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Abstract

3D seismic attributes and well logs were used to estimated porosity and water saturation in the Asmari
Formation in the Dezful Embayment, SW Iran. For this purpose, at first, the 3D seismic volume was
inverted base on the model, to obtain acoustic impedance cube. Afterward, the impedance and other
attributes extracted from seismic volume were analyzed by multiple attribute regression transform and
neural networks to predict porosity and water saturation between wells. Then linear or non-linear
combinations of attributes performed for porosity and water saturation prediction. The result shows that
the match between the actual and predicted porosity and water saturation improved; using only a single
attribute to the derived multi attribute transforms and neural networks model. Based on the results of
neural networks, the highest cross—correlation was observed between seismic attributes and the observed
target logs between seven wells in the study area. Based on our study, the cross—correlation between
actual and predicted porosity and water saturation increased and reached 93% and 90% respectively in
the case of using probabilistic neural networks (PNN). Finally, according to the cross—validation results,
PNN neural networks are used for porosity and water saturation prediction. We carry out porosity and
water saturation slicing from the Asmari Formation for display lateral and vertical heterogeneities, and
the result provided a reliable picture from subsurface formations. Porosity maps distribution shows the
western portion of the structure is highly porous and should be considered for further exploration and
development purposes. A possible reason for this high porosity in the western portion of the studied
formation is the presence of sand layers, especially in zone 2.Note that sand volume increased towards
west and northwest in direction of shadegan and Ahvaz fields and decreased towards east and southeast
to Rag—e—Sefid field. Based on the result between acoustic impedance and core, changes in acoustic
impedance were related to changes in the geological nature of the Asmari reservoir in the field.
Accordingly, seismic inversion is a powerful tool for studying the details of lithology and sedimentary
facies.

Keywords: Seismic Inversion, Multi—Attribute, Neural Network, Multiple Regression, Ramshir Oil
Field, Asmari Reservoir.

Introduction
Porosity and water saturation distributions are crucial properties of hydrocarbon reservoirs and
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are involved in almost all calculations related to reservoir and production. Seismic inversion is
a procedure that helps to extract underlying models of the physical characteristics of rocks and
fluids. Usually, seismic and well-log data used to calculate physical properties. Evaluation of
reservoir rock properties and mapping their internal heterogeneities are considered as primary
steps in reservoir modeling. Data used in these cases include core, well log and well test data,
production history and seismic studies (Rezaee, 2006). However, information obtained from
cores and well logs are local and represent reservoir properties from a small portion of the
reservoir (John et al., 2005). In heterogeneous reservoirs, lateral variations of reservoir property
cannot be described from the measurements at separately located wells, because of the presence
of high complication and heterogeneity. In order to overcome this problem, the integration of
3D seismic attributes and well logs are essential for creating various models of geology and
reservoir properties between wells in the regions. (Abreu et al., 2003; Pramanik et al., 2004;
Saltzer et al., 2005; Rezvandehy et al., 2011; Raeesi et al., 2012; Snedden, 2013; Perez—Munoz
et al.,, 2013; Faraji et al., 2017; Aleardi, 2018). Seismic attributes are derivative quantities
extracted from seismic data to obtain more information and are used in subsurface for
interpretation of structures, stratigraphy, and lithology (Chen & Sidney, 1997). Nowadays, most
of the research efforts to the inversion and interpretation of variations of seismic reflection data
are dependent on the change in distance between source and receiver (AVO) from prestack
data. However, post stack data still widely used because of their availability, low time—
consuming and fast processing rates (Leite & Vidal, 2011). A number of methods are existing
for seismic inversion. In this study, the model-based inversion was used to obtain the cube of
full band acoustic impedance. Acoustic impedance (Al) Inversion produces high-resolution
images of the subsurface leading to a significant enhancement in the interpretation of the
seismic volume (Haris et al., 2017). The post stack acoustic impedance (Al) inversion methods
became popular when algorithms of wavelet amplitude and phase spectra extraction became
available (Lindseth, 1979). During the last decades, seismic attributes have successfully been
used for different purposes in reservoir characterization (Kadkhodaie—Ilkhchi et al., 2009;
Raeesi et al., 2012; Na’imi et al., 2014; Iturraran —Viveros & Parra, 2014; Farfour et al., 2015)
Seismic attributes extracted from 3D seismic data in combination with statistical methods (the
multivariate regression and the probabilistic neural network (PNN) have been successfully
employed to estimate reservoir properties prediction. likewise, several researchers focused on
predicting porosity (e.g., Pramanik et al., 2004; Ogiesoba, 2010; Leite & Vidal, 2011; Khoshdel
& Riahi, 2011; Kadkhodaie—Ilkhchi et al., 2014; Naeem et al., 2015; Maurya & Singh, 2019)
and water saturation (Kadkhodaie—Ilkhchi et al., 2009; Na’imi et al., 2014) from various post
stack seismic attributes by using multi-linear regression, neural network analysis, and fuzzy
system. Based on the results, some seismic attributes were directly sensitive to the reservoir or
specific lithological property. In the current study, water saturation and effective porosity were
predicted from seismic attributes, along with seismic inversion by applying multi—-attribute
regression analysis and neural network in the Asmari reservoir, Ramshir oilfield. In addition,
in order to reach sedimentary facies and its propagation in the reservoir, a correlation was
established between seismic data and log data from 24 wells together with core from 7 wells,
based on the seismic inversion results.

Geological setting of the study area

The Oligocene—Miocene shallow—marine carbonates of the Asmari Formation are the giant
hydrocarbon reservoir at the margin of the Zagros Basin in southwestern Iran. This study focuses
on mixed siliciclastic—carbonate deposits of the Asmari Formation in the Ramshir Oil Field,
located in the Dezful Embayment, (Fig. 1).

The Dezful Embayment, situated in the south—central part of the Zagros fold—thrust belt, hosts
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most of the onshore hydrocarbon reservoirs of Iran. It is bounded from the northeast by the
Mountain Front Fault (MFF), from the north by Balarud Fault (BF), whereas in the east is
limited by Kazerun Fault (KF) (Sepehr & Cosgrove, 2005). The studied field, Ramshir oilfield,
is located about 80 Km south—east of Ahvaz (SW Iran) in the Dezful Embayment (Fig.1).
Generally, the Asmari Formation conformably overlies the deeper facies of the Pabdeh
Formation and the Gachsaran Formation unconformably overlies the Asmari Formation in most
places. Lithologically, the Asmari Formation consists of thin, medium to thick and massive
carbonate layers. Some sandstone layers (the Ahvaz Member) and anhydrite deposits (the
Kalhur Member) are also present (Fig. 2).

Based on the petrographical studies and core description, the depositional system of the
Asmari Formation changed from shallow marine to coastal plain in several times in the Ramshir
oilfield. Such deposits indicate a low input of clastic sediment and mostly within arid settings.
(Osleger et al., 1996). Asmari reservoir in the studied area was divided into 8 main zones and
7subzone based on geological and petrophysical characteristics (Table 1) which mainly include
limestone, dolomite, and sandstone. Here, sandstones contain a majority of the hydrocarbons
of the reservoir due to high porosity. Zone 1, in the upper part of the formation, underlies the
cap rock (Gachsaran Formation), and Zone 8 (deepest zone) overlays shale and marls of the
Pabdeh Formation. Zones 1, 6, 7 and 8 are mainly composed of limestone and dolomite,
whereas zones 2, 3, 4 and subzone 5-2 have a variable amount of sandstone and shale. The
highest volume of sandstone exists in subzones 2—1, 2—3 and 5-2.

In this reservoir, most of the production comes from zone 2, 1, 3 and 4 respectively which
mainly consists of sandstone, dolomite, along with some interbeds of carbonate and shale. Other
zones are saturated with water and are not productive zones (NISOC, 2016).
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Figure 1. Location map of the Ramshir Field in southwestern Iran. The major late cretaceous and
Tertiary oilfields in the region are also shown (Sepehr et al., 2005)
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Table 1. Different reservoir zones/subzones of the Asmari Formation in the Ramshir oilfield
Asmari Reservoir Zonation: Summary of lithological and petrophysical average data
Zones/  Thickness o Lithology (%)
subzones (m) (o) Sw(%) LST. DOL. SST. SH. ANHY.
Z 1 36 12.35 40.40 30.30 49.40 0.00 2.30 0.00
S.Z 2.1 16 13.97 49.60 23.30 2.00 48.30 16.80 0.90
S.Z 2.2 5.3 14.06 33.05 30.50 44,00 5.70 4.80 0.00
S.Z 23 10.50 20.00 34.36 5.30 0.50 7730 13.20 0.00
S.Z 3.1 21.86 8.20 63.53 43.50 25.70 0.50 6.50 0.00
S.Z 3.2 25.40 8.10 76.14 44.00 22.60 2.70 7.00 1.00
Z 4 28.10 9.70 84.85 30.00 14.00 1420 16.60 0.20
S.Z 5.1 39.50 12.50 80.15 55.20 5.90 1.00 4.60 0.00
S.Z 5.2 24.50 14.83 87.02 22.90 3.30 50.50 17.60 0.00
Z6 77.90 11.68 68.64 52.90 6.10 1.00 2.70 0.00
77 71.40 8.90 56.85 63.40 10.20 0.00 1.20 0.00
Z38 39.70 2.70 90.00 57.90 0.00 0.00  35.60 0.00
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Figure 2. Schematic picture showing the relationship between the Cenozoic Formations, the Zagros
Basin. Lateral change in thickness and lithology of the Asmari Formation in different parts of the basin
is observed (Schlumberger, 2003)

Methodology

In this study, we used well log data including sonic (DT) and bulk density (RHOB) together
with calculated logs including water saturation (SW) and effective porosity (PHIE) from seven
cored wells of the Asmari reservoir of the Ramshir oilfield. The quality of data were controlled
and ranked based on their validity. In this respect, corrections such as cable tension effects for
adaptation of core and well log data readings, removal of bad hole flags (BHF) data, cycle
skipping, removal of null values and log tails were performed.

To calculate the effective porosity correctly, shale volume was measured and the porosity of
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the shale was removed from all computations. Seismic data used in this study are 3D processed
and post stack seismic data from the Prospectiuni, S.A. & Pedex, survey (2009). At the next
step, all data were loaded in Hampson—Russell Software (HRS10), and an integrated workflow
was regarded. For this aim, a well-to—seismic tie was doing to pick out the key stratigraphic
surfaces which were interpreted to create horizon maps. The created horizons maps, with the
integration of necessary well log and post stack seismic data by seismic inversion method,
resulted in the creation of the acoustic impedance cube in the studied field. The inversion
procedure involves well to seismic calibration, wavelet estimation, low—frequency model
estimation and model based inversion for a seismic dataset of Ramshir oilfield (Fig 3) (Huuse
& Feary, 2005; Kumar et al., 2016). Afterward, effective porosity and water saturation were
estimated from 3D post stack data in the HRS environment by using multi—attribute regression
analysis and neural networks. Finally, the results were explained and interpreted based on the
geological setting and diagenetic features of the Asmari reservoir in the field.

Seismic inversion

Seismic inversion is the integration of well log and seismic data by inverse modeling of the logs
from the seismic data (Hampson et al., 2001).The common inversion method for invert seismic
data and create a cube of full band acoustic impedance is named model-based inversion
(Russell & Hampson, 1991). Model Based inversions are the generalized linear algorithm that
uses an iterative forward modeling and comparison process (Simm & Bacon, 2014). The
precision of seismic inversion results depends upon geologic characteristics, logging data, and
seismic data resolution.

The inversion procedure of the seismic inversion for the 3D seismic cube of the Ramshir
oilfield involves,

- Well to seismic calibration and wavelet extraction - Low—Frequency model generation
- Model based inversion (Lavergne & Willim, 1977; Lindseth, 1979; Hampson et al., 2001).

A well-to—seismic tie was created through a synthetic seismogram in order to identify two
horizons of the Asmari and top of the Pabdeh Formations. Accordingly, these horizons were
picked for use in the initial model building of the model based inversion. A brief review of the
steps involved in performing seismic inversion is discussed as follows.

Well to seismic calibration and wavelet extraction

Theoretically, seismic inversion is based on the convolution model and states that the synthetic
trace, can be generated from the coevolution of Earth’s reflectivity series with the desired
wavelet (Mallick, 1995; Cooke & Cant, 2010) such that:

S(t)=W(t)*R+N (Eq. 1)

where is the extracted statistical wavelet, is the reflection coefficient (RC) series and is the
random noise. at the first step of inversion, seismic and well logs data were imported to the
inversion project, and well logs for each of the twenty—four wells were converted to a two—way
travel time using check shot data. Then, the product of sonic and density logs provide an
acoustic impedance log at each well place. This impedance log was used to derive a log of
reflectivity. In the next step, the reflectivity was converted from depth to time by a suitable
time—depth relationship, based on available check shot data for each of the well. The reflectivity
was convolved with an appropriate wavelet to finally generate synthetic seismogram. The
suitable statistical wavelet for each well was obtained by using the extraction and selection of
various wavelets, which created the best correlation between synthetic and real traces. It is
worth noting that a good correlation between synthetic traces derived from well logs and
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original seismic traces at each well place comes from a good approximation of seismic wavelet
(Kadkhodaie—Ilkhchi et al., 2013). After obtaining wavelet for each well and doing calibration
procedure for each of the twenty—four wells, all calibrated wells were used together to obtain
one average wavelet, which was used for the inversion. Figure 4 shows the extracted statistical
wavelet from seismic data along with its amplitude and phase spectra. The dotted line displays
the average phase of the wavelet. Figure 5 shows the picked time horizons of the Asamri and
Pabdeh. The window length used in the wavelet extraction ranges from 1680 to 1840 ms, with
a wavelength of 200 ms. The wavelet extraction algorithm uses seismic data and all available
wells. A sample of a well—to seismic tie, for one of the wells in the Ramshir field, is shown in
Fig. 6 where the correlation between synthetic seismogram (blue) and composite trace (red) at
well location is 0.68%.

Low Frequency model

To generate low—frequency models, the input seismic data is modeled by hard constrained
algorithms. This model is essential for seismic inversion especially model based inversion
(Cooke & Schneider, 1983, Khoshdel & Riahi, 2007). In a model based inversion, low
frequency data is usually generated by interpolation based on log data, horizon interpretation,
and processing velocities. In this study, based on the interpolation of impedance logs from the
twenty—four wells along with the interpreted seismic horizons (top of the Asmari and top of the
Pabdeh formations). an arbitrary seismic line passing through the well locations is shown in
Fig. 7.

Well Log Seismic
Data Data
] } '
Create | Wavelet Seismic |
Synthetic Extraction Processing
Strich/ ' Bk i
Squeeze Model ersmie
0gs Inversion
Only l
Build
Model
Inversion
> —

Figure 3. workflow for seismic post stack model-based inversion (Swisi, 2009)
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Model-based Inversion

A generalized linear inversion algorithm is used in model based inversions. This algorithm
assumes that the seismic trace and the wavelet are known by the interpreters, and tries to alter
the initial guess model until the calculated trace matches with the actual trace to an acceptable
level (Russell, 2004).

In other words, the geological model is altered until the error between the synthetic and
original seismic traces is minimized. The basic approach used in the inversion algorithm is,
therefore, to solve the function given in Equation 2 and to measure any misfits between real
and synthetic data (Russell, 2004)
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J =Weight, x(S —W %R )+ Weight, x(M — H *R) (Eq. 2)

where S is the actual seismic trace, W is the extracted statistical wavelet, R is reflection co—
efficient, M is the initial guess model or interpreted horizon data and H defines the integration
operator, which is convolved with final reflectivity to produce the final impedance. In Equation
2, the first part models the seismic trace while the second part models the impedance initially
estimated. Well data is used to control the small amounts of noise or modeling errors. The
workflow for model based inversions is shown in Figure 3. The model based inversion
technique is successful in capturing the lateral variations in acoustic impedances by
incorporating spatially constant low frequency model (Figure 7). This inversion method was
run with the appropriate wavelet and the background impedance model, resulting in an
impedance model which needs to be closely compared with the actual impedance as a QC step.
Figure 8 displays a final impedance section in one of the studied seismic arbitrary lines (violet
color displays high Al reservoir intervals and green color indicates low Al intervals).

Porosity and water saturation estimation

Prediction of rock physical parameters such as porosity and water saturation is essential for the
exploration and development of hydrocarbon reservoirs. In seismic reservoir characterization,
porosity and water saturation are the main property which controlled hydrocarbon accumulation.
These parameters affect the signature of the seismic data significantly. In this study, the acoustic
impedance derived from seismic inversion associated with other suitable seismic attributes is used
for the estimation of petrophysical parameters from well logs. There are a lot of combination of
attributes that can be used to obtain a more reliable relationship between seismic attributes and
reservoir properties such as neural networks, geostatistics, artificial intelligence and the genetic
algorithm (Schultz et al., 1990 a,b; Yao & Journel, 2000; Chopra & Marfurt, 2007; Bosch et al.,
2010; Raeesi et al., 2012; Perez—Mufioz et al., 2013; Snedden, 2013; Iturraran—Viveros & Parra,
2014; Kadkhodaie—Ilkhchi et al., 2014).

View L Color Datz: arbitrary_lines Seismic
Inserted Qurve Data: P-wiave

F 376 382 385 394 400 406 412 418 424 430 436 442 448 454 460 466 472 479 404 490 496 502 508 514 520 526 532 538 54 550 556 562 563 574 500 536 532 598 604 510 615 622 626 634 640 546 652 4

Tnlire 2417 2410 2403 2395 2389 2382 2375 2368 2361 2354 2347 2340 2333 2326 2319 1312 2305 2298 2201 228¢ 2277 2270 2263 2255 2346 2247 2235 2238 2221 2214 2307 2200 2193 2136 2179 2172 2165 2158 2151 2146

Figure 7. An arbitrary line from seismic data passing through four well locations. Yellow lines indicate
top of Asmari Formation and violet color show top of Pabdeh Formation.
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In this study to find a reliable relation between seismic attributes (as input data) and
petrophysical parameters (as target data) single and multi—attribute regression analysis (with
stepwise regression for selection of suitable attributes) and neural network algorithm were
employed to predict effective porosity and water saturation.

Application of single attribute regression analysis for porosity and water saturation prediction

A linear regression technique is used to find the correlation coefficient between the target
parameter with different seismic attributes. The results from a single attribute analysis are given
in Table 2. The simplest method to create the relationship between the data and the seismic
attribute is to use least squares method to determine the relationship. In this relation, high
correlation regardless of its negative or positive value indicates a strong relationship between
two parameters. According to Table 2, the prediction error is calculated for every attribute, and
the one with the lowest error is the best single attribute.

The acoustic impedance from seismic inversion has the highest degree of correlation and the
lowest degree of error related to porosity, otherwise, the Dominant Frequency attribute has the
highest correlation with water saturation. In most cases that have dealt with seismic attributes,
a single attribute is usually not enough to predict physical properties with a high degree of
confidence (Tonn, 2002). Indeed, many attributes could be combined to derive the best
relationship between seismic data as extracted attributes, thus, a multi-linear regression was
used to estimate petrophysical property in the Asmari reservoir.

Application of multi—attribute regression analysis for porosity and water saturation prediction

A multi-regression analysis is a simple and useful method to find the strongest inputs for
predicting a target parameter.
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Figure 8. An arbitrary line from model based inversion cube passing through three well locations. The
inserted color at the well locations represents acoustic impedance
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Table 2. Multi-attribute list from a stepwise regression for prediction of effective porosity and water
saturation in the Asmari reservoir of the Ramshir field

Target Final Attribute Training Error Validation Error
1 Porosity Log (Inversion Result) 0.0324 0.0333
2 Porosity Time 0.0311 0.0323
3 Porosity Amplitude Xl?ihwd Cosine 0.0300 0.0315
4 Porosity X-Coordinate 0.0293 0.0308
5 Porosity Filter 25/30-35/40 0.0286 0.0305
6 Porosity Instantaneous Phase 0.0278 0.0299
1 Water Saturation Dominant Frequency 0.1719 0.2293
2 Water Saturation Amplitude Envelope 0.1453 0.2241
3 Water Saturation Amplitude Weighted Frequency 0.1363 0.1737
4 Water Saturation Derivative Instantaneous 0.1320 0.1628
Amplitude

Using the other attributes in addition to acoustic impedance has shown that the single attribute
regression is not a suitable method for prediction. To improve the prediction power, we need to
use a group of attributes, simultaneously. The results of multi-regression analyses, for
predicting water saturation and porosity, are displayed in Table 3. According to Table 3, adding
more attributes will improve the prediction. This does not always mean that the added attributes
are predicting the true signal in the target log. The validation error can be considered as a
criterion for determining when to stop adding attributes to the input set (Russell, 2004).

According to Table 2, the six attributes for predicting porosity have been proposed. They
include log (inversion result), time, amplitude weighted cosine phase, x—coordinate, filter 25/30—
35/40 and instantaneous phase. Performing a similar process, the four attributes of dominant
frequency, amplitude envelope, amplitude weighted frequency and derivative. Instantaneous
amplitude could be considered as the optimal inputs for estimating water saturation. The
relationships between the input seismic attributes and porosity and SW are shown in the cross
plots of Fig. 9. Validation test is commonly used as a criterion to stop adding additional attributes
when an optimal number of attributes is found. This process contained several stages that continue
until in all wells the target log is estimated. In each stage, the squared error between the predicted
and the actual log value is calculated. The process is repeated for the best two attributes, three
attributes, and so on.

Table 3. Summary of effective porosity and water saturation prediction by single and multi-attribute
regression analysis, and neural network for the studied field.

Target log Method Validation result Quality check(application result)
Cross correlation Average Cross correlation Average

Error Error

Single attribute 0.582 0.053 0.612 0.052
regression

Effectfve Multiple atftrlbute 0.781 0.045 0.793 0.041
Porosity regression

Neural network

(PNN) 0.931 0.042 0.954 0.033

Single attribute 0.542 0.169 0.564 0.163
regression

Water — Multiple attribute 0.692 0.139 0.718 0.122
Saturation regression

Neural network 0.901 0.119 0.948 0.061

(PNN)
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Then, based on a plot of validation error versus the number of attributes, suitable attributes for
prediction are identified as shown in Fig. 10, and also based on the results presented in Table 2,
validation error after adding six attribute increases. This means the first six attributes are the
optimal inputs for estimation of porosity and also four attributes are optimum for water saturation
prediction.

Derived cross—plot of target log and different seismic attributes show dominant frequency
attribute has the highest correlation with water saturation and, acoustic impedance has the
lowest degree of error and the highest degree of correlation related to effective porosity. In
some cases this single attribute transform produces good results, it does not mean a realistic
value for target log, for example, acoustic impedance and dominant frequency are not the only
seismic attribute which can be used to derive the petrophysical properties of the reservoir rocks
in fact combinations of many attributes is needed to reservoir assessment. Thus, multi—linear
regression and PNN neural network are used to predict the effective porosity and water
saturation more precisely in the studied Formation.

Application of neural network for reservoir property estimation

The artificial neural network is a procedure or analysis method, especially when it becomes
necessary to extract nonlinear and complex rules and relations governing a set of inputs data
and the target property (Leiphart & Hart, 2001; Hampson et al., 2001; Walls et al., 2002;
Pramanik et al., 2004; Calderon & Castagna, 2007; Gogoi & Chatterjee, 2019). In this paper,
we used the Probabilistic Neural Network (PNN) to predict porosity and water saturation from
seismic data. According to the results using the PNN algorithm gives less validation error.

Probabilistic Neural Network (PNN)

The PNNs approach includes computing weights which are based on the concept of distance in
attribute space. The distance is calculated from a known point in space to an unknown point.
PNN uses one or more measured values (independent variables) or derived parameters to
predict the value of a single dependent variable (Specht, 1990; Masters, 1995). The Probabilistic
neural network is a feed—forward neural network including input, hidden and output layer. As
input for designing a PNN model, a sample set obtained from the well logs is split into training,
validation and test subsets.
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Figure 10. The graph showing average error versus the number of attributes to determine the optimal
number of attributes to use in porosity (a) and water saturation (b) prediction, the Ramshir field. The
optimal number of attributes to predict porosity and water saturation are six and four, respectively. The
black curve indicates the error using all wells and the red curve shows the error plot when a well is
removed from training set

The training process is carried out until at least one of the following conditions is met (i) a
minimization of a mean square error (MSE) goal is achieved; (ii) occurrence of three
consecutive epochs no improvements occur in the MSE for the validation subset; or (iii) a
maximum number of iterations is completed. The test subset is used only to estimate the
prediction power of the PNN by performing a blind test and it is not used for building the NN
model (Leiphart & Hart, 2001). The PNN is considering as one of the most useful neural
networks to estimate the petrophysical characteristics of seismic attributes by various
researchers (Specht, 1990; Masters, 1995; Hampson et al., 2001; Pramanik et al., 2004;
Kadkhodaie et al., 2009, Li, 2014). We compare three methods for predicting effective porosity
and water saturation from seismic data. The data consist of a suite of well logs and a full stack
3D seismic survey from the Ramshir Field in Dezful Embayment. The 3D seismic is
transformed into a number of attribute volumes. The attributes are combined in a nonlinear
manner, via an Artificial Neural Network (ANN), or in a linear manner, via multilinear
regression analysis, in order to predict the target porosity and water saturation from the
available suite of field data. In this study we used neural networks as fallows:

At first, suitable attributes were selected by using the stepwise regression and its validation.
Afterward, the statistical relationship between seismic attributes and target logs was obtained
by neural network training in the well locations to derive a 3D porosity volume. As is seen in
Fig. 11, porosity in the upper part is higher than the lower part especially in zone 1 and 2 which
are shown with azure color. Green color indicates the low value and violet color shows a high
value of porosity.

Porosity logs are entered at the well locations to compare the actual porosity with the
predicted porosity. Map of an arbitrary line from the studied seismic cube is shown at the lower
left of figurel1l. The PNN was trained by using the attributes extracted from multi-linear
regression for effective porosity and water saturation estimation. After training, the network
results show the correlation coefficient of 0.93 and 0.90 between actual and predicted for
porosity and water saturation outperforming multi—linear regression (Table 3). As previously
discussed, the result of validation is the criterion for the measure of network performance.
Accordingly, for effective porosity neural network provided a higher correlation coefficient
(0.93) and a lower average error (0.042), compared with multilinear regression. Figl12.
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Overall, the neural network outperforms the regression model for estimation of porosity and water
saturation in the Ramshir oilfield. As is seen in Fig.13, the arbitrary slices passing through the
effective porosity cube correspond to high—porosity zones with a high volume of sand. The
different horizon slices (Fig. 13) show that below the top of the Asmari (zone 2, Fig. 13b)
represents the most effective porosity comparing to other zones. The same results were confirmed
from inversion results (Fig. 11).

As aforementioned, the PNN can better establish the nonlinear relationships between seismic

attributes, porosity and water saturation. Thus, in order to generate a water saturation volume,
the neural network applied from the top to the base of the Asmari (Fig. 14).
As is seen, water saturation increases from zone 1 to zone 4. As shown in Figure.14b, zone 2 has
a lower value of water saturation that is related to the presence of a productive oil-bearing zone.
According to the results, water saturation in the central and northwestern parts of the reservoir is
low that corresponds to the hydrocarbon—bearing area.
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Figure 13. Different vertical slices of effective porosity maps of Asmari reservoir zones. a) 2 ms slice of
Asmari Horizon(Z_1),b) 2 ms slice of Asmari reservoir zone two (Z_2), ¢) 2 ms slice of Asmari reservoir
zone three (Z_3), d) 2 ms slice of Asmari reservoir zone four (Z_4)

Geological reservoir characterization based on the acoustic impedance

In this study, for characterizing and classifying reservoir based on acoustic impedance
variation, we used k—means clustering analysis. The results show a range from low to high
values of the acoustic impedance over the Asmari reservoir. Accordingly, the Asmari reservoir
can be classified into three main groups including low (AI <10500), medium (10510< Al <
12512) and high (AI >12550). Table 4 summarizes the main characteristics of each group. The
study of core and thin sections of the Asmari reservoir indicates the difference in Al value
between these clusters can be described based on the geological and petrophysical
characteristics of the reservoir in the Ramshir field. They are described in each group as follows.

Cluster 1: includes more unconsolidated fine to medium grained, well sorted and rounded
sandstones (Fig. 15). Based on evidence from core descriptions and thin sections study, they
are mainly loose (free quartz grains) and slightly cemented with high amounts of hydrocarbon
staining.

Cluster 2: based on acoustic impedance a large portion of reservoir facies are classified in
this group. A variety of textures in mudstone and packstone/grainstone with dolomitic cement
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are presence in this group. Vuggy, interparticle, and fracture are all the dominated pore types.
Dissolution and dolomitization are also common in this group (Fig. 16).

Cluster 3: compared with the two previous groups, has high acoustic impedance and a low
average effective porosity. Lithologically, this group consists of argillaceous limestone with
mudstone and wackestone texture. Compaction features observed as solution seams and
stylolites on core intervals and thin sections (Fig. 17)

Table 4. Asmari facies characteristic in differentiated clusters based on acoustic impedance (Al)
Asmari reservoir facies based Al PHIE GR Description
on acoustic impedance (Al)

unconsolidated fine to medium grained, well
sorted and rounded sandstones, mainly loose,
slightly cemented and has high value of
hydrocarbon staining

min 8210 0 5.9
mean 9726 14 38
max 10510 17.3 75

Low-Al facies
Cluster 1

Medium-AT facies min 10510 0 3.6 Dolomitic Bioclastic peloidal packstone/
Cluster 2 mean 11451 10 41 grainstone with vuggy, interparticle and
max 12510 16 83 biomoldic porosity
High-Al facies rlil:n gg(l)g (5) gg Argillaceous limestone with mudstone and
Cluster 3 max 14581 1 126 wackestone texture and compaction features
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Figure 14. Different vertical slices of water saturation maps of Asmari reservoir production zones. a) 2
ms slice of Asmari Horizon (Z_1), b) 2 ms slice of Asmari reservoir zone two (Z 2), ¢) 2 ms slice of
Asmari reservoir zone three (Z_3), d) 2 ms slice of Asmari reservoir zone four (Z_4)
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Figure 15. Core image and photomicrographs of cluster 1 from
Highly oil-stained loose sandstone (depth 2867.3 m). b, ¢) Well sorted and rounded free quartz

grains(depth b 2867.3 m and depth ¢ 2834.1m).

=
o
(=1
~

Figurel6. Core image and photomicrographs of cluster 2. a) Brown limestone stained with hydrocarbon

(depth 3005.5 m). b) Dolomitization in packstone (depth 2785.25 m). ¢) Vuggy porosities in ooid-
bioclast grainstone (depth 3005.5 m).
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7 .,:'.-p ok
Figure 17. Core image and photomicrographs of cluster 3. a) Cream limestone with stylolites and
solution seams (arrows) (depth 2803 m).b, ¢) mudstone with chemical compaction features are observed
as solution seams and stylolites (depth b 2968.4 m and depth ¢ 2803 m).

Results and discussion

In this study statistical methods have been applied based on both linear and non-linear
algorithms on 3D seismic attributes and log data of the Ramshir oilfield. The analyzed dataset
consists of 24 wells with measured porosity logs, along with the seismic volume and inverted
results from the model based inversion methods.

The multi—attribute analysis as a suitable method was used for predicting effective porosity
and water saturation. Step—wise multi—regression analysis and cross—validation tests were used
to determine the optimal set of attributes. The multi—regression analysis is used to find a linear
relationship between the seismic attributes and the measured reservoir property at the well
locations. A non-linear relationship is also derived using neural networks. Cross—validation
tests show the various levels of confidence in the prediction process. The probabilistic neural
networks showed the lowest validation error, i.e. provided better results (Fig. 12). Based on the
results of this study, neural network (PNN) can successfully predict reservoir porosity from the
use of seismic attributes including acoustic impedance, Log (Inversion Result), Time,
Amplitude Weighted Cosine Phase, X—Coordinate Filter 25/30-35/40 and Instantaneous Phase
attributes. In order to predict water saturation, Dominant frequency, Amplitude Envelope,
Amplitude Weighted Frequency and Derivative Instantaneous Amplitude used as the optimal
inputs to predict water saturation based on neural network (PNN) (Table 2). The seismic
inversion results demonstrated that the siliciclastics are more developed in the upper zones
(especially zone 2) of the reservoir and decrease towards the lower zones. Accordingly,
siliciclastics increase towards the west and the north of the field (Shadegan and Ahvaz fields)
(Figs. 11 & 14). Based on core and thin sections study, variations in impedance data is related
to the depositional, diagenetic and petrophysical characteristics of the Asmari reservoir rock.
Hence, impedance data can be used to recognize the lateral and vertical variations in lithology
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and facies. The inversion results show that low impedance in the upper part of the reservoir
(green color) are mainly due to the sandstones lithologies. The low impedance in sandstone
intervals is clearly related to sand and sandstone in zone 2. Besides this, porous grainstone,
mudstone, wackestone, and boundstone with dolomitic cement exist showing medium acoustic
impedance. The high acoustic impedance values (violet color) correspond to the consolidated
and low porous mudstone/wackestone facies in the studied reservoir (Fig. 8). Hence, acoustic
impedance served as a useful tool for identifying lithology and reservoir properties in the
reservoir intervals.

Conclusion

In this study, integration of petrophysical interpretation and model based inverted acoustic
impedance resulted in an effective estimation of reservoir properties in the Ramshir oilfield.
For this purpose, model based inversion was used as an effective approach to obtain acoustic
impedance attribute. Acoustic impedance inversion allowed a better understanding of the
heterogeneities throughout the Asmari reservoir. 3D seismic data were used to investigate the
lateral and vertical variations of effective porosity and water saturation in the studied reservoir.
Such variations were described based on the geological characteristics of reservoir rock units.
Base on the result of the core and thin section study, variations in acoustic impedance were
related to geological and petrophysical characteristics of the Asmari reservoir. The high values
of acoustic impedance are related to low porosity facies such as mudstones and argillaceous
limestones, while low values of Al are in relation to sandstones. The moderate values of Al
correspond to packstone/grainstone with vuggy and interparticle porosities. The correlation
coefficient between the predicted and actual porosity and water saturation by using multiple
regression analysis reaches 0.78 and 0.69, respectively. The probabilistic neural network
improves the correlations to 0.93 and 0.90, respectively. The results suggest that the
combination of post stack seismic inversion and PNN can effectively be applied to estimate
reservoir properties. High effective porosity and hydrocarbon saturation values correspond to
the west of the main producing unit. This can help to reduce the risks and costs of the
exploration and master development plans.
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