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Abstract 
3D seismic attributes and well logs were used to estimated porosity and water saturation in the Asmari 
Formation in the Dezful Embayment, SW Iran. For this purpose, at first, the 3D seismic volume was 
inverted base on the model, to obtain acoustic impedance cube. Afterward, the impedance and other 
attributes extracted from seismic volume were analyzed by multiple attribute regression transform and 
neural networks to predict porosity and water saturation between wells. Then linear or non–linear 
combinations of attributes performed for porosity and water saturation prediction. The result shows that 
the match between the actual and predicted porosity and water saturation improved; using only a single 
attribute to the derived multi attribute transforms and neural networks model. Based on the results of 
neural networks, the highest cross–correlation was observed between seismic attributes and the observed 
target logs between seven wells in the study area. Based on our study, the cross–correlation between 
actual and predicted porosity and water saturation increased and reached 93% and 90% respectively in 
the case of using probabilistic neural networks (PNN). Finally, according to the cross–validation results, 
PNN neural networks are used for porosity and water saturation prediction. We carry out porosity and 
water saturation slicing from the Asmari Formation for display lateral and vertical heterogeneities, and 
the result provided a reliable picture from subsurface formations. Porosity maps distribution shows the 
western portion of the structure is highly porous and should be considered for further exploration and 
development purposes. A possible reason for this high porosity in the western portion of the studied 
formation is the presence of sand layers, especially in zone 2.Note that sand volume increased towards 
west and northwest in direction of shadegan and Ahvaz fields and decreased towards east and southeast 
to Rag–e–Sefid field. Based on the result between acoustic impedance and core, changes in acoustic 
impedance were related to changes in the geological nature of the Asmari reservoir in the field. 
Accordingly, seismic inversion is a powerful tool for studying the details of lithology and sedimentary 
facies. 

Keywords: Seismic Inversion, Multi–Attribute, Neural Network, Multiple Regression, Ramshir Oil 
Field, Asmari Reservoir. 

Introduction 
Porosity and water saturation distributions are crucial properties of hydrocarbon reservoirs and 
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are involved in almost all calculations related to reservoir and production. Seismic inversion is 
a procedure that helps to extract underlying models of the physical characteristics of rocks and 
fluids. Usually, seismic and well–log data used to calculate physical properties. Evaluation of 
reservoir rock properties and mapping their internal heterogeneities are considered as primary 
steps in reservoir modeling. Data used in these cases include core, well log and well test data, 
production history and seismic studies (Rezaee, 2006). However, information obtained from 
cores and well logs are local and represent reservoir properties from a small portion of the 
reservoir (John et al., 2005). In heterogeneous reservoirs, lateral variations of reservoir property 
cannot be described from the measurements at separately located wells, because of the presence 
of high complication and heterogeneity. In order to overcome this problem, the integration of 
3D seismic attributes and well logs are essential for creating various models of geology and 
reservoir properties between wells in the regions. (Abreu et al., 2003; Pramanik et al., 2004; 
Saltzer et al., 2005; Rezvandehy et al., 2011; Raeesi et al., 2012; Snedden, 2013; Perez–Munoz 
et al., 2013; Faraji et al., 2017; Aleardi, 2018). Seismic attributes are derivative quantities 
extracted from seismic data to obtain more information and are used in subsurface for 
interpretation of structures, stratigraphy, and lithology (Chen & Sidney, 1997). Nowadays, most 
of the research efforts to the inversion and interpretation of variations of seismic reflection data 
are dependent on the change in distance between source and receiver (AVO) from prestack 
data. However, post stack data still widely used because of their availability, low time–
consuming and fast processing rates (Leite & Vidal, 2011). A number of methods are existing 
for seismic inversion. In this study, the model–based inversion was used to obtain the cube of 
full band acoustic impedance. Acoustic impedance (AI) Inversion produces high–resolution 
images of the subsurface leading to a significant enhancement in the interpretation of the 
seismic volume (Haris et al., 2017). The post stack acoustic impedance (AI) inversion methods 
became popular when algorithms of wavelet amplitude and phase spectra extraction became 
available (Lindseth, 1979). During the last decades, seismic attributes have successfully been 
used for different purposes in reservoir characterization (Kadkhodaie–Ilkhchi et al., 2009; 
Raeesi et al., 2012; Na’imi et al., 2014; Iturrarán –Viveros & Parra, 2014; Farfour et al., 2015) 
Seismic attributes extracted from 3D seismic data in combination with statistical methods (the 
multivariate regression and the probabilistic neural network (PNN) have been successfully 
employed to estimate reservoir properties prediction. likewise, several researchers focused on 
predicting porosity (e.g., Pramanik et al., 2004; Ogiesoba, 2010; Leite & Vidal, 2011; Khoshdel 
& Riahi, 2011; Kadkhodaie–Ilkhchi et al., 2014; Naeem et al., 2015; Maurya & Singh, 2019) 
and water saturation (Kadkhodaie–Ilkhchi et al., 2009; Na’imi et al., 2014) from various post 
stack seismic attributes by using multi–linear regression, neural network analysis, and fuzzy 
system. Based on the results, some seismic attributes were directly sensitive to the reservoir or 
specific lithological property. In the current study, water saturation and effective porosity were 
predicted from seismic attributes, along with seismic inversion by applying multi–attribute 
regression analysis and neural network in the Asmari reservoir, Ramshir oilfield. In addition, 
in order to reach sedimentary facies and its propagation in the reservoir, a correlation was 
established between seismic data and log data from 24 wells together with core from 7 wells, 
based on the seismic inversion results. 

Geological setting of the study area  

The Oligocene–Miocene shallow–marine carbonates of the Asmari Formation are the giant 
hydrocarbon reservoir at the margin of the Zagros Basin in southwestern Iran. This study focuses 
on mixed siliciclastic–carbonate deposits of the Asmari Formation in the Ramshir Oil Field, 
located in the Dezful Embayment, (Fig. 1). 
   The Dezful Embayment, situated in the south–central part of the Zagros fold–thrust belt, hosts 
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most of the onshore hydrocarbon reservoirs of Iran. It is bounded from the northeast by the 
Mountain Front Fault (MFF), from the north by Balarud Fault (BF), whereas in the east is 
limited by Kazerun Fault (KF) (Sepehr & Cosgrove, 2005). The studied field, Ramshir oilfield, 
is located about 80 Km south–east of Ahvaz (SW Iran) in the Dezful Embayment (Fig.1). 
Generally, the Asmari Formation conformably overlies the deeper facies of the Pabdeh 
Formation and the Gachsaran Formation unconformably overlies the Asmari Formation in most 
places. Lithologically, the Asmari Formation consists of thin, medium to thick and massive 
carbonate layers. Some sandstone layers (the Ahvaz Member) and anhydrite deposits (the 
Kalhur Member) are also present (Fig. 2). 
   Based on the petrographical studies and core description, the depositional system of the 
Asmari Formation changed from shallow marine to coastal plain in several times in the Ramshir 
oilfield. Such deposits indicate a low input of clastic sediment and mostly within arid settings. 
(Osleger et al., 1996). Asmari reservoir in the studied area was divided into 8 main zones and 
7subzone based on geological and petrophysical characteristics (Table 1) which mainly include 
limestone, dolomite, and sandstone. Here, sandstones contain a majority of the hydrocarbons 
of the reservoir due to high porosity. Zone 1, in the upper part of the formation, underlies the 
cap rock (Gachsaran Formation), and Zone 8 (deepest zone) overlays shale and marls of the 
Pabdeh Formation. Zones 1, 6, 7 and 8 are mainly composed of limestone and dolomite, 
whereas zones 2, 3, 4 and subzone 5–2 have a variable amount of sandstone and shale. The 
highest volume of sandstone exists in subzones 2–1, 2–3 and 5–2.  
   In this reservoir, most of the production comes from zone 2, 1, 3 and 4 respectively which 
mainly consists of sandstone, dolomite, along with some interbeds of carbonate and shale. Other 
zones are saturated with water and are not productive zones (NISOC, 2016).   

Figure 1. Location map of the Ramshir Field in southwestern Iran. The major late cretaceous and 
Tertiary oilfields in the region are also shown (Sepehr et al., 2005) 
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Table 1. Different reservoir zones/subzones of the Asmari Formation in the Ramshir oilfield 

Asmari Reservoir Zonation: Summary of lithological and petrophysical average data 

Zones/ 
subzones 

Thickness 
(m)

(%) Sw(%)
Lithology (%) 

LST. DOL. SST. SH. ANHY. 

Z_1 36 12.35 40.40 30.30 49.40 0.00 2.30 0.00 

S.Z_2.1 16 13.97 49.60 23.30 2.00 48.30 16.80 0.90 

S.Z_2.2 5.3 14.06 33.05 30.50 44.00 5.70 4.80 0.00 

S.Z_2.3 10.50 20.00 34.36 5.30 0.50 77.30 13.20 0.00 

S.Z_3.1 21.86 8.20 63.53 43.50 25.70 0.50 6.50 0.00 

S.Z_3.2 25.40 8.10 76.14 44.00 22.60 2.70 7.00 1.00 

Z_4 28.10 9.70 84.85 30.00 14.00 14.20 16.60 0.20 

S.Z_5.1 39.50 12.50 80.15 55.20 5.90 1.00 4.60 0.00 

S.Z_5.2 24.50 14.83 87.02 22.90 3.30 50.50 17.60 0.00 

Z_6 77.90 11.68 68.64 52.90 6.10 1.00 2.70 0.00 

Z_7 71.40 8.90 56.85 63.40 10.20 0.00 1.20 0.00 

Z_8 39.70 2.70 90.00 57.90 0.00 0.00 35.60 0.00 

Total
Avg.

396.16 11.42 63.72 38.27 15.31 16.77 10.74 0.18 

Figure 2. Schematic picture showing the relationship between the Cenozoic Formations, the Zagros 
Basin. Lateral change in thickness and lithology of the Asmari Formation in different parts of the basin 
is observed (Schlumberger, 2003) 

Methodology  

In this study, we used well log data including sonic (DT) and bulk density (RHOB) together 
with calculated logs including water saturation (SW) and effective porosity (PHIE) from seven 
cored wells of the Asmari reservoir of the Ramshir oilfield. The quality of data were controlled 
and ranked based on their validity. In this respect, corrections such as cable tension effects for 
adaptation of core and well log data readings, removal of bad hole flags (BHF) data, cycle 
skipping, removal of null values and log tails were performed. 
 To calculate the effective porosity correctly, shale volume was measured and the porosity of 
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the shale was removed from all computations. Seismic data used in this study are 3D processed 
and post stack seismic data from the Prospectiuni, S.A. & Pedex, survey (2009). At the next 
step, all data were loaded in Hampson–Russell Software (HRS10), and an integrated workflow 
was regarded. For this aim, a well–to–seismic tie was doing to pick out the key stratigraphic 
surfaces which were interpreted to create horizon maps. The created horizons maps, with the 
integration of necessary well log and post stack seismic data by seismic inversion method, 
resulted in the creation of the acoustic impedance cube in the studied field. The inversion 
procedure involves well to seismic calibration, wavelet estimation, low–frequency model 
estimation and model based inversion for a seismic dataset of Ramshir oilfield (Fig 3) (Huuse 
& Feary, 2005; Kumar et al., 2016). Afterward, effective porosity and water saturation were 
estimated from 3D post stack data in the HRS environment by using multi–attribute regression 
analysis and neural networks. Finally, the results were explained and interpreted based on the 
geological setting and diagenetic features of the Asmari reservoir in the field. 

Seismic inversion 

Seismic inversion is the integration of well log and seismic data by inverse modeling of the logs 
from the seismic data (Hampson et al., 2001).The common inversion method for invert seismic 
data and create a cube of full band acoustic impedance is named model–based inversion 
(Russell & Hampson, 1991). Model Based inversions are the generalized linear algorithm that 
uses an iterative forward modeling and comparison process (Simm & Bacon, 2014). The 
precision of seismic inversion results depends upon geologic characteristics, logging data, and 
seismic data resolution.  
   The inversion procedure of the seismic inversion for the 3D seismic cube of the Ramshir 
oilfield involves,  
- Well to seismic calibration and wavelet extraction - Low–Frequency model generation
- Model based inversion (Lavergne & Willim, 1977; Lindseth, 1979; Hampson et al., 2001).

A well–to–seismic tie was created through a synthetic seismogram in order to identify two
horizons of the Asmari and top of the Pabdeh Formations. Accordingly, these horizons were 
picked for use in the initial model building of the model based inversion. A brief review of the 
steps involved in performing seismic inversion is discussed as follows. 

Well to seismic calibration and wavelet extraction 

Theoretically, seismic inversion is based on the convolution model and states that the synthetic 
trace, can be generated from the coevolution of Earth’s reflectivity series with the desired 
wavelet (Mallick, 1995; Cooke & Cant, 2010) such that: 

( ) ( )S t W t R N       (Eq. 1) 
   where is the extracted statistical wavelet, is the reflection coefficient (RC) series and is the 
random noise. at the first step of inversion, seismic and well logs data were imported to the 
inversion project, and well logs for each of the twenty–four wells were converted to a two–way 
travel time using check shot data. Then, the product of sonic and density logs provide an 
acoustic impedance log at each well place. This impedance log was used to derive a log of 
reflectivity. In the next step, the reflectivity was converted from depth to time by a suitable 
time–depth relationship, based on available check shot data for each of the well. The reflectivity 
was convolved with an appropriate wavelet to finally generate synthetic seismogram. The 
suitable statistical wavelet for each well was obtained by using the extraction and selection of 
various wavelets, which created the best correlation between synthetic and real traces. It is 
worth noting that a good correlation between synthetic traces derived from well logs and 
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original seismic traces at each well place comes from a good approximation of seismic wavelet 
(Kadkhodaie–Ilkhchi et al., 2013). After obtaining wavelet for each well and doing calibration 
procedure for each of the twenty–four wells, all calibrated wells were used together to obtain 
one average wavelet, which was used for the inversion. Figure 4 shows the extracted statistical 
wavelet from seismic data along with its amplitude and phase spectra. The dotted line displays 
the average phase of the wavelet. Figure 5 shows the picked time horizons of the Asamri and 
Pabdeh. The window length used in the wavelet extraction ranges from 1680 to 1840 ms, with 
a wavelength of 200 ms. The wavelet extraction algorithm uses seismic data and all available 
wells. A sample of a well–to seismic tie, for one of the wells in the Ramshir field, is shown in 
Fig. 6 where the correlation between synthetic seismogram (blue) and composite trace (red) at 
well location is 0.68%. 

Low Frequency model 

To generate low–frequency models, the input seismic data is modeled by hard constrained 
algorithms. This model is essential for seismic inversion especially model based inversion 
(Cooke & Schneider, 1983, Khoshdel & Riahi, 2007). In a model based inversion, low 
frequency data is usually generated by interpolation based on log data, horizon interpretation, 
and processing velocities. In this study, based on the interpolation of impedance logs from the 
twenty–four wells along with the interpreted seismic horizons (top of the Asmari and top of the 
Pabdeh formations). an arbitrary seismic line passing through the well locations is shown in 
Fig. 7. 

Figure 3. workflow for seismic post stack model-based inversion (Swisi, 2009) 

Figure 4. Average wavelet extracted, a) in a time domain and b) in the frequency domain 
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Figure 5. The time horizon of (a) Asmari Formation and(b) Pabdeh Formation 

Figure 6. result of well to seismic tie for one of the wells in the Ramshir field showing the synthetic 
seismic generated from wavelet and well data (blue trace) and sampled seismic data close to the well 
(red) with a correlation coefficient of 68% 

Model–based Inversion 

A generalized linear inversion algorithm is used in model based inversions. This algorithm 
assumes that the seismic trace and the wavelet are known by the interpreters, and tries to alter 
the initial guess model until the calculated trace matches with the actual trace to an acceptable 
level (Russell, 2004).  

In other words, the geological model is altered until the error between the synthetic and 
original seismic traces is minimized. The basic approach used in the inversion algorithm is, 
therefore, to solve the function given in Equation 2 and to measure any misfits between real 
and synthetic data (Russell, 2004)  
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) )( (J Weight S W Weight M HR R      1 2               (Eq. 2) 

   where S is the actual seismic trace, W is the extracted statistical wavelet, R is reflection co–
efficient, M is the initial guess model or interpreted horizon data and H defines the integration 
operator, which is convolved with final reflectivity to produce the final impedance. In Equation 
2, the first part models the seismic trace while the second part models the impedance initially 
estimated. Well data is used to control the small amounts of noise or modeling errors. The 
workflow for model based inversions is shown in Figure 3. The model based inversion 
technique is successful in capturing the lateral variations in acoustic impedances by 
incorporating spatially constant low frequency model (Figure 7). This inversion method was 
run with the appropriate wavelet and the background impedance model, resulting in an 
impedance model which needs to be closely compared with the actual impedance as a QC step. 
Figure 8 displays a final impedance section in one of the studied seismic arbitrary lines (violet 
color displays high AI reservoir intervals and green color indicates low AI intervals).  

Porosity and water saturation estimation 

Prediction of rock physical parameters such as porosity and water saturation is essential for the 
exploration and development of hydrocarbon reservoirs. In seismic reservoir characterization, 
porosity and water saturation are the main property which controlled hydrocarbon accumulation. 
These parameters affect the signature of the seismic data significantly. In this study, the acoustic 
impedance derived from seismic inversion associated with other suitable seismic attributes is used 
for the estimation of petrophysical parameters from well logs. There are a lot of combination of 
attributes that can be used to obtain a more reliable relationship between seismic attributes and 
reservoir properties such as neural networks, geostatistics, artificial intelligence and the genetic 
algorithm (Schultz et al., 1990 a,b; Yao & Journel, 2000; Chopra & Marfurt, 2007; Bosch et al., 
2010; Raeesi et al., 2012; Perez–Muñoz et al., 2013; Snedden, 2013; Iturrarán–Viveros & Parra, 
2014; Kadkhodaie–Ilkhchi et al., 2014). 

Figure 7. An arbitrary line from seismic data passing through four well locations. Yellow lines indicate 
top of Asmari Formation and violet color show top of Pabdeh Formation. 
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   In this study to find a reliable relation between seismic attributes (as input data) and 
petrophysical parameters (as target data) single and multi–attribute regression analysis (with 
stepwise regression for selection of suitable attributes) and neural network algorithm were 
employed to predict effective porosity and water saturation. 

Application of single attribute regression analysis for porosity and water saturation prediction 

A linear regression technique is used to find the correlation coefficient between the target 
parameter with different seismic attributes. The results from a single attribute analysis are given 
in Table 2. The simplest method to create the relationship between the data and the seismic 
attribute is to use least squares method to determine the relationship. In this relation, high 
correlation regardless of its negative or positive value indicates a strong relationship between 
two parameters. According to Table 2, the prediction error is calculated for every attribute, and 
the one with the lowest error is the best single attribute.  
   The acoustic impedance from seismic inversion has the highest degree of correlation and the 
lowest degree of error related to porosity, otherwise, the Dominant Frequency attribute has the 
highest correlation with water saturation. In most cases that have dealt with seismic attributes, 
a single attribute is usually not enough to predict physical properties with a high degree of 
confidence (Tonn, 2002). Indeed, many attributes could be combined to derive the best 
relationship between seismic data as extracted attributes, thus, a multi–linear regression was 
used to estimate petrophysical property in the Asmari reservoir. 

Application of multi–attribute regression analysis for porosity and water saturation prediction 

A multi–regression analysis is a simple and useful method to find the strongest inputs for 
predicting a target parameter. 

Figure 8. An arbitrary line from model based inversion cube passing through three well locations. The 
inserted color at the well locations represents acoustic impedance 
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Table 2. Multi-attribute list from a stepwise regression for prediction of effective porosity and water 
saturation in the Asmari reservoir of the Ramshir field 

Target Final Attribute Training Error Validation Error 

1 Porosity Log (Inversion Result) 0.0324 0.0333 

2 Porosity Time 0.0311 0.0323 

3 Porosity 
Amplitude Weighted Cosine 

Phase 
0.0300 0.0315 

4 Porosity X-Coordinate 0.0293 0.0308 

5 Porosity Filter 25/30-35/40 0.0286 0.0305 

6 Porosity Instantaneous Phase 0.0278 0.0299 

1 Water Saturation Dominant Frequency 0.1719 0.2293 

2 Water Saturation Amplitude Envelope 0.1453 0.2241 

3 Water Saturation Amplitude Weighted Frequency 0.1363 0.1737 

4 Water Saturation 
Derivative Instantaneous 

Amplitude 
0.1320 0.1628 

   Using the other attributes in addition to acoustic impedance has shown that the single attribute 
regression is not a suitable method for prediction. To improve the prediction power, we need to 
use a group of attributes, simultaneously. The results of multi–regression analyses, for 
predicting water saturation and porosity, are displayed in Table 3. According to Table 3, adding 
more attributes will improve the prediction. This does not always mean that the added attributes 
are predicting the true signal in the target log. The validation error can be considered as a 
criterion for determining when to stop adding attributes to the input set (Russell, 2004).  

According to Table 2, the six attributes for predicting porosity have been proposed. They 
include log (inversion result), time, amplitude weighted cosine phase, x–coordinate, filter 25/30–
35/40 and instantaneous phase. Performing a similar process, the four attributes of dominant 
frequency, amplitude envelope, amplitude weighted frequency and derivative. Instantaneous 
amplitude could be considered as the optimal inputs for estimating water saturation. The 
relationships between the input seismic attributes and porosity and SW are shown in the cross 
plots of Fig. 9. Validation test is commonly used as a criterion to stop adding additional attributes 
when an optimal number of attributes is found. This process contained several stages that continue 
until in all wells the target log is estimated. In each stage, the squared error between the predicted 
and the actual log value is calculated. The process is repeated for the best two attributes, three 
attributes, and so on. 

Table 3. Summary of effective porosity and water saturation prediction by single and multi-attribute 
regression analysis, and neural network for the studied field. 

Target log Method Validation result Quality check(application result) 

Cross correlation 
Average 

Error 
Cross correlation 

Average 
Error 

Effective 
Porosity 

Single attribute 
regression 

0.582 0.053 0.612 0.052 

Multiple attribute 
regression 

0.781 0.045 0.793 0.041 

Neural network 
(PNN) 

0.931 0.042 0.954 0.033 

Water 
Saturation 

Single attribute 
regression 

0.542 0.169 0.564 0.163 

Multiple attribute 
regression 

0.692 0.139 0.718 0.122 

Neural network 
(PNN) 

0.901 0.119 0.948 0.061 
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Figure 9. (a) Cross plot of actual and predicted effective porosity using multi attribute regression with 
correlation coefficient of 0.78. Color legend represents dataset from different wells used in this study. 
(b) Cross plot of actual and predicted water saturation (SW) with correlation coefficient of 0.69

Then, based on a plot of validation error versus the number of attributes, suitable attributes for
prediction are identified as shown in Fig. 10, and also based on the results presented in Table 2, 
validation error after adding six attribute increases. This means the first six attributes are the 
optimal inputs for estimation of porosity and also four attributes are optimum for water saturation 
prediction.  

Derived cross–plot of target log and different seismic attributes show dominant frequency 
attribute has the highest correlation with water saturation and, acoustic impedance has the 
lowest degree of error and the highest degree of correlation related to effective porosity. In 
some cases this single attribute transform produces good results, it does not mean a realistic 
value for target log, for example, acoustic impedance and dominant frequency are not the only 
seismic attribute which can be used to derive the petrophysical properties of the reservoir rocks 
in fact combinations of many attributes is needed to reservoir assessment. Thus, multi–linear 
regression and PNN neural network are used to predict the effective porosity and water 
saturation more precisely in the studied Formation. 

Application of neural network for reservoir property estimation 

The artificial neural network is a procedure or analysis method, especially when it becomes 
necessary to extract nonlinear and complex rules and relations governing a set of inputs data 
and the target property (Leiphart & Hart, 2001; Hampson et al., 2001; Walls et al., 2002; 
Pramanik et al., 2004; Calderon & Castagna, 2007; Gogoi & Chatterjee, 2019). In this paper, 
we used the Probabilistic Neural Network (PNN) to predict porosity and water saturation from 
seismic data. According to the results using the PNN algorithm gives less validation error.  

Probabilistic Neural Network (PNN) 

The PNNs approach includes computing weights which are based on the concept of distance in 
attribute space. The distance is calculated from a known point in space to an unknown point. 
PNN uses one or more measured values (independent variables) or derived parameters to 
predict the value of a single dependent variable (Specht, 1990; Masters, 1995). The Probabilistic 
neural network is a feed–forward neural network including input, hidden and output layer. As 
input for designing a PNN model, a sample set obtained from the well logs is split into training, 
validation and test subsets. 
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Figure 10. The graph showing average error versus the number of attributes to determine the optimal 
number of attributes to use in porosity (a) and water saturation (b) prediction, the Ramshir field. The 
optimal number of attributes to predict porosity and water saturation are six and four, respectively. The 
black curve indicates the error using all wells and the red curve shows the error plot when a well is 
removed from training set 

The training process is carried out until at least one of the following conditions is met (i) a 
minimization of a mean square error (MSE) goal is achieved; (ii) occurrence of three 
consecutive epochs no improvements occur in the MSE for the validation subset; or (iii) a 
maximum number of iterations is completed. The test subset is used only to estimate the 
prediction power of the PNN by performing a blind test and it is not used for building the NN 
model (Leiphart & Hart, 2001). The PNN is considering as one of the most useful neural 
networks to estimate the petrophysical characteristics of seismic attributes by various 
researchers (Specht, 1990; Masters, 1995; Hampson et al., 2001; Pramanik et al., 2004; 
Kadkhodaie et al., 2009, Li, 2014). We compare three methods for predicting effective porosity 
and water saturation from seismic data. The data consist of a suite of well logs and a full stack 
3D seismic survey from the Ramshir Field in Dezful Embayment. The 3D seismic is 
transformed into a number of attribute volumes. The attributes are combined in a nonlinear 
manner, via an Artificial Neural Network (ANN), or in a linear manner, via multilinear 
regression analysis, in order to predict the target porosity and water saturation from the 
available suite of field data. In this study we used neural networks as fallows:  

At first, suitable attributes were selected by using the stepwise regression and its validation. 
Afterward, the statistical relationship between seismic attributes and target logs was obtained 
by neural network training in the well locations to derive a 3D porosity volume. As is seen in 
Fig. 11, porosity in the upper part is higher than the lower part especially in zone 1 and 2 which 
are shown with azure color. Green color indicates the low value and violet color shows a high 
value of porosity. 

Porosity logs are entered at the well locations to compare the actual porosity with the 
predicted porosity. Map of an arbitrary line from the studied seismic cube is shown at the lower 
left of figure11. The PNN was trained by using the attributes extracted from multi–linear 
regression for effective porosity and water saturation estimation. After training, the network 
results show the correlation coefficient of 0.93 and 0.90 between actual and predicted for 
porosity and water saturation outperforming multi–linear regression (Table 3). As previously 
discussed, the result of validation is the criterion for the measure of network performance. 
Accordingly, for effective porosity neural network provided a higher correlation coefficient 
(0.93) and a lower average error (0.042), compared with multilinear regression. Fig12. 
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Overall, the neural network outperforms the regression model for estimation of porosity and water 
saturation in the Ramshir oilfield. As is seen in Fig.13, the arbitrary slices passing through the 
effective porosity cube correspond to high–porosity zones with a high volume of sand. The 
different horizon slices (Fig. 13) show that below the top of the Asmari (zone 2, Fig. 13b) 
represents the most effective porosity comparing to other zones. The same results were confirmed 
from inversion results (Fig. 11). 

As aforementioned, the PNN can better establish the nonlinear relationships between seismic 
attributes, porosity and water saturation. Thus, in order to generate a water saturation volume, 
the neural network applied from the top to the base of the Asmari (Fig. 14).  
As is seen, water saturation increases from zone 1 to zone 4. As shown in Figure.14b, zone 2 has 
a lower value of water saturation that is related to the presence of a productive oil–bearing zone. 
According to the results, water saturation in the central and northwestern parts of the reservoir is 
low that corresponds to the hydrocarbon–bearing area. 

Figure11. Arbitrary line from porosity cube created using Probabilistic Neural Network method 

Figure 12. Crossplot of actual and predicted porosity (a) and water saturation (b) using neural network 
with correlation coefficient of 0.93 for porosity and 0.91 for water saturation. Color legend represents 
dataset from different wells used in this study 
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Figure 13. Different vertical slices of effective porosity maps of Asmari reservoir zones. a) 2 ms slice of 
Asmari Horizon( Z_1) , b) 2 ms slice of Asmari reservoir zone two (Z_2), c) 2 ms slice of Asmari reservoir 
zone three (Z_3), d) 2 ms slice of Asmari reservoir zone four (Z_4) 

Geological reservoir characterization based on the acoustic impedance 

In this study, for characterizing and classifying reservoir based on acoustic impedance 
variation, we used k–means clustering analysis. The results show a range from low to high 
values of the acoustic impedance over the Asmari reservoir. Accordingly, the Asmari reservoir 
can be classified into three main groups including low (AI <10500), medium (10510< AI < 
12512) and high (AI >12550). Table 4 summarizes the main characteristics of each group. The 
study of core and thin sections of the Asmari reservoir indicates the difference in AI value 
between these clusters can be described based on the geological and petrophysical 
characteristics of the reservoir in the Ramshir field. They are described in each group as follows. 

Cluster 1: includes more unconsolidated fine to medium grained, well sorted and rounded 
sandstones (Fig. 15). Based on evidence from core descriptions and thin sections study, they 
are mainly loose (free quartz grains) and slightly cemented with high amounts of hydrocarbon 
staining. 

Cluster 2: based on acoustic impedance a large portion of reservoir facies are classified in 
this group. A variety of textures in mudstone and packstone/grainstone with dolomitic cement 
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are presence in this group. Vuggy, interparticle, and fracture are all the dominated pore types. 
Dissolution and dolomitization are also common in this group (Fig. 16). 

Cluster 3: compared with the two previous groups, has high acoustic impedance and a low 
average effective porosity. Lithologically, this group consists of argillaceous limestone with 
mudstone and wackestone texture. Compaction features observed as solution seams and 
stylolites on core intervals and thin sections (Fig. 17) 

Table 4. Asmari facies characteristic in differentiated clusters based on acoustic impedance (AI) 
Asmari reservoir facies based 
on acoustic impedance (AI) 

AI PHIE GR Description 

Low-AI facies 
Cluster 1 

min 
mean 
max 

8210 
9726 
10510 

0 
14 

17.3 

5.9 
38 
75 

unconsolidated fine to medium grained, well 
sorted and rounded sandstones, mainly loose, 

slightly cemented and has high value of 
hydrocarbon staining 

Medium-AI facies  
Cluster 2 

min 
mean 
max 

10510 
11451 
12510 

0 
10 
16 

3.6 
41 
83 

Dolomitic Bioclastic peloidal packstone/ 
grainstone with vuggy, interparticle and 

biomoldic  porosity 

High-AI facies 
Cluster 3 

min 
mean 
max 

12510 
13200 
14581 

0 
5 
11 

25 
55 
126 

Argillaceous limestone with mudstone and 
wackestone texture and compaction features 

Figure 14. Different vertical slices of water saturation maps of Asmari reservoir production zones. a) 2 
ms slice of Asmari Horizon (Z_1), b) 2 ms slice of Asmari reservoir zone two (Z_2), c) 2 ms slice of 
Asmari reservoir zone three (Z_3), d) 2 ms slice of Asmari reservoir zone four (Z_4) 
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Figure 15. Core image and photomicrographs of cluster 1 from the Asmari reservoir, Ramshir field. a) 
Highly oil-stained loose sandstone (depth 2867.3 m). b, c) Well sorted and rounded free quartz 
grains(depth b  2867.3 m and depth c  2834.1m). 

Figure16. Core image and photomicrographs of cluster 2.  a) Brown limestone stained with hydrocarbon 
(depth 3005.5 m). b) Dolomitization in packstone (depth 2785.25 m). c) Vuggy porosities in ooid-
bioclast grainstone (depth 3005.5 m). 
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Figure 17. Core image and photomicrographs of cluster 3.  a) Cream limestone with stylolites and 
solution seams (arrows) (depth 2803 m).b, c) mudstone with chemical compaction features are observed 
as solution seams and stylolites (depth b 2968.4 m and depth c 2803 m).  

Results and discussion 

In this study statistical methods have been applied based on both linear and non–linear 
algorithms on 3D seismic attributes and log data of the Ramshir oilfield. The analyzed dataset 
consists of 24 wells with measured porosity logs, along with the seismic volume and inverted 
results from the model based inversion methods. 

The multi–attribute analysis as a suitable method was used for predicting effective porosity 
and water saturation. Step–wise multi–regression analysis and cross–validation tests were used 
to determine the optimal set of attributes. The multi–regression analysis is used to find a linear 
relationship between the seismic attributes and the measured reservoir property at the well 
locations. A non–linear relationship is also derived using neural networks. Cross–validation 
tests show the various levels of confidence in the prediction process. The probabilistic neural 
networks showed the lowest validation error, i.e. provided better results (Fig. 12). Based on the 
results of this study, neural network (PNN) can successfully predict reservoir porosity from the 
use of seismic attributes including acoustic impedance, Log (Inversion Result), Time, 
Amplitude Weighted Cosine Phase, X–Coordinate Filter 25/30–35/40 and Instantaneous Phase 
attributes. In order to predict water saturation, Dominant frequency, Amplitude Envelope, 
Amplitude Weighted Frequency and Derivative Instantaneous Amplitude used as the optimal 
inputs to predict water saturation based on neural network (PNN) (Table 2). The seismic 
inversion results demonstrated that the siliciclastics are more developed in the upper zones 
(especially zone 2) of the reservoir and decrease towards the lower zones. Accordingly, 
siliciclastics increase towards the west and the north of the field (Shadegan and Ahvaz fields) 
(Figs. 11 & 14). Based on core and thin sections study, variations in impedance data is related 
to the depositional, diagenetic and petrophysical characteristics of the Asmari reservoir rock. 
Hence, impedance data can be used to recognize the lateral and vertical variations in lithology 
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and facies. The inversion results show that low impedance in the upper part of the reservoir 
(green color) are mainly due to the sandstones lithologies. The low impedance in sandstone 
intervals is clearly related to sand and sandstone in zone 2. Besides this, porous grainstone, 
mudstone, wackestone, and boundstone with dolomitic cement exist showing medium acoustic 
impedance. The high acoustic impedance values (violet color) correspond to the consolidated 
and low porous mudstone/wackestone facies in the studied reservoir (Fig. 8). Hence, acoustic 
impedance served as a useful tool for identifying lithology and reservoir properties in the 
reservoir intervals. 

Conclusion 

In this study, integration of petrophysical interpretation and model based inverted acoustic 
impedance resulted in an effective estimation of reservoir properties in the Ramshir oilfield. 
For this purpose, model based inversion was used as an effective approach to obtain acoustic 
impedance attribute. Acoustic impedance inversion allowed a better understanding of the 
heterogeneities throughout the Asmari reservoir. 3D seismic data were used to investigate the 
lateral and vertical variations of effective porosity and water saturation in the studied reservoir. 
Such variations were described based on the geological characteristics of reservoir rock units. 
Base on the result of the core and thin section study, variations in acoustic impedance were 
related to geological and petrophysical characteristics of the Asmari reservoir. The high values 
of acoustic impedance are related to low porosity facies such as mudstones and argillaceous 
limestones, while low values of AI are in relation to sandstones. The moderate values of AI 
correspond to packstone/grainstone with vuggy and interparticle porosities. The correlation 
coefficient between the predicted and actual porosity and water saturation by using multiple 
regression analysis reaches 0.78 and 0.69, respectively. The probabilistic neural network 
improves the correlations to 0.93 and 0.90, respectively. The results suggest that the 
combination of post stack seismic inversion and PNN can effectively be applied to estimate 
reservoir properties. High effective porosity and hydrocarbon saturation values correspond to 
the west of the main producing unit. This can help to reduce the risks and costs of the 
exploration and master development plans. 
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