
Journal of Chemical and Petroleum Engineering 2020, 54(1): 143-153 
DOI: 10.22059/jchpe.2020.301561.1312 

 

RESEARCH PAPER   

 

Modeling and Optimization of Anethole Ultrasound-

Assisted Extraction from Fennel Seeds using Artificial 

Neural Network 

Hojatollah Moradia, Hossein Bahmanyara,*, Hedayat Azizpoura,b,†, Nariman 

Rezamandia, Seyed Mohsen Mirdehghan Ashkezaria 

a. Surface Phenomenon and Liquid-Liquid Extraction Research Lab, School of Chemical Engineering, 

College of Engineering, Postal Code: 1417466191, University of Tehran, Iran 

b. Department of Chemical Engineering, Fouman Faculty of Engineering, College of Engineering, 

Postal Code: 1417466191, University of Tehran, Iran 

Received: 24 April 2020, Revised: 11 May 2020, Accepted: 16 May 2020 

© University of Tehran 2020 

Abstract  
Extraction of essential oils from medicinal plants has received researcher’s 

attention as it has a wide variety of applications in different industries. In this study, 

ultrasonic method has been used to facilitate the extraction of active ingredient 

anethole from fennel seeds. Effect of different parameters like extraction time (20, 

40, and 60 min), power (80, 240, and 400 Watts) and solid particle size (0.3, 1, and 

1.7 mm) on the anethole extraction yield have been studied. The box-Behnken 

design method has been used for the design of experiments to reduce the number 

of experiments. A second-degree polynomial was proposed to predict the 

relationship between independent variables and the dependent variable. An 

artificial neural network was trained with experimental data to provide another 

model for the system. Optimal results achieved when using the Levenberg-

Marquardt back-propagation algorithm, Logsig, and Tansig transfer functions for 

hidden and output layers and the number of 10 neurons in the hidden layer. 

Coefficient of determination, sum of squared errors, root of mean square error, and 

absolute average deviation were found to be 0.9933, 0.0199, 0.0059, and 2.1944 for 

the ANN model and 0.9851, 0.0425, 0.0059 and 2.1944 for the design of 

experiment (DOE) model, respectively.   
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Introduction 

Umbelliferae (Apiaceae) is the biggest known family of flowering plants, which was studied 

by botanists in the late 1500s [1]. Using medicinal plants to prevent and cure diseases was quite 

prevalent until the 16th century and was considered the most reliable way to cure different 

illnesses.   In recent years, due to the high price and various side effects of chemical drugs, using 

medicinal plants has soared again. Fennel (Foeniculum vulgare) is a green herbaceous plant 

from the family of Umbelliferae, which is cultivated in a lot of countries for its many different 

uses [2]. Fennel contains 10% oil, carbohydrates, mucilage, and roughly 4%  essential oil [3]. 

Fennel’s essential oil is commonly used the in pharmaceutical, food, and hygiene industry. 

Anethole is one of the most important (active substances/ingredients) in fennel [4]. The anethole 
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in the fennel’s essential oil has strong anticancer capabilities and can reduce spasm in the 

digestive system and improve the quality of digestion by stimulating digestive juice secretion 

[5,6]. 

Conventional methods of extraction require long residence time and great quantities of 

solvents; as a result, researchers are trying to find new techniques to reduce extraction time, the 

solvent used, and pollution. In experimental studies, using the “one-factor-at-a-time” approach 

is time-consuming and burdensome and does not always succeed at determining optimum 

conditions [7]. There are various methods for extracting essential oils from plant seeds, some 

of which are: superheated steam distillation [3,8], solvent extraction [9], extraction using 

microwaves [10], supercritical fluid extraction [11] and ultrasound-assisted extraction [12]. 

Ultrasound-assisted extraction is one of the novel effective methods of extracting essential oil 

from plants. The main advantages of using this method are its low cost and simplicity of the 

required equipment. Because of the limitations of theoretical models, Empirical models are 

usually used to describe the interactions of model variables on each other. 

Response surface methodology (RSM) and artificial neural network (ANN) are efficient 

methods for empirical modeling [7]. Response surface methodology was first introduced by 

George E. P. Box and K. B. Wilson in 1951 [13]. Response surface methodology is a statistical 

technique that utilizes specific methods to determine an approximate relationship between input 

and output variables.  [14]. This method is also capable of determining the effect of different 

independent variables on the dependent variable [15]. Mokhtari et al. [16] investigated the 

extraction of anethole from fennel seeds by supercritical CO2 with the addition of ethanol as a 

co-solvent and modeled the system by implementation of genetic algorithm and response 

surface methodology.  

ANN can be defined as a group of computational nodes named neurons that are linked 

together with weighted connections [17]. One of the most significant characteristics of ANN is 

its training capability, which makes it suitable for modeling complex, nonlinear systems 

[18,19]. Currently, ANN is known as an effective tool for predicting food properties and process 

optimization [20,21]. Khajenoori and Haghighi Asl [22] studied the subcritical solvent 

extraction of tans-anethole, using ANN. They used temperature, flow rate, and mean particle 

size as input variables and extraction yield as the output. Optimum results reported when using 

one hidden layer with five neurons. 

Since conducting experiments is time-consuming and difficult, a modeling method is usually 

used to reduce extraction time and expenses, optimize the process, and predict the behavior of 

variables in different situations. In this work, ultrasound-assisted extraction of anethole was 

modeled using ANN and the results were compared with the design of experiment (DOE) 

model. In the modeling, three parameters of time, power, and particle size were used as 

independent variables along with the extraction yield as the dependent variable. 

Methodology 

Fennel seeds were ground using a mill and were divided into three sizes of 0.3, 1, and 1.7 mm, 

then 5 grams of each were mixed with 70% w/w ethanol-water solution with a ratio of 1 to 15 

(75 mL solution). To prevent degradation, a cold-water bath inside the ultrasonic chamber was 

used to keep the temperature constant. The ultrasonic device used was horn-type cell disruptor 

UP400S from Hielscher, Germany, with a nominal power of 400 Watts and a frequency of 24 

kHz. Ultrasonic waves produced in the solution increases the mass transfer from the particles 

significantly by inducing a phenomenon known as cavitation. The intensity of these ultrasound 

waves can be changed by adjusting the power input of the device from 20 to 100 %. After 

extraction with ultrasound, solid particles were separated with a filter, and the solution was 

placed in a centrifuge for 15 minutes.   The essential oil obtained from the solution was then 
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dried to minimize errors in mass chromatography analysis. The extraction yield was calculated 

according to the following formula: 

Extraction yield= 
Weight of essential oil extracted (g)

Weight of dried sample (g)
 

Separation and identification of compounds in the essential oil of fennel seeds were done 

using Agilent 7890A GC/MS. 

Modeling 

Accuracy of RSM and ANN models was assessed using root mean square error, sum of square 

errors, coefficient of determination, and absolute average derivation . 

RMSE = √
∑ (𝑦𝑖.𝑝𝑟𝑒𝑑−𝑦𝑖.𝑒𝑥𝑝)

2𝑛
𝑖=1

𝑛
 (1) 

SSE = ∑ (𝑦𝑖.𝑝𝑟𝑒𝑑 − 𝑦𝑖.𝑒𝑥𝑝)
2𝑛

𝑖=1  (2) 

𝑅2 = 1 -  
∑ (𝑦𝑖.𝑝𝑟𝑒𝑑−𝑦𝑖.𝑒𝑥𝑝)

2𝑖=𝑛
𝑖=1

∑ (𝑦𝑖.𝑒𝑥𝑝−𝑦𝑚)
2𝑖=𝑛

𝑖=1

 (3) 

AAD = [
∑ (|𝑦𝑖.𝑒𝑥𝑝−𝑦𝑖.𝑝𝑟𝑒𝑑| 𝑦𝑖.𝑒𝑥𝑝⁄ )𝑛

𝑖

𝑛
] × 100 (4) 

where n is the number of experimental data, yi,pred is the predicted yield, yi,exp is the experimental 

yield and ym is the mean experimental yield. 

BBD method was used to evaluate the effect of time, power, and particle size variables on 

the response surface and optimization of anethole extraction from fennel seeds. Using the BBD 

method, the experiment was designed in 17 tests and 3 levels. Table 1 shows independent 

variables and their range. A second-degree polynomial describes the relation between the 

dependent variable (yield) and independent variables (time, power, and particle size). 

 

Y = b0 + ∑ bi
3
i=1 Xi + ∑ bii

3
i=1 Xi

2 + ∑ ∑ bijXiXj
3
j=i+1

2
i=1  (5) 

 

where Y identifies the response; b0, bi, bj, and bij are coefficients of a second-degree polynomial, 

and Xi and Xj are independent variables. Design and analysis of the DOE model were done using 

Design-Expert 7.0.0 (Stat-Ease Inc., Minneapolis). 

ANN consists of input, output, and hidden layers, which are interconnected by weighted and 

biased connections. In the modeling of this system, the neural network has three inputs 

(extraction time, power, and particle size) and one output (extraction yield). The structure of 

the network is shown in Fig. 1, which contains n neurons in the hidden layer. Extraction yield 

values are normalized using [17]. 

 

𝑌𝑛𝑜𝑟𝑚=0 ∙ 8 ×
𝑌−𝑌𝑚𝑖𝑛

𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛
+ 0 ∙ 1 (6) 

 

where Ynorm is the normalized value of Y (extraction yield of anethole); and Ymin and Ymax are 

minimum and maximum values of Y, respectively. From all the experimental data, 70 percent 

are used for training, 15 percent for testing, and 15 percent for validation. Experimental data 

used for training of the neural network model, Actual and predicted values of extraction yield 

are given in Table 2. Modeling using ANN is implemented in MATLAB (R2019b). 
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Table 1. Independent variables 

 Independent variables Levels 

1 Time (min) 20 40 60 

2 Power (Watt) 80 240 400 

3 Particle size (mm) 0.3 1 1.7 

 
Fig. 1. Schematic representation of ANN 

Results and Discussions 

Response Surface Methodology 

Designed tests and predicted responses using BBD and ANN methods are presented in Table 

2. Using the obtained results, an empirical relation is derived that shows the effect of 

independent variables on the extraction yield (Eq. 7). To find the best equation, fit statistics of 

various models were calculated and compared. According to Table 3, the quadratic model has 

superior performance compared to linear and two-factor interaction (2FI) models. To further 

improve the validity of the quadratic model, parameters with high probabilities of error (P-

values) were removed from the model. Calculated P-values and coefficients of the second-

degree polynomial are given in Table 4. P-value is a parameter that specifies the statistical 

significance of a variable in the model. A P-value greater than 0.05 means that there is no 

association between the changes in the variable and response. As shown in Table 4, P-values 

for b1
2 and interaction terms (b1b2, b1b3, b2b3) are higher than 0.05, which indicates that they 

are not significant and can be removed from the equation to improve the validity of the model. 

As can be seen in Table 3, the Modified Quadratic model (Eq. 7) has a greater predicted 

coefficient of determination and lower predicted residual error sum of squares (PRESS) value, 

which suggests it has a higher predictive capability and less chance of overfitting. 

yield = 1.57236 + 0.01475 × 𝑇𝑖𝑚𝑒 − 0.0005 × Power − 1.4069 × Particle size −
                0.000003 × 𝑃𝑜𝑤𝑒𝑟2 + 0.37755 × Particle size2  

(7) 

Table 4 shows the result of the analysis of variance (ANOVA) on the yield of anethole 

extraction. According to the analysis of variance, the F-value of the model (regression) after 

removing the parameter corresponding to Time2 (F-value = 109.95) was much greater than the 

tabular F-values with the same degrees of freedom, indicating the significance of the adjustment 

made. 
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Table 2. Design of experiment, actual responses and predicted responses of BBD and ANN models 

Run 

No. 

Time Power Particle 

size 

Response Predicted 

BBD 

Predicted 

ANN 

1 40 240 1 0.9 0.94 0.947 

2 40 240 1 0.96 0.94 0.947 

3 20 80 1 0.65 0.74 0.659 

4 60 240 0.3 1.51 1.6 1.513 

5 40 400 0.3 1.83 1.83 1.828 

6 40 240 1 0.94 0.94 0.947 

7 20 240 0.3 1.52 1.47 1.513 

8 40 240 1 0.98 0.94 0.947 

9 20 240 1.7 0.58 0.55 0.581 

10 20 400 1 1.09 1.07 1.172 

11 60 400 1 1.21 1.2 1.234 

12 60 80 1 0.94 0.88 0.994 

13 40 80 1.7 0.59 0.6 0.592 

14 40 80 0.3 1.55 1.51 1.563 

15 60 240 1.7 0.7 0.69 0.669 

16 40 400 1.7 0.89363333 0.92 0.899 

17 40 240 1 0.97 0.94 0.947 

Table 3. Fit summary for different models 

 Std. Dev. Adjusted R2 Predicted R2 PRESS 

Linear 0.1297 0.8733 0.8081 0.4075 

2FI 0.1439 0.8440 0.5971 0.8555 

Quadratic 0.0534 0.9786 0.8771 0.2610 

Modified (Eq. 7) 0.0644 0.9687 0.9385 0.1307 

Fig. 2a shows the variation of extraction yield with respect to particle size and power in the 

time of 40 minutes (Contour plot). As shown in Fig. 2a, in constant power, increasing mesh 

size (decreasing particle size) will increase anethole extraction yield and in constant particle 

size, increasing power will increase the yield. As can be seen in this figure, the maximum 

extraction yield (1.83%) occurs at maximum power (400 W) and minimum particle size (0.3 

mm). 

Fig. 2b shows the change of extraction yield versus power and time when using mesh size 

12 (particle size of 0.3 mm). As shown in this figure, using large particles with low power will 

cause low extraction yield, even lower than of steam distillation. Referring to prior studies, 8 

hours is required to achieve a yield of 1.2 percent in steam distillation [23]. This implies that 

lower extraction time is one of the benefits of using ultrasound in comparison with conventional 

methods. It should be noted that temperature should be kept constant during the test at 25 °C 

since temperature changes during the process can cause the degradation of active ingredients. 

Table 4. P-values and parameter estimates from ANOVA analysis 

P-value Parameter estimate Coefficient 

< 0.0001 1.57236 b0 

0.0085 0.01475 b1 

< 0.0001 -0.0005 b2 

< 0.0001 -1.4069 b3 

0.0626 0.000148 b1
2 

0.0154 0.000003 b2
2 

< 0.0001 0.37755 b3
2 

0.1551 -0.000013 b1b2 

0.2626 0.002321 b1b3 

0.8310 0.000053 b2b3 
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Table 5. Analysis of variance (ANOVA) for anethole extraction yield 

Lack of fit Total Residuals Regression Source of variations 

0.0280 2.12 0.032 2.0850 Sum of squares 

6 16 10 6 Degree of freedom 

4.62 - - 109.95 F-value 

0.0801 - - <0.0001 P-value 

 

 
Fig. 2. Contour plots. (a) effect of particle size and power (time = 40  min), (b) effect of power and time (particle 

size = 0.3 mm) 
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Artificial Neural Network 

Results of the neural network modeling are highly dependent on training algorithms, transfer 

functions of hidden and output layers, and the number of neurons in the hidden layer [24]. To 

find the most efficient training algorithm, 8 different training algorithms were tested and 

compared, when using 8 neurons in the hidden layer and Tansig transfer function for hidden 

and output layers. According to the values of the coefficient of determination (R2), R2
adj, root 

mean square error (RMSE), and sum of squared errors (SSE) presented in Table 6 for 8 different 

functions, it can be observed that the back-propagation algorithm of Levenberg-Marquardt 

(LM) has the best performance. Values of R2, R2
adj, RMSE, and SSE for LM algorithm are 

0.9323, 0.9278, 0.0584 and 0.0514, respectively. In the next step, to find the best transfer 

function for output and hidden layers, 9 different functions were tested with the LM algorithm 

and the constant number of 8 neurons in the hidden layer. The best performance was achieved 

when using Tansig function for output, and Logsig function for the hidden layer. Corresponding 

values of R2, R2
adj, RMSE, and SSE for this model are 0.9657, 0.9634, 0.0486, and 0.0354, 

respectively, that are shown in Fig. 3. Finally, to find the optimum number of neurons, the 

number of neurons was changed from 5 to 16 and each model was trained three times. LM 

training algorithm was used along with Logsig and Tansig transfer functions for the hidden and 

output layer.  Fig. 4 shows R2 (Fig. 4a), RMSE (Fig. 4b), and SEE (Fig. 4c) for this setting. It 

is clear from Fig. 4a that the coefficient of determination is the highest when using 10 neurons 

in the hidden layer (R2 = 0.9933), which indicates the high accuracy of the model in predicting 

the experimental data. In addition, referring to Fig. 4b and c, the values of RMSE and SEE are 

0.0199 and 0.0059, respectively. Table 7 shows the final weights and bias after training the 

network with optimum settings. 

Table 6. Coefficient of determination (R2), sum of squared errors (SSE), and root mean square error (RMSE) for 

different training algorithms 

Number Function 

Transfer 

functions 

hidden layers 

Transfer 

functions 

output layers 

R2 R2
adj RMSE SSE 

1 BFG Tansig Tansig 0.7777 0.7629 0.1085 0.1766 

2 BR Tansig Tansig 0.9176 0.9121 0.0581 0.0507 

3 CGB Tansig Tansig 0.8999 0.8932 0.0766 0.0881 

4 CGF Tansig Tansig 0.8834 0.8756 0.0884 0.1173 

5 CGP Tansig Tansig 0.8760 0.8677 0.0828 0.1030 

6 LM Tansig Tansig 0.9323 0.9278 0.0585 0.0514 

7 R Tansig Tansig 0.7746 0.7595 0.1145 0.1968 

8 RP Tansig Tansig 0.8081 0.7953 0.1141 0.1952 

Table 7. Weights and the bias of optimum neural network 

 W1 W2 B2=-1.7022 

Neuron Time Power 
Particle 

size 

Efficiency 

Extraction 
B1 

1 0.35252 2.5335 -5.0933 1.054 -6.4739 

2 -2.5718 -5.8248 0.38262 -1.2164 4.3475 

3 -4.1878 0.93488 -3.9704 -0.018265 3.4004 

4 -2.0889 -3.3551 -4.6763 0.+1297 1.6292 

5 3.8473 2.5974 -3.4278 1.6732 1.7604 

6 -5.687 0.52662 -1.9351 0.2595 0.37376 

7 -3.1177 -2.7168 -4.3576 0.88449 -1.5488 

8 -5.4538 2.4362 -0.83091 -1.5504 -3.8391 

9 -3.8124 3.54 -2.6635 0.64937 -4.7741 

10 -3.7249 5.5752 -1.6191 1.4514 -5.0982 
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Fig. 3. Coefficient of determination (R2), sum of squared errors (SSE), and root mean square error (RMSE) for 

finding the optimum transfer function 

(a) 

 
(b) 

 
(c) 

 
 Fig. 4. (a) Coefficient of determination (R2), (b) root mean square error (RMSE) for determining optimum 

number of neurons in the hidden layer, (c) sum of squared errors (SEE). 
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After training the neural network with the optimum configuration, predicted extraction yield 

using ANN and DOE models were compared (Fig. 5). R2 is 0.9933 and 0.9851 for ANN and 

DOE models, respectively. Values of RMSE, SSE, and AAD (%) in Table 8 show the higher 

accuracy of the neural network model over the design of the experiment model. 

Table 8. Coefficient of determination, root mean square error, sum of squared errors, and average absolute 

deviation for ANN and RSM models 

ANN RSM Parameters 

0.9933 0.9851 R2 

0.0199 0.0425 RMSE 

0.0059 0.0307 SSE 

2.1944 3.5099 AAD(%) 

 

 

Fig. 5. Predicted extraction yield with neural network model to the predicted yield of design of experiment 

model. 
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Conclusions 

In this study, the effect of three parameters of extraction time, power, and mean particle size on 

the ultrasound-assisted extraction yield of anethole from fennel seeds was investigated using 

ANN and design of experiment method. 17 tests were designed using the BBD experiment 

design method. Results showed that increasing irradiator power and reducing solid particle size 

will increase anethole extraction yield and the maximum yield of 1.83 was obtained with the 

power of 400 Watts and the particle size of 0.3 mm, in the time of 40 minutes. According to the 

experiments, the best results were obtained when using 10 neurons in the hidden layer. 

Comparing the average absolute deviation for ANN and DOE methods (2.1994 and 3.5099 for 

ANN and DOE models, respectively), revealed the superior performance of ANN model in 

predicting the anethole extraction yield from fennel seeds over the design of experiment 

method. Excellent agreement between the ANN predicted results and the actual responses (R2 

= 0.9933), shows that the ANN was efficient in modeling the non-linear behavior of the system. 

Nomenclature 

List of abbreviations 

ANN  Artificial neural network 

DOE  Design of experiment  

BBD  Box-Behnken design method 

LM  Levenberg-Marquardt 

RSM  Response surface methodology 

RMSE  Root mean square error 

SSE  Sum of squared errors 

AAD  Average absolute deviation 

R2  Coefficient of determination 
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