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ABSTRACT ARTICLE INFO

Deciding whether a musical rhythm is good or not, de-
pends on many factors like geographical conditions of a
region, culture, the mood of society, the view of rhythm
over years, and so on. In this paper, we want to make a
decision from the scientific point of view, using geomet-
ric features of rhythms, about bad ones. The researchers
who are investigating the relationship between geometry
and music, certainly realize that there is a big vacuum
in this regard, not using computers to detect a good or
bad rhythm. Here, using computer programming and
applying geometric features to more than four thousand
rhythms, we decide on the bad musical rhythms. Then
we present algorithms for deciding about bad rhythms
using geometrical features.
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1 Introduction

The connection between two subjects of mathematics and music has been of long interest
to many mathematicians as well as musicians. Establishing a connection between these
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two worlds that may seem separate from each other, has been accomplished with geometry.
These studies have been started since 1960. For a better understanding of the subject, it
should be noted that addressing music from a geometry gate initially begins by imaging
musical rhythms on paper that has introduced in [2] for the first time and has improved
in [16,18]. Then obtaining geometric properties and continues with the examination of
these features happens. The obtained features become a standard for the recognition of
the strong or weak rhythms of music from a scientific point of view. In this paper, we will
focus only on the geometric factors of musical rhythms and ignore mathematics of sounds
[19], tuning methods [20], signal representations [14], construction of music instruments
[19,17,3] and geometric symmetry transformations [10]. At the rest of this paper, in
Section 2, we first review some basic concepts and geometric image of music rhythms are
studied. In Section 3, the geometric properties of bad rhythms are extracted from the
following 11 characteristics:

• Maximal evenness

• Rhythmic oddity

• Beatness

• Weighted beatness

• Metric complexity

• Open rhythms

• Distinct durations

• Distinct adjacent durations

• Depth of rhythms

• Asymmetry

• Tallness

Section 4 is devoted to applying these features to all the rhythms in the sixteen-pulse cycle
with five onsets and obtained the total amount of badness for each of six rhythms. These
results are obtained by rating each function and finally summation the points for each
of rhythms. Three worst rhythms are shown in 0, 1 notation and also by using circular
display.
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Figure 1: The cuban timeline [18]

2 Geometry and music, basic concepts

Two very important subjects in music are: Rhythm and Melody. Rhythm is time-
dependent while melody is in contrast to the rhythm. Melody is not time dependent
and is a vertical direction in music. The time-shift model is called the general definition
of rhythm and a pattern configuration of notes, is the specific definition of rhythm. For
example, a steady heartbeat or tick tak of a clock without end are simple sequences of
rhythm, while musicians say that these unique sequences are not rhythms since they do
not include any recognizable audible patterns. There are two kinds of pulses in music,
onset and off-set. When a note is played, that pulse is called onset [5] and when the
note isnt played, the pulse is called off-set [6]. Usually in the classic world there is a
special rhythm that is an indicator. Sometimes this basic feature is the synchronic onsets
and non-interrupted. But other times music is characterized by unique periodic patterns.
These special rhythms are generally called time-lines. An example of a Cuban time-line
is shown in Fig. 1. If a rhythm is repeated continuously throughout a piece of music, it
is called a repetitive rhythm.

2.1 Geometric Image of Music Rhythms

As seen in Fig. 1, a particular rhythm which includes a set of onsets and off-sets, can be
depicted on a circle. There are different types of pulse numbers including 5, 7, 16, and
32. In Fig. 1, the cycle consists of 7 pulses. Imagine a clock instead of 12 numbers has
16 numbers and its numbers start from zero. If we remove the clock and minute counter
from it, and leave only the second counter, we can depict a repeating rhythm on such a
circle, while the distance between two pulses may not be exactly one second. Black points
on the circle represent onsets and white points indicating the off-sets in a particular music
rhythm. In this paper all rhythms are depicted on a 16-pulse cycle and also contain 5
onsets and 11 off-sets; [16,18]. The number of rhythms in this series is 4368. Applying
rhythms to a circular cycle has done in [16] earlier in 1962. As we can see in Fig. 2, the
left part is a box notation of a particular rhythm that has applied on the circle on right.
Box notation is also an old method to represent rhythms on paper. It has introduced
in [13] and used in Korea for hundred years [11]. There are six rhythms that have not
been lost for many years but have been very lasting with migrations from continents to
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Figure 2: The display of a rhythm on a circle [18]

Figure 3: The picture of six famous timelines on sixteen-pulse cycle [18]

continents and gained great popularity among different cultures. These six rhythms are
called:

• Son,

• Rumba,

• Gahu,

• Bossa-nova,

• Soukous and

• Shiko.

If these six rhythms of music are pictured on a 16-pulse cycle, the following circles are
obtained as in Fig. 3. If we look at Fig. 3, we notice that there are pentagons in
all 16-pulse rhythms, including the six famous rhythms. These polygons are obtained
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Figure 4: The full interval polygon of Son [18]

by connecting the onsets in the clockwise order for each rhythm. By examining these
polygons, we find a set of geometric features that are the basis for deciding about bad
rhythms.

2.2 Characteristics of polygons

If there is an onset in the cycle which produces the same rhythm in the forward or
backward direction, rhythm has the characteristic which is called two-way orientation.
Son has this feature, because it also has an axis; see [18] for more details. Looking at the
image of the six rhythms, we notice the Equilateral triangles which means the existence
of an onset that has a similar time interval to the third onset. There are such triangles
in Shiko, Son, Soukous and Gahu [18]. If the pentagons have an angle of 90 degrees,
the following two perspectives are considered. Geometric View: There are two onsets
on circle that are definitely contrasted with each other. Musical View: There are two
onsets that divide the cycle into two half-cycles. It is an important feature in music,
which is called the degree of regularity [18]. In pulse segmentation there are two kinds of
pulses: weak and strong. Syncopation happens when there is an onset on a weak pulse
and an off-set on a strong pulse. While the Rumba differs only in one onset with Son,
Rumba is more complicated because it doesnt have equilateral triangle and symmetry
axis [18]. Syncopation also have more definitions that are introduced in [9]. For grouping
and comparing these six rhythms, another feature that is useful is converting polygons to
a histogram. It can be shown for full interval polygon or not-full interval polygons. Much
more details about full interval vectors have been reviewed in [15] for the first time. Full
interval polygon of a particular rhythm is shown in Fig. 4.
The histograms of Fig. 5 are formed according to the full interval graph of the pentagons
in the sixteen-pulse cycle shown in Fig. 4. Every edge has a weight that is actually the
number of pulses between two onsets that have created the edges. As we can see in Fig.
5, the horizontal axis of the full interval histogram is divided into eight parts, since the
maximum distance between two onsets is eight. For example, the Son shown in Fig. 4
has an edge with weight 2, two edges of 3, two edges of 4, three edges of 6, and two edges
of 7.
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Figure 5: The full interval histogram for six famous rhythms [18]

Figure 6: The adjacent interval for six famous rhythms [18]
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Figure 7: Maximal evenness

3 Geometric Properties of Bad Rhythms

The following geometrical features of bad rhythms will be studied in this section.

3.1 Maximal evenness

This feature occurs when all the adjacent onsets in a rhythm have the same distance. In
other words, it occurs when a rhythm is completely regular, or rhythm onsets have odd
distances from each other [11]. For a rhythm to be a bad timeline, the five onsets should
be distributed almost as oddly as possible within the 16-pulse span. The excessive order
makes the rhythm unattractive. Although many years of such rhythms have been used to
lead the soldiers. In this paper we use this definition of evenness but there are other ways
to compute evenness; [1,4]. Evenness is a feature that with other geometric properties,
has many applications in computational music theory; [6,17]. An example of a regular
rhythm is given as [X.X.X.X.X]. The function to compute this characteristic is shown
in Fig. 7.

3.2 Rhythmic oddity

This property occurs when there are no two opposite onsets in a rhythm. or in other
words, do not divide the cycle into two equal parts [18]. Of the six popular rhythms,
Gahu, Shiko, and Bossa-nova, have this feature. As shown in Fig. 8, there are not two
onsets that divide the cycle into two equal parts by connecting them together. This shape
belongs to the Son, one of the popular rhythms in the world.
To function for rhythmic oddity is given in Fig. 9.

3.3 Beatness

This feature occurs when the onsets of a rhythm is in pulses of zero, four, eight, and
twelve. These pulses are called main pulses. Off-beat: Apart from the main pulses, the
rest of the pulses are considered off-beat. Double off-beat: The onset next to a main
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Figure 8: The rhythmic oddity of Son [18]

Figure 9: Rhythmic oddity

pulse is called double off-beat. As shown in Fig. 10, the Son has a off-beat onset in pulse
number three.
The beatness feature is implemented in Fig. 11.

3.4 Weighted beatness

Beatness means occurring onsets in non-main pulses. This is one of the characteristics of
the goodness of a rhythm. to measure the value of this characteristic, we count off-beat
pulses once and double off-beat twice and then we add two numbers together. Now, in
order to measure bad rhythm, we reverse the situation. This means that the rhythm with
highest score gets the lowest amount of beatness. For example, if we count the Off-beat

Figure 10: The beatness of Son [18]
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Figure 11: Beatness

Figure 12: Weighted beatness

pulses in Fig. 10, the result is four. In this way, the onset at pulse three is counted twice
and the onset in the sixth and tenth pulses are counted once. Computing the maximum
of weight is a special problem in graph theory [6]. This feature is shown in Fig. 12.

3.5 Metric Complexity

For a sixteen-pulses cycle, we consider a certain weight for the entire set. According to
these weights, the maximum complexity for a rhythm is equal to seventeen. To find the
complexity of each rhythm, we reduce its simplicity from 17. In this way, the complexity
of each rhythm is achieved. The greater value of this number makes the rhythm more
spaced than the standards of goodness. The weight sequence (5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2,
1, 3, 1, 2, 1) is used to measure this property which is known as Lerdahl and Jackendoff
algorithm [18]. This sequence is shown in the histogram in Fig. 13. By adapting each of
the rhythms with this histogram and counting the squares of each column and obtaining
their total, the simplicity of each rhythm is obtained. For example, this number is equal
to thirteen for Son, and by diminishing it from the seventeen, we reach four. As a result,
the metric complexity for Son is equal to four.
The following function in Fig. 15 is related to the implementation of the metric complexity.
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Figure 13: The standard histogram of Lerdahl and Jackendoff for metric complexity

Figure 14: The adjust of Son with standard histogram

Figure 15: Metric complexity
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Figure 16: Showing the closure of the Son [1]

Figure 17: Open rhythms

3.6 Open rhythms

As explained in the previous features, there are four main pulses per cycle of sixteen
pulses. By definition, the rhythm is closed if it has an onset in the pulse number twelve.
So, a rhythm without this feature is an open rhythm; see [18]. For example, according to
Fig. 16, the Son has an onset in pulse number twelve, so Son is a closed rhythm.
The following function is responsible for the openness of a rhythm; see Fig. 17.

3.7 Distinct durations

In the previous features, methods for measuring the complexity of rhythms were presented.
Another method for measuring the rhythms complexity is the entropy characteristic which
is obtained by counting the number of distinct durations of the full interval histogram of
the rhythm. the higher number makes the rhythm worse in terms of geometric character-
istics. For example, this number is five for Son [18].

3.8 Distinct adjacent durations

As we know, the seventh feature sometimes fails. Therefore, for a better result, we use
the adjacent interval histogram of a rhythm, to measure distinct duration. This feature
is similar to the previous feature. The more number is obtained, we approach our goal to
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Figure 18: Distinct adjacent durations

Figure 19: The Table derived from full interval histogram with ascending order [18]

find bad rhythms. The following functions in Fig. 18 have been implemented for features
distinct durations and distinct adjacent durations.

3.9 Depth of rhythm

The rhythm that has no two columns in its full interval histogram with same height, is
called a deep rhythm. Indeed, except for columns with a height of 0; see [18]. As men-
tioned above, the value of this characteristic is obtained from the full interval histogram.
In order to get the depth of each rhythm, we use the table in Fig. 19. This table is
sorted in ascending order for the six distinguished rhythms. By reducing the numbers
associated with Shiko (or Bossa-Nova) from each other row in Figue 19, we calculate the
depth of each rhythm. For example, the depth of Son is equal to four. This feature has
been discussed with more details in [15, 8, 20, 12].
The following function in Fig. 20 is related to the implementation of deepness.
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Figure 20: Depth of rhythm

Figure 21: The Symmetry in Shiko [18]

3.10 Asymmetry

The symmetry of polygons in circular cycles is divided to vertically, horizontally and
diagonally. This feature is often considered as a good feature for rhythm. Since the
polygons are full of symmetry lines, we consider the best of them, the diagonal symmetry
line. So, if the rhythm does not have a diagonal line of symmetry, we consider it as a bad
rhythm. According to Figure 23, the Shiko rhythm has no diagonal symmetry line [18].
The implementation of the symmetry function is shown in Fig. 22.

3.11 Tallness

This characteristic is obtained by measuring the height of the tallest column of the adja-
cent interval histogram of a rhythm. The larger value of this attribute, the rhythm has
less chance of having distinct durations [18]. This property is inversely related to the



78 S. Jafaripour / JAC 52 issue 1, June 2020, PP. 65 - 82

Figure 22: Asymmetry

Figure 23: Tallness

complexity of the rhythm. less amount of this attribute means the higher complexity of
the rhythm. For example, according to Fig. 6, this number is equal to 3 for the Son. In
Fig. 23, the function for computation of tallness of a rhythm is discussed.
As previously stated, the rhythms examined were all sixteen pulse rhythms with five
onsets. If we want to examine good rhythms, the advantage of the above method is that
at the very first stage, a large number of rhythms will be eliminated from the competition
and thus finding good rhythms, according to the geometric properties, becomes much
easier. On the other hand if we want to find bad rhythms, this method can identify these
rhythms and also draw conclusions about their geometric properties, and even determine
their degree of badness.
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Figure 24: The image of three rhythm with the worst score on sixteen-pulse cycle

4 Results and Implementations

With the help of the material in Section 2, we extracted the features of the bad rhythms.
These eleven characteristics are the bad geometric properties of the rhythms, which are
applied to all the rhythms in the sixteen-pulse cycle with five onsets. Programming
of these features has been done in C++. Thus, by applying these features, results are
specified to identify the worst rhythms. These results are obtained by rating each function
and finally summation the points for each of rhythms. In this way, for Boolean functions,
numbers zero and one are considered, and for functions with numerical outputs, the
number is returned to a scale in [0, 1]. Based on the largest numbers obtained, the worst
rhythms are presented below. These are three worst rhythms in this case and shown by
0,1 notation and also using circular display according to Fig. 3.

[0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1] >> 8.95556

[0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1] >> 8.95556

[0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1] >> 8.95556

For a closer look, the results of each function for six famous time-lines are specified in
Table 1. These results show the numerical values of scores for the named rhythms. Note
that larger results assigned to each rhythm proves that rhythm is less ear-catching or in
other words, is worse.
The total amount of badness for each of six rhythms is shown in Table 2. These values
are the summation of result functions for every single rhythm. According to these values,
soukous has the most score.
The results are obtained due to geometrical features of badness which are defined in
Section 2. As we know, these results are relative because more factors could be involved
to decide about a rhythm; such as geographical conditions of a region, culture and the
mood of society, view of rhythm over years, and so on.
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Table 1: The results of each function for six famous time-lines
f1 f2 f3 f4 f5 f6

Son 1 Son 1 Son 1 Son 4 Son 4 Son 2
Shiko 0 Shiko 0 Shiko 0 Shiko 2 Shiko 2 Shiko 3

Rumba 0 Rumba 1 Rumba 2 Rumba 5 Rumba 5 Rumba 2
Gahu 0 Gahu 0 Gahu 1 Gahu 5 Gahu 5 Gahu 1
Bossa 0 Bossa 1 Bossa 2 Bossa 6 Bossa 6 Bossa 1

Soukous 0 Soukous 0 Soukous 2 Soukous 6 Soukous 6 Soukous 1

f7 f8 f9 f10 f11 f12
Son 5 Son 3 Son 16 Son 4 Son 3 Son 1

Shiko 4 Shiko 2 Shiko 16 Shiko 0 Shiko 4 Shiko 1
Rumba 6 Rumba 3 Rumba 19 Rumba 4 Rumba 3 Rumba 0
Gahu 7 Gahu 3 Gahu 17 Gahu 6 Gahu 2 Gahu 0
Bossa 4 Bossa 2 Bossa 16 Bossa 0 Bossa 4 Bossa 1

Soukous 7 Soukous 4 Soukous 17 Soukous 6 Soukous 2 Soukous 0

Table 2: The total amount of badness for each of six rhythms

Rhythm Total Amount of Badness

Son 5.8
Shiko 3.55556

Rumba 6.57222
Gahu 7.77222
Bossa 5.54444

Soukous 7.79444

5 Conclusion

In this paper we have decided about rhythms from a geometric point of view. The other
named properties could be involved in future works. Obviously considering these features
will give us a more accurate result about musical rhythms. Its also an open problem in
the subject of finding bad rhythms.
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