تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,097,804 |
تعداد دریافت فایل اصل مقاله | 97,205,448 |
ارزیابی مدلهای تلفیقی با کاربرد الگوریتمهای فرا ابتکاری بهینهسازی PSO و GA در مدل ANFIS برای پیشبینی ضریب انتشار آلاینده در رودخانه ها | ||
مدیریت آب و آبیاری | ||
مقاله 4، دوره 10، شماره 1، خرداد 1399، صفحه 45-59 اصل مقاله (1.23 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jwim.2020.292263.726 | ||
نویسندگان | ||
یاسر مهری1؛ میلاد مهری2؛ جابر سلطانی* 3 | ||
1دانشجوی دکترای سازههای آبی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران، کرج، ایران | ||
2دانشجوی کارشناسی ارشد سازههای آبی، گروه مهندسی آبیاری و زهکشی، پردیس ابوریحان دانشگاه تهران، تهران، ایران. | ||
3استادیار، گروه مهندسی آبیاری و زهکشی، پردیس ابوریحان دانشگاه تهران، تهران، ایران | ||
چکیده | ||
در سال های اخیر مسائل مربوط به انتشار آلودگی در رودخانه ها و مجاری روباز به یکی از مسائل مهم مورد بررسی پژوهشگران تبدیل شده است. با توجه به تأثیر آلودگی روی سلامتی انسان و آبزیان موجود در رودخانه ها، پیش بینی و پیشگیری از آن در رودخانه ها که یکی از منابع تأمین آب می باشد، بسیار ضروری است. برای توصیف نحوه انتشار طولی آلودگی در رودخانه ها از ضریب انتشار طولی در رودخانه ها استفاده می شود. برای اندازه گیری این ضریب روشهای مختلفی اعم از تجربی و ریاضی وجود دارد که محدودیت های زیادی دارند و قابل تعمیم نیستند. بنابراین در این پژوهش با بهره گیری از تلفیق الگوریتم های بهینه سازی GA و PSO با مدل هوشمند ANFIS روشی جدید برای پیش بینی این ضریب با کدنویسی در محیط نرمافزار MATLAB با 116 داده نرمال ارائه شد. پارامترهای عرض سطح آزاد، عمق جریان، سرعت برشی و سرعت جریان در رودخانه برای ورودی مدل و ضریب انتشار طولی برای پارامتر هدف انتخاب شد. در نهایت با توجه به پیش بینی های انجام شده روش ANFIS-PSO با دقت MSE=0.0037 و RMSE=0.061 و با R=0.9622 و روش ANFIS-GA با دقت MSE=0.012 و با RMSE=0.11 با R=0.739 دارای دقت بیشتری نسبت به مدل ANFIS با دقت MSE=0.040 و RMSE=0.200 با R=0.698 می باشند. از طرف دیگر با مقایسه دو روش ANFIS- PSO و ANFIS-GA مشاهده می شود که الگوریتم بهینه سازی PSO نسبت بهروش GA دارای عملکرد بهتری در بهبود ساختار ANFIS بوده است. در نهایت روش ANFIS-PSO را می توان روشی مناسب تر برای پیش بینی ضریب انتشار طولی پیشنهاد می شود. | ||
کلیدواژهها | ||
آلودگی؛ روش های ترکیبی؛ مدلسازی؛ هوش مصنوعی | ||
عنوان مقاله [English] | ||
Evaluation of combined Models with Optimization Approach of PSO and GA in ANFIS for Predicting of Dispersion Coefficient in Rivers | ||
نویسندگان [English] | ||
Yaser Mehri1؛ Milad Mehri2؛ Jaber Soltani3 | ||
1PhD student in Hydraulic Structures, Faculty of Irrigation and Reclamation Engineering., University of Tehran, Iran | ||
2M.Sc Student in Hydraulic Structures, Department of Irrigation and Drainage Engineering, College of Aburayhan, University of Tehran, Iran | ||
3Assistant Professor, Department of Irrigation and Drainage Engineering, College of Aburayhan, University of Tehran, Iran | ||
چکیده [English] | ||
Recently, water pollutions in rivers and canals have become the main issue for researchers. In addition, water pollutants have different effects on human and aquatic health. So, the prediction of pollution in water in different water resources like rivers has been the main topic for researching. The longitude dispersion coefficient which is experimental and theoretical method that is the best way for describing longitude dispersion. In this study, a new method has been used for predicting the longitude dispersion by ANFIS developing with PSO and GA optimization. For this purpose, the programs run with 116 normalizing data by writing of code in MATLAB software. The river wide, water depth, velocity and Shear velocity were used for input parameter and Dispersion coefficient was used for the porpuse parameter. Results showed that the ANFIS-PSO model predicts dispersion coefficient with MSE=0.0037, RMSE=0.061 and R=0.9622 and ANFIS-GA model predicts dispersion coefficient with MSE=0.012, RMSE=0.11 and R=0.739 that have better accurate than ANFIS with MSE=0.040m, RMSE=0.200 and R=0.698. By evaluating the two models, it was found that the PSO algorithm has better performance than GA algorithm in ANFIS model. The ANFIS-PSO model was the most accurate among the three studied models. Finally, it was concluded that the ANFIS-PSO model is more appropriate model to estimate in RMSE, MSE and R for dispersion coefficient | ||
کلیدواژهها [English] | ||
Artificial intelligent, Combined methods, Modeling, Pollution | ||
مراجع | ||
1. جمشیدی، ش.، و نیکسخن، م. (1394). تخصیص بهینۀ بار آلودگی بر مبنای الگوی تجارت کیفیت آب در پاییندست رودخانۀ سفیدرود. مدیریت آب و آبیاری. 5 (2): 243-259. 2. قلعهنی، م.، و ابراهیمی، ک. (1391). ارزیابی الگوریتمهای جستجوی مستقیم و ژنتیک در بهینهسازی پارامترهای مدل غیرخطی ماسکینگام- یک سیلاب از کارون. مدیریت آب و آبیاری. 2 (2): 1-12. 3. نبیزاده، م.، مساعدی، ا.، و دهقانی، ا. (1391). تخمین هوشمند دبی روزانه با بهرهگیری از سامانه استنباط فازی- عصبی تطبیقی. مدیریت آب و آبیاری. 2 (1): 69-80. 4. Annaty, M., Eghbalzadeh, A. & Hosseini, S. (2015). Hybrid ANFIS model for predicting scour depth using particle swarm optimization. Indian J. Sci. Technol, 8(22), 642-649. 5. Azamathulla, H. M. & Ghani, A. A. (2011). Genetic programming for predicting longitudinal dispersion coefficients in streams. Water resources management, 25(6), 1537-1544. 6. Azamathulla, H. M. & Wu, F. C. (2011). Support vector machine approach for longitudinal dispersion coefficients in natural streams. Applied Soft Computing, 11(2), 2902-2905. 7. De Serio, F., Meftah, M. B., Mossa, M. & Termini, D. (2018). Experimental investigation on dispersion mechanisms in rigid and flexible vegetated beds. Advances in Water Resources, 120, 98-113. 8. Eberhart, R. & Kennedy, J. (1995). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (pp. 39-43). Ieee. 9. Elder, J. (1959). The dispersion of marked fluid in turbulent shear flow. Journal of fluid mechanics, 5(4), 544-560. 10. Etemad-Shahidi, A. & Taghipour, M. (2012). Predicting longitudinal dispersion coefficient in natural streams using M5′ model tree. Journal of hydraulic engineering, 138(6), 542-554. 11. Fischer, H. B., List, J. E., Koh, C. R., Imberger, J. & Brooks, N. H. (2013). Mixing in inland and coastal waters. Elsevier. 12. Fisher, M. E. (1967). The theory of equilibrium critical phenomena. Reports on progress in physics, 30(2), 615. 13. Haghiabi, A. H. (2016). Prediction of longitudinal dispersion coefficient using multivariate adaptive regression splines. Journal of Earth System Science, 125(5), 985-995. 14. Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press. 15. Huai, W., Shi, H., Song, S. & Ni, S. (2018). A simplified method for estimating the longitudinal dispersion coefficient in ecological channels with vegetation. Ecological Indicators, 92, 91-98. 16. Jacquin, A. P. & Shamseldin, A. Y. (2006). Development of rainfall–runoff models using Takagi–Sugeno fuzzy inference systems. Journal of Hydrology, 329(1-2), 154-173. 17. Jang, J. S. R., Sun, C. T. & Mizutani, E. (1997). Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence [Book Review]. IEEE Transactions on automatic control, 42(10), 1482-1484. 18. Kashefipour, S. M. & Falconer, R. A. (2002). Longitudinal dispersion coefficients in natural channels. Water Research, 36(6), 1596-1608. 19. Kisi, O., Haktanir, T., Ardiclioglu, M., Ozturk, O., Yalcin, E. & Uludag, S. (2009). Adaptive neuro-fuzzy computing technique for suspended sediment estimation. Advances in Engineering Software, 40(6), 438-444. 20. Kosko, B. (1994). Fuzzy systems as universal approximators. IEEE transactions on computers, 43(11), 1329-1333. 21. Mehri, Y., Soltani, J. & Khashehchi, M. (2019). Predicting the coefficient of discharge for piano key side weirs using GMDH and DGMDH techniques. Flow Measurement and Instrumentation, 65, 1-6. 22. Najafzadeh, M. & Sattar, A. M. (2015). Neuro-fuzzy GMDH approach to predict longitudinal dispersion in water networks. Water Resources Management, 29(7), 2205-2219. 23. Sattar, A. M. & Gharabaghi, B. (2015). Gene expression models for prediction of longitudinal dispersion coefficient in streams. Journal of Hydrology, 524, 587-596. 24. Shen, C., Niu, J., Anderson, E. J. & Phanikumar, M. S. (2010). Estimating longitudinal dispersion in rivers using Acoustic Doppler Current Profilers. Advances in Water Resources, 33(6), 615-623. 25. Sreedhara, B. M., Rao, M. & Mandal, S. (2019). Application of an evolutionary technique (PSO–SVM) and ANFIS in clear-water scour depth prediction around bridge piers. Neural Computing and Applications, 31(11), 7335-7349. 26. Zeng, Y. & Huai, W. (2014). Estimation of longitudinal dispersion coefficient in rivers. Journal of hydro-environment research, 8(1), 2-8. 27. Zhang, W. (2011). A 2‐D numerical simulation study on longitudinal solute transport and longitudinal dispersion coefficient. Water Resources Research, 47(7), 1-13.
| ||
آمار تعداد مشاهده مقاله: 717 تعداد دریافت فایل اصل مقاله: 481 |