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1. Introduction 

In the field of mechanism balancing, all studies aim to achieve 

the lowest shaking force and moment fluctuations so that the 

mechanism’s fatigue life can be improved. Therefore, there have 

been several research studies on mechanism balancing reported in 

the literature during the last few decades. Researchers have used 
classical methods or old and new optimal approaches to achieve 

this goal. Moreover, optimization is one of the most important 

design issues in science, especially engineering [1-3]. In multi-

objective optimization problems, several different objective 

functions are defined with the goal of simultaneous minimization 

or maximization [4-7]. This is the main difference between the 
general nature of single-objective and multi-objective problems. 

These objectives are often in conflict with each other. In other 

words, when one objective function improves, another one 

worsens .Therefore, there is no single optimal solution concerning 

all the objective functions. Usually in such problems, there exists 

a set of solutions that are equally good, well-known as Pareto 
optimal charts. 

The concept of “Pareto” is named after a famous Italian 

economist called V. Pareto, who first found the theory of 

optimization with several objective functions in economy [8]. 

Pareto's theory or optimal set of solutions is the space of objective 

functions in multi-objective problems based on a set of solutions, 
none of which is superior to the others. In other words, changing 

the vector of design variables in the Pareto curve cannot result in 

——— 

 Corresponding author. Tel.: +989111318827; e-mail: mefelezi@guilan.ac.IR 

improvement of all objective functions simultaneously due to 

resulting in deterioration of at least one objective function. It 

should be noted that these non-superior solutions are arranged in 

different layers based on the Pareto curve, which contain the most 

valuable solutions. 

In the past few years, a novel algorithm called Differential 

Evolution (DE) has been presented as a profound and expeditious 

approach to optimize problems in continuous spaces. It is known 

as a new search approach and it has been initially introduced by 

Rainer Storn and Kenneth Price in 1995 [9, 10]. Both researchers 

proved that this algorithm exhibits exceptional competency in 
optimizing non-differentiable nonlinear functions [11]. The 

applied optimization algorithm of the present paper was also 

utilized in previous studies for kinematic optimization of 

mechanisms, and it has been rarely used in dynamic studies. 

Etesami et al. [12] used this algorithm in multi-objective dynamic 

balancing of a slider-crank mechanism. Qiao et al.[13] used a 
differential evolution algorithm for optimum kinematic design of 

spatial four-bar mechanism. An optimum synthesis of a four-bar 

mechanism by coupler control was performed using the 

differential evolution algorithm by Bulatovic et al.[14]. Lin et 

al.[15]  proposed a new differential evolution algorithm with a 

combined mutation strategy for optimum synthesis of a path 
generating four-bar mechanism. Villarreal et al. [16]  designed a 

five-bar parallel robot by a differential evolution algorithm. 

Shiacolus et al.[17]  proposed an optimum synthesis of a six-bar 

mechanism using the differential evolution algorithm. Feng [18]  
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introduced a method to complete the moment balancing and 

shaking forces of eight-bar mechanisms via revolute joints. 

Furthermore, Ye and Smith [19] attained complete moment 
balancing via geared inertia counterweights. Li [20] presented 

shaking force and moment sensitivity formulation for planar 

articulating mechanisms. The robust balancing approach and 

sensitivity analysis, sensitive to fabrication processing errors are 

also presented. The objective function consisted of shaking 

moment and shaking force. The weighting factor values were 
chosen as equivalents. Arakelian et al.[21, 22] provided a solution 

to resolve the shaking moment and shaking force balancing of 

spatial and planar mechanisms. Arakelian [23] used the 

pantograph mechanism copying characteristics and the dynamic 

distributed masses replacement method via concentrated point 

masses to formulate circumstances for shaking moment and force 
balancing. Lowen and Tepper [24] applied counterweights to 

address a full force balance of planar linkages. Bahai and Esat [25] 

employed a full force and moment balanced approach by 

implementing geared counter-inertias for full force balanceable 

mechanism by the criteria of Tepper and Lowen’s method. 

Erkaya [26] used a genetic algorithm to optimize design 
variables to reduce shaking moment and forces and three weight 

coefficients for combining shaking moment and forces as the 

objective function. In previous studies, weight coefficients were 

used to combine objective functions and convert them into a single 

objective function. Selecting appropriate weight factors to 

combine the objectives functions is a difficult task. On the other 
hand, this act depends entirely on the selection of the designer. 

However, instead of three single-objective optimizations and 

obtaining three optimal points, one optimization is performed in 

this research study and as the Pareto charts show, many optimal 

points have been suggested to the designer. And the designer can 

select each one according to the design criteria and the designer is 
not limited in design point selection. In Reference [12] only 

dynamic balancing of the crank-slider mechanism has been 

performed and optimal mechanisms have been compared only 

with the main mechanism and its optimization results have not 

been compared with any other references. Therefore, superiority 

of the method used in ref [12] to methods proposed in other 
references has not been established while there is a comparison 

with previous research studies in the present study. However, the 

objective of the present study is using an evolutionary DE 

algorithm to optimize the multi-objective dynamic balancing of a 

planar four-bar mechanism, where the designer is not required to 

choose the weight coefficients for combining the objective 
functions. 

The Differential Evolution (DE) Algorithm is a population-

based, combinatorial algorithm and is able to find the global 

minimum of non-differentiable, discontinuous and non-linear 

functions similar to the GA. Experimental results have shown that 

the DE algorithm has advantages over GA. Moreover, it can 
effectively improve convergence speed and optimal quality. 

Hence, it shows excellent characteristics in the optimal design of 

systems like mechanisms and machines [27]. Therefore, it is a 

good choice to solve the optimization problem at hand. 

In this case, the DE algorithm was used to obtain the most 

appropriate values of length, mass, moment of inertia and location 
of center of mass of the moving links of the planar mechanism as 

design variables and minimized shaking forces and moments as 

objective-functions. Five-objective functions included shaking 

moment, and the vertical and horizontal shaking forces 

simultaneously exerted on the frame of the mechanism. The Pareto 

charts were presented as a dyadic combination of objective 

functions. Finally, vibration performance of such design points 

were shown in comparison with other studies during a complete 

circling of input link [26]. Comparing the results with previous 
studies confirms the superiority of the method presented in the 

present research study. 

2. Kinematic and dynamic formulation of four-bar 
mechanism 

To investigate the effects of shaking force and shaking moment 

exerted in the frame, a four-bar planar mechanism was used in the 

balancing problems. The force diagram of the mechanism is 

shown in Figure.1. Kinematic analysis of the mechanism's model 

consists of determining displacements, velocities, and 
accelerations of moving links. Mass center positions of the 

moving links relative to the crank pivot are provided in the 

following form [26]:  

 

 
2 2 2

2

2 2 2

cos

sin

G

G

x
r

Y

 

 

   
   

   

 (1) 

 

 
3 2 3 3

2 3

3 2 3 3

cos cos

sin sin

G

G

x
L r

Y

  

  

     
      

    

 (2) 

 

 
4 1 4 4

1 4

4 1 4 4

cos cos

sin sin

G

G

x
L r

Y

  

  

     
      

    

 (3) 

 

 

Where 𝑥𝐺𝑖and 𝑦𝐺𝑖  for i =2, 3, 4 are the displacements at the x 

and y directions for mass center of the ith moving link; 

considering the input link, follower and coupler, correspondingly. 

Also, 𝜃2, 𝜃3 and 𝜃4  represent the angular positions of input, 

coupler and follower links relative to the x-direction, 

correspondingly (see appendix).Velocities and accelerations of 
mass centers can also be defined as time-derivatives of equations 

(1-3). 𝛼2, 𝛼3and 𝛼4 are named structural angles, and 𝑟2, 𝑟3  and 𝑟4 

are named structural links. In fact, 𝛼𝑖, 𝑟𝑖 for i=2,3,4 are the angles 

and lengths made by connecting the center of mass to the 

beginning of each mechanism link. 

Forces and moments were obtained by solving the systems of 
equilibrium equations of the mechanism: 
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Where 𝑥̇𝐺𝑖  𝑦̇𝐺𝑖, 𝑥̈𝐺𝑖  and 𝑦̈𝐺𝑖  for i=2, 3, 4 are the x and y 

directions of mass centers velocities and accelerations of the 

moving links, respectively. 𝜃̇𝑖 and 𝜃̈𝑖 for i=2, 3, 4 are velocities 

and accelerations respectively, of the moving links considering the 
input link, follower and coupler. The value of angular velocity of 

the input link is constant and it is equal to 300 rpm. The position 

vectors of the mass centers of the ith link are as follows according 

to Fig 1: 
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Where 𝛽2, 𝛽3 and 𝛽4 are the angles related to ABG2 , BCG3 and 

CDG4 , respectively and their equations are presented in the 
appendix. 𝑟́2 , 𝑟́3  and 𝑟́4  ،are the third side of triangles whose other 

two sides are 𝑟2, 𝑙2 and 𝑟3, 𝑙3 and 𝑟4, 𝑙4, respectively. 
 

 

Figure 1. Force Diagram Model of Four-bar Mechanism [26]   

3. Multi-objective optimization 

Multi-objective optimization or vector optimization was 

determined to find a vector of design variables while satisfying 
constraints to give acceptable values of all objective functions. 

In terms of multi-objective optimization, the goal is to find the 

design vector T
nxxxX },...,,{ **

2
*
1

*  to optimize the objective 

functions T
k XfXfXfF )}(),...,(),({ 21 under an inequality 

constraint: 

mtXgt ,...,2,10)(   (6) 

And equality constraints:  

pjXh j ,...,2,10)(   (7) 
 

It is assumed that all objective vectors should be minimized or 

maximized. This problem is called multi-objective optimization 

and is categorized as the Pareto approach, as defined below. 

 

3.1. Definition of Pareto dominance 

Vector ],...,,[ 21 nuuuU   is dominated by the vector
],...,,[ 21 nvvvV  , if and only if: 
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3.2. Definition of Pareto Optimality 

A point *X  ,  is an acceptable design area that fits 

equations (9) and (10) and it is Pareto optimal if and only if
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3.3. Definition of Pareto Set 

In multi-objective optimization problems, a Pareto collection 

(P*) contains all optimal Pareto vectors [4, 5]. 

P* )}()(:|{ '' XFXFXX   (11) 

One of their uses is to address multi-objective optimization 
issues since they possess the natural features of evolutionary 

algorithms and population based or parallel search processes. 

Thus, the majority of issues and shortcomings related to 

conventional methods when resolving multi-objective 

optimization issues are eliminated. As an example, the 

requirement for numerous runs to determine the Pareto front or 
quantification of significance of every objective function via 

numerical weights is eliminated. 

4. Differential Evolution Algorithm (DE) 

Generally, DE is a random population-based algorithm which 

is considered to be an evolutionary algorithm [28]. However, it 

has an inimitable approach for generating new populations. Each 

population in evolutionary algorithms produces new population 

using crossover and mutation operators applied to them in 

sequence. After that, the method of mutation application and its 
step length is defined considering a random distribution. 

Nonetheless, in the DE algorithm, first the mutation operator 

produces a temporary response, followed by the production of a 

new response using the crossover operator. Furthermore, instead 

of certain random distribution steps of the mutation, it happens by 

using the difference between the existing responses from the 
population. 

In the DE algorithm, the step length and direction of mutation 

are determined by selecting two members of the population 

randomly and calculating the difference between them. This 

process is also called the difference vector. Mutation vector is the 

value of difference vector, and population size is one of the 
parameters of DE, where the increase in size of the population has 

a direct effect on the searching capability of the algorithm. 

Meanwhile, more difference vectors can be found by increasing 

the population. As a result, the algorithm can search in more 

directions.  

It is better to consider population size of ten times that of the 
design variables. Increasing size in some cases leads to 

appropriate results. The weighting factor is another DE parameter 

that must be small enough so that the algorithm can precisely 

explore the space. On the other hand, it must be large enough so 

that the variety of responses could stay at an excellent level. If the 

population size increases, the weighting parameter must be 
reduced since there is no need to consider a high size for steps. In 

this regard, you can refer to experimental results.  

Convergence before maturity happens by using higher values 

for population size and weighting parameters. By increasing the 

ratio of crossover probability which is considered as one of the 

parameters of the DE algorithm, we can obtain temporary and new 
results which lead to a larger set of responses and capacity of 

searching for the algorithm. The increased probability of 

crossover in most cases leads to increased convergence speed 

while reduced crossover probability will result in a robust 

searching process. Therefore, if the convergence speed decreases, 

chances of reaching better results will possibly increase. 
The algorithm that is used in this study is dynamic differential 

evolution, where the behavior can randomly change during the 
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search process [10]. Experimental studies were conducted on a 

comprehensive set of benchmark functions, including classical 

problems and shifted large-scale problems. Simulation results 
demonstrate the efficiency and effectiveness of the proposed 

heterogeneous DE algorithm. The differential evolution algorithm 

is used with a randomly selected mutation step between 0.4 and 

0.6 and a crossover operator equal to 0.3. The results are obtained 

by the uniform diversity operator and 500 iterations are used for 

the optimization process. The optimization parameters have been 
adopted from ref [12]. 

5. Multi- Objective Optimization of Four-bar Mechanism 

Both the shaking forces and shaking moment must be 
eliminated in order to obtain complete balancing. However, 

complete balancing of one leads to unbalancing the other [29]. 

Engineers can balance the shaking forces by attaching equilibrium 

weights to the links similar to conventional methods. However, 

this would increase the mass and moment of inertia of the whole 

mechanism which leads to increased shaking moment, joint 
interaction, supported reaction and other mechanism dynamic 

values. Therefore, the multi-objective optimization method is 

suggested to address these problems. In order to optimally balance 

the mechanism, a multi-objective DE algorithm is used. The 

process was explained in the previous section. The main objective 

is reducing [𝐹21𝑥 , 𝐹21𝑦 , 𝐹41𝑥  , 𝐹41𝑦  , 𝑀𝑠ℎ] during the one period of 
the crank link. In this regard, 𝐹21𝑥 and 𝐹21𝑦 represent the 

horizontal and vertical forces exerted to joints A; 𝐹41𝑥 and 𝐹41𝑦   
are the horizontal and vertical forces exerted to joint D 

simultaneously. Joints A and D have been shown in fig. 1. 

Furthermore, 𝑀𝑠ℎ is the moment exerted to the joint of the 

follower link of the frame. All of these values are equal to: 
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Where S is the number of points for which calculation was 

conducted during a rotation of the input link, which is considered 
to be 360 points. Design variables included 16 members as 

follows: 

2 3 4j i i GiX L m I r r r   
 (17) 

Where Lj indicates the length of the moving links, including, 

L2, L3 and L4. αi representing the angle added to 𝜃𝑖 in order to move 

the mass center of rotating links including α2 , α3  and α4. mi and 
IGi , representing the mass and moment of inertia of the moving 

links that contain m2 ، m3  ، m4  and IG2  ، IG3  ، IG4 . r2 ، r3 ، r4  are 

also the relative distances between the center of mass of the links 
and joint of the related link. The alignment of the mechanisms is 

in line with the horizon (𝜃1 = 0). 

minx and maxx  represent the upper and lower limits of design 

variables. The upper and lower limits for the length of the links 

are 
i 0.1 iL L  and 

i 0.1 iL L , respectively. For
i , 0 and 360 are 

considered as upper and lower limits. For the other design 

variables, upper and lower limits are also considered according to 
the geometry, thickness, length of each link of the original 

mechanism and the workspace of the mechanism. The range of 
design variables considered for this optimization problem is 

presented as; 
220 80r   mm, 

20.3 4m   kg, 

20.0001 0.0005GI  2.kg m , 
350 390r   mm, 

30.8 5m  kg,  

30.05 0.15GI 
2.kg m ,

440 310r   mm, 
40.8 2m  kg, 

40.05 0.25GI  2.kg m . 

The problem is that the mechanism must be of the Grashof 

type. The Grashof condition in the four-bar mechanism of the 
study is in accordance with equation (18). 

  1 2 3 4g x L L L L     (18) 

6. Results and Discussion 

In this section, the results of application of the multi-objective 

differential evolution algorithm presented in the previous section 

for multi-objective balancing design of a four-bar mechanism 

model is presented as shown in Fig. 1.  

There are ten possible pairs of five objectives that were 

considered in a five-objective optimization process. A total of 160 
choices with a crossover probability of 0.3 and random mutation 

probability between 0.4 and 0.6 were selected and used in 500 

generations. The Pareto fronts of each pair are shown in Figs. 2 

and 3. 

Obtaining a more favorable value for one objective could 

possibly result in a worse value for other objectives according to 
the Figures. The best potential combination of the pair of 

objectives will be obtained if selection of a set of design variables 

is made on the basis of the Pareto front.  

Hence, if other sets of design variables are chosen, the 

corresponding values will determine a point which is inferior to 

the associated Pareto front. This inferior area in the objective 
functions space for Fig. 2 and Fig. 3 is on the top/right sides. 

Discovery of an optimal design point is now possible, which is 

placed on almost all Pareto fronts of Fig. 2 and Fig. 3. Thus, it can 

be obtained by mapping objective function values of all non-

dominated points into 0 and 1 intervals. By utilizing the sum of 

values for every non-dominated point, design point A is a 
representation of the minimum of these values. It is evident that 

design point A is located on approximately all Pareto fronts while 

every point on the Pareto chart is a representation of a potential 

choice to address the issue based on the design criteria. The points 

on the Pareto chart are not superior compared to each other but 

four points are presented as the suggested points using letters A, 
B, C and D.  

Points A, B, C and D are design points which depict minimum 

values for F21x, F21y, F41x, and both F41y and Msh, 

respectively. Moreover, point A is the most important point 

among other ones. In fact, it is the trade-off point of the Pareto 

chart. The described mapping method is used in order to find the 
compromise point. 

The points E, F and G are shown in Fig. 2 and Fig.3 and are 

optimized mechanisms suggested by reference [26] considering 

three different optimization cases with three types of weight 

factors. Moreover, point H is the original non-optimized 

mechanism of reference [26]. 
The corresponding values of design variables of these selected 

points, suggested points of reference [26], the original mechanism 

of reference [26] and the magnitudes of their objective-functions 

are respectively presented in the table 1 and table 2.  
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Figure 2. Pareto Fronts of Five-objective Optimization (including shaking forces alone) 
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Figure 3. Pareto Fronts of Five-objective Optimization (including shaking moments) 

  

 

A comparison of the objective function values corresponding 

to optimum design points A, B, C and D are obtained from 

optimization of five-objective functions. Comparison of the 
results obtained for point A in particular with those suggested by 

reference [26], demonstrates the superiority of the method 

presented in this study. Thus, these multi-objective optimization 

shaking moment balancing and shaking forces of planar 

mechanisms present optimal alternatives of design variables on 

the basis of Pareto non-dominated points. 

Simulation results of force and moment characteristics for 

points A and the original mechanism are presented in Figure 4. It 

is clear that simulation results at the suggested point were superior 
to that of the original mechanism. The red curves in Fig.4 are those 

drawn with the simulation of this study for the original mechanism 

of ref [24]. They match the related curves in ref [26]. Therefore, 

the necessary validation was carried out according to Figure 4 in 

the paper. 
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Figure 4. Original mechanism and the suggested values of joint forces for point A (a) and (b) Crank-frame Joint, (c) and (d) Follower-frame Joint, (e) Shaking 

Moment, (f) Driving Torque 
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Table 1. Values of design variables of optimal points and reference [18]. 

No Design Variables A B C D E F G H 

1 L1 (mm) 608.1 654.3 575.3 542 570 570 570.2 600 

2 L2 (mm) 90.9 90 90.1 90 95 95 95 100 

3 r2 (mm) 78.1 76.41 79.8 76 66.7 66.7 72.54 50 

4 m2(kg) 0.9886 0.4685 1.0765 1.7652 2.027 3.47 1.755 0.36 

5 IG2 (kgm2) 0.0008 0.0045 0.0081 0.0056 42.3˟10-4 98.28˟10-4 48.93˟10-4 4.13˟10-4 

6 α2 (Radian) 3.0891 3.7577 3.1329 3.5109 3.0332 3.065 3.032 0 

7 L3 (mm) 430.9 434.5 436.4 437.2 420 420 420 400 

8 r3(mm) 52.3 273.7 64.7 94 77.5 88.73 87.96 200 

9 m3(kg) 0.8926 0.8037 0.8824 1.4484 1.264 2.06 1.23 1.296 

10 IG3 (kgm2) 0.0125 0.0170 0.0158 0.0061 4.87˟10-2 9.96˟10-2 4.43˟10-2 1.87˟10-2 

11 α3 (Radian) 1.2298 6.0737 6.0086 1.3622 0.1275 0.417 0.1619 0 

12 L4(mm) 351.7 330 351.9 350.6 329.8 313.9 330 320 

13 r4 (mm) 65.3 181.4 59.8 240.3 100.4 128 97 160 

14 m4 (kg) 0.8075 0.8005 0.8540 0.8052 0.866 1.425 1.22 1.046 

15 IG4 (kgm2) 0.0051 0.0050 0.0099 0.0053 14.3˟10-3 16˟10-3 15˟10-3 9.85˟10-3 

16 α4 (Radian) 0.7607 3.9409 4.9624 1.0595 0.0002 0.0013 0.0023 0 

 

 
Table 2. Values of objective functions for optimal points and reference [18]. 

NO 
Objective 

functions 
A B C D E F G H 

1 F21x 406.8 19910 2170.6 16968 2312 5678 3158 4706 

2 F21y 7054.7 1191 6251.9 13152 11854 19984 11696 29140 

3 F41x 1354.1 7969 205.6 4856 3812 9221 4118 18945 

4 F41y 2486.4 7032 3682.1 1245 4086 8757 4839 11122 

5 Msh 1512 4601 2118.3 675 2329 4991 2759 6673 

 
 

 
Figure 5. Diagrams of shaking forces and shaking moment for the original mechanism for this simulation and ref [26] 
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However, the objective function curves for the main 

mechanism have been plotted in one graph for more clarity, using 

chart data of Fig. 4 in ref [26], as well as the simulation method of 

this research. The charts show that a high degree of agreement 

exists between the two simulations of Ref [26] and this paper. The 

matching diagrams of the two simulations are shown in Fig. 5 in 
order to validate the method proposed in this study. 

As a natural result of multi-objective optimization, shaking 

force and shaking moment at the suggested mechanisms A and C 

of the present article were closer to zero, compared to the original 

mechanism and optimized mechanisms suggested by reference 

[26].  

Point A and C showed appropriate decrease ratios for all five 

objective-functions relative to the original mechanism and 

optimized mechanisms suggested by reference [26] as shown in 

Tables 3 and 5. During the only crank link period, the maximum 
shaking force values for the y and x directions and the shaking 

moment decreased by the ratios given in Tables 3-6, respectively. 

The decrease ratios of points A and C were better, compared to 

other studies [26].  

 
Table 3. Decreasing Ratios for Point A Relative to Points E, F, G and H 

Objective 

Functions 

 

Decreasing Ratio for Point A 

Relative to G 

Decreasing Ratio for Point A 

Relative to F 

Decreasing Ratio for Point A 

Relative to E 

Decreasing Ratio for Point 

A Relative to H 

F21x 92.84 87.12 82.41 99.15 

F21y 64.68 39.65 40.46 75.86 

F41x 85.27 67.01 64.37 92.85 

F41y 71.60 48.62 39.15 77.70 

Msh 69.71 45.20 35.08 77.40 

 

Table 4. Decreasing Ratios for Point B Relative to Points E, F, G and H 

Objective 

Functions 

Decreasing Ratio for Point B 

Relative to G 

Decreasing Ratio for Point 

B Relative to F 

Decreasing Ratio for Point 

B Relative to E 

Decreasing Ratio for Point 

B Relative to H 

F21x -250.71 -530.5 -761.30 58.47 

F21y 94.04 89.81 89.94 95.92 

F41x 13.55 -93.55 -109.09 58.03 

F41y 19.71 -45.26 -72.04 36.96 

Msh 7.85 -66.67 -97.47 31.26 

 
Table 5. Decreasing Ratios for Point C Relative to Points E, F, G and H  

Objective 

Functions 

Decreasing Ratio for 

Point C Relative to G 

Decreasing Ratio for 

Point C Relative to F 

Decreasing Ratio for 

Point C Relative to E 

Decreasing Ratio for 

Point C Relative to H 

F21x 61.76 31.25 7.01 95.47 

F21y 68.74 46.54 47.26 78.62 

F41x 97.77 95.02 94.62 98.92 

F41y 57.95 23.92 9.90 66.98 

Msh 57.56 23.24 9.05 68.34 

 

Table 6. Decreasing Ratios for Point D Relative to Points E, F, G and H 

Objective 

Functions 

Decreasing Ratio for 

Point D Relative to G 

Decreasing Ratio for 

Point D Relative to F 

Decreasing Ratio for 

Point D Relative to E 

Decreasing Ratio for 

Point D Relative to H 

F21x -199.63 -438.66 -635.84 64.52 

F21y 34.45 -11.99 -10.50 55.20 

F41x 47.29 -18.01 -27.48 74.41 

F41y 85.78 74.28 69.54 88.84 

Msh 86.49 75.55 71.04 89.92 

 

On the other hand, a maximum input torque 𝑀21 = 14.7237 Nm 

is required to supply a speed of 300 rpm in the main mechanism. 
An engine with a nominal value of 462.75 watts is required to 

create this torque as indicated by Equation 19, where P indicates 

power consumption.  

However, the maximum input torque in the trade off point of 

this study is 1.2715 (N.m) which requires an engine that produces 

only 40 watts of rated power. This can save 91.36% on power 
consumption, which would save around 1,500 KJ per hour. 

Remarkably, this result was obtained although the input torque 

was not one of the objective functions of this problem. Section f 

of Fig. 4 also confirms the conclusion that there is a significant 

decrease in the input torque of the mechanism. 
 

(19) 𝑃 = 𝑀21 × 𝜃̇2 

7. Conclusion 

The objective of this research study is to reduce shaking 

moment and shaking forces at the planar mechanism to address the 

optimization issue. Using the optimally balanced mechanism 

improved performance of the mechanism, reduced noise and 
vibration, and ultimately increased the fatigue life of the 

mechanism. Contrary to the similar studies in the literature, the 

sub-components of shaking force and shaking moment were 

separately considered as five objective functions. A theoretical 

model for studying shaking moment and force was considered with 

the speed of 300 rpm at the input link to achieve this goal. A multi-
objective differential evolution algorithm was used for optimal 

balancing design of a four-bar mechanism. The objective 

functions, which are in conflict with each other, are shaking 

moment and horizontal and vertical shaking forces. The 

aforementioned four bar mechanism model multi objective 

optimization may provide design trade-offs among conflicting 
objective functions that are not otherwise possible. The four bar 

mechanism model multi objective optimization enables 

determination of vital trade-offs between such objective functions. 

The advantage of the acquired optimal design points is presented 

in comparison with the ones mentioned in the literature. Moreover, 
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it was proven that there are several alternatives for designers for 

optimal design in Pareto fronts. This method can also be used for 

other spatial and planar mechanisms. 

Appendix 

Angular positions of coupler and follower links in Equations 

(1-2) are determined as follows: 

 

2 2 2
1

3

A
2 tan

B+C

A B C
 

   
 
 
 

 (A1) 

 1
4 2 2 3 3 1 1

4

1cos cos cos cosL L L
L

     
  

  
 (A2) 

 

Where A, B and C are given as: 

 3 2 2 1 12 sin sinA L L L     (A3) 

3 1 1 2 3 22 cos 2 cosB L L L L    (A4) 

 2 2 2 2
1 2 3 4 2 1 2 12 cosC L L L L L L         (A5) 

 

𝛽2, 𝛽3 and 𝛽3 angles in Eq. (5) are defined as: 
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𝑟́2, 𝑟́3 and 𝑟́4 angles in Eq. (5) are defined as: 
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List of Abbreviation 

DE      Differential Evolution 
GA      Genetic Algorithm 
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