomplished
through many methods that compare meta-model output and
simulation output. In this paper, the Absolute Relative Error (ARE)
method, ARE(SO,MO) = |(SO — MO0)|/SO, was used to accept the
meta-model, in which SO is the simulation output and MO is a meta-
model output (Madu, 1990). In order to ensure the validity of the
meta-model, it is necessary for the meta-model and simulation model
in the other five design points-other than the points of the design — to
be executed randomly within the acceptable range, and then the results
obtained from the simulation run are compared with the values
obtained from the meta-model.

Table 6. Meta-model validation model

X, X, X X, MO SO ARE
10 8 8 1 48081 47656 + 329 0.008
9 8 7 2 48717 47433 +502 0.02
11 9 8 1 47912 48600 + 427 0.01
10 7 8 2 47751 49201 + 556 0.02
9 7 8 1 48251 49045 + 484 0.01

The first four columns in Table 6 represent the random points
selected for the factorsX,, X,, X3, and X,, respectively. The two other
columns represent the values obtained from the meta-model and the
simulation model. Subsequently, the absolute value of the relative
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error is calculated in the last column. The average ARE for meta-
modeling is 1.3%. Therefore, the meta-model can determine well the
values close to the optimal decision variables. Therefore, Equation (9)
can be used in managerial decision-making. In future, the optimal
combination of loading machines can be determined for the problem
by imposing technological constraints.

4.4. Loading hauling problem

The optimal combination of loading machines to maximize the
amount of cargo loaded by shovels on the trucks as well as the
reduction of current transportation equipment costs based on
management constraints and decision variables are done via the
following equations (10-13)

TP =39382.25-1640.25X, +2331.81X, +827.3X, +8055.37X, +

240.19X, X, —406.12X, X, —297.06 X, X, —546.12X, X, (10)
4
st SCX <B (11)
i=1
L <X <U, i=1234 (12)
X, integer i=1234 (13)

Equation (10) demonstrates the target function that is determined
based on the preceding steps. Equation (11) shows the highest cost for
loading the ores by shovels, which guarantees that it does not exceed
the cost of loading machinery from the budget level. In Equations
(12), we consider the range defined for shovels. The problem obtained
from equations (10-13) can be considered as the maximum total
production loading machinery on trucks while the budget does not
exceed the value of B. In this case, the problem of the bi-objective
optimization in equations (14-16) is as follows.

max TP (14)

min Zillcixi (15)

i=1
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st xeX (16)

Where X = {x € R*|L; < x; < L;,x; = 0,i = 1,2,3,4} is written in
the equations (14-16) considering the upper bound B on the second
objective function via the e-constraint method. The e-constraint
method was used to solve this bi-objective problem. The &e-constraint
method in this study was considered according to the stance of Pirouz
and khorram (2016). Their method has two main advantages. One of
the advantages of this method is its reduction of the search space to
find the non-dominated points. Another advantage of this method is its
shorter run time in comparison with original method. According to
this method, we first solve the single-objective optimization problem
for each goal. Next, we determine the step length. Then, we generate
the suitable sets of the points, and finally we will solve the single-
objective optimization and estimate the Pareto frontier. The structure
of the function of the total cost of the loading machinery is shown as
Cr = Y11 C;X;. The cost function is considered as C;X; + C,X, +
C3X5+ C,X, in the model, where loading machinery at the
Sarcheshmeh copper mine complex should be improved or maintained
by determining the optimal value of the loading machinery.

The non-linear integer programming model is solved using the
LINGO software, and the optimal combination of the loading
machinery is obtained X7 = 9,X; = 8,X; = 7,X; = 2. Furthermore,
the  meta-model value for the optimum  combination
TP(X7,X;,X3,X,) is 48210 tons, which indicates an increase in the
production from 47703 tons to 48210 tons.

5. Conclusions

Mining operations can be profitable by improving the configuration of
the haulage system in a mine that has quite high operating costs. The
purpose of this paper was to achieve the optimal production level
through an efficient allocation of shovels. However, the problem was
quite complex, because the mine had uncertain parameters (e.g. the
loading time of the shovels). This paper considered the use of
simulation-based optimization with OptQuest tool, the design of the
experiment, a regression model, and a simulation model to evaluate
the behavior of a real case and to identify the interaction between



A Two-Phase Simulation-Based Optimization of Hauling System in Open-Pit Mine 725

variables. This study presented a two-phase stage simulation-based
optimization in a copper mine complex with the problem of
determining the total production quantity and the optimum number of
shovels to reach total production through meta-modeling. The purpose
of the research project was to maximize total production in each shift
of work by determining the optimal production plan for the types of
integrated minerals at the first phase and solving the problem of the
loading machinery to determine the number of shovels at the second
phase. To this end, a simulation model that was described by
(Eskandari, Darabi & Hosseinzadeh, 2013) in the ARENA software
was applied. The OptQuest tool was used to solve the first phase
problems and determine the optimal amount of minerals in the
complex. In the second phase, using meta-modeling and design of
experiment, a decision-making support system was designed based on
an integrated simulation-optimization procedure to evaluate the
performance of the mine’s current situation in order to estimate the
explicit form of the total production objective function. A near-
optimum solution was obtained through the regression model that was
able to estimate the optimal level of production. As a result, with the
feasible configuration of the decision variables, the total production in
the mine increased by 21%. Future studies are recommended to study
a vehicle routing problem optimization in an open pit mine or to
develop an evolutionary algorithm to multi-objective optimization for
the second phase. Also, this method can be used for modeling in other
sectors.
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Table of the best solutions

Simulation  Status TP Lowe  Ooue Sout Woue Tcin X, X X3 X,
85 Feasible 57799 3043 15336 31254 1196 57897 9 8 8 1
119 Feasible 57799 3043 15336 31254 1488 57897 9 8 8 1
147 Feasible 57799 3043 15336 31254 1465 57897 9 8 8 1
149 Feasible 57799 3043 15336 31254 1276 57897 9 8 8 1
150 Feasible 57799 3043 15336 31254 1500 57897 9 8 8 1
161 Feasible 57799 3043 15336 31254 1451 57897 9 8 8 1
162 Feasible 57799 3043 15336 31254 1308 57897 9 8 8 1
163 Feasible 57799 3043 15336 31254 1479 57897 9 8 8 1
164 Feasible 57799 3043 15336 31254 1496 57897 9 8 8 1
165 Feasible 57799 3043 15336 31254 2357 57897 9 8 8 1
166 Feasible 57799 3043 15336 31254 1298 57897 9 8 8 1
167 Feasible 57799 3043 15336 31254 1320 57897 9 8 8 1
168 Feasible 57799 3043 15336 31254 1270 57897 9 8 8 1
169 Feasible 57799 3043 15336 31254 1473 57897 9 8 8 1
170 Feasible 57799 3043 15336 31254 1401 57897 9 8 8 1
172 Feasible 57799 3043 15336 31254 1385 57897 9 8 8 1
183 Feasible 57799 3088 15336 30070 1364 53637 9 8 8 1
184 Feasible 57799 3016 15336 33483 1500 60000 9 8 8 1
185 Feasible 57799 3000 15330 35000 1500 60000 9 8 8 1
189 Feasible 57799 3021 15334 32725 1500 60000 9 8 8 1
214 Feasible 57799 3016 15333 33479 1500 60000 9 8 8 1
215 Feasible 57799 3023 15335 32321 1500 60000 9 8 8 1
216 Feasible 57799 3028 15335 31674 1500 60000 9 8 8 1
217 Feasible 57799 3004 15331 34592 1500 60000 9 8 8 1
218 Feasible 57799 3000 15330 32725 1500 60000 9 8 8 1
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Design of experiments

Factors Replications (R,)

X K X K R, R, R, R, R, R, R, R, R, Ry

§ 9 9 ) 4730446038 4622541730 473671493 4773241035 48088+847 431351709 47638417 4T643:364 476361329 476304293
9 9 9 1 43823269 4786111213 473094886 476104611  47899+374 430141632 479754386 478161520  4TS3+497 473894433
109 T 2 473453796 4749741773 4768141124 478132883 475072735 4TAR0+593  4TAISESI3 ATTO4E] 477741407 480404401
1007 7 1 4343423546 4643242080 4712941362  47325+1027 470074937  47056+803 470954678 472834396  47211+339 471814331
§ 9 T 1 4502044826 4897811393  48055+1132 482062804  48732+723 48017647 4BBIT4ST3 48883+304 48811460 483781449
119 9 1 4983048915 4767143006 4827741648  4B138+1123 483984910 48864764 488331662 488774599 489074333 487764333
§ T T 1 43308+3494  473d0+1393 4801241017 47806+743  4T446+754  4T436+641 478414388 479334513 483104349 484084497
119 9 1 4480144958 4547312160  46300+1464 4387911091  46636+985 46937818 464214758 466601991 469274638 470074387
107 9 1 43486£2940 482314899 483984622 491014375 48669+730  43366+630 486681396  48363+333 4871044957 488044433
9 T T 1 010441971 495224935 4876441209 483314987 47920:903  4TATIETO) 46614676 478224389 4T8ITHR2  47645+484
9 T 9 1 4938+2748  49176+674 483844406 479214703 48170+392 482874496  482902+426 481704381 484414373 482734336
§ T 9 1 47604+4239 472111050 4804041265 484394930 48337715 48700+613 487754514 48574489 48344439 483484427
11§ 7 1 47302+6113  47863+1676 4780841105 471042923 468484779 47060+726  47268+634 47113366 472334391 472454330
109 7T 1 47396£3976 4767411944 4841141184 479002986 47834+788 47834718 433974702 482831614 48218+338 483674307
17T 7 1 4300548985 4647042618  46353+1331  46157+1212 465574965 469654851 473324818  47801+728  47679+636 476344393
§ 9 T ) 4335312084 4904141600  48681+902  48992+1338  49029+630  48%43+723 488804695 489144621  48728+366 487384331

R

47371
47786
47628
4nl3
48703
43678
47888
46326
48640
43308
43460
43261
47303
47733
47039
48833
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