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Abstract 
Downscaling of climatic variables is a difficult problem in the climate change impact studies. 
However, some climatic data sets exist that have been universally downscaled. These data sets 
introduce climatic data even in regions with scarce observations. In this study, NASA Earth 
Exchange Global Daily Downscaled Projections (NEX-GDDP) and Markov simulation (Marksim) 
downscaled data sets were evaluated over Lali region, southwest Iran by comparing the monthly 
RMSE, average and variance differences between the observation data and General Circulation 
Models' (GCMs') outputs during the time period 2010-2016. The NEX-GDDP data set contains 21 
GCMs under two Representative Concentration Pathways (RCPs), i.e. RCP4.5 and RCP8.5, from 
1951 to 2099, and the Marksim data set includes 17 GCMs under all RCPs from 2010 to 2095. 
Results acknowledged the ability of both data sets in projecting the climatic variables in the study 
area. Finally, NorESM1-M and GFDL-CM3 depicted the best operation for precipitation and 
temperature, respectively. 
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1. Introduction 
Downscaling of General Circulation Models' 
(GCMs') outputs is demanding and time-
consuming. Fortunately, some climatic data 
sets such as NASA Earth Exchange Global 
Daily Downscaled Projections (NEX-GDDP) 
and Markov simulation (Marksim) exist. 
These data sets are attainable globally in both 
spatial and temporal downscaled types. 
However, whether they can be applied in a 
small-scale region, i.e. over a synoptic 
station, is a question. If they can, a difficulty 
can be solved, especially for the regions like 
the Middle East where little observations are 
accessible. Further, they can provide a basis 
for comparing the climate change impact 
studies since they have been produced by the 
same approach in the global scale.  
Sophisticated storylines are employed to 
project the future greenhouse gas 
concentrations and climate change in a 
specific time period (IPCC, 2013). GCMs are 
applied to achieve this purpose, and 
downscaling techniques overcome the coarse 
resolution of the outputs (Wilby and Wigley, 

1997). Until recently, climate change impact 
studies have been carried out under the 
previous climate change scenarios 
represented by the Intergovernmental Panel 
on Climate Change (IPCC) in the Fourth 
Assessment Report (AR4) entitled as the 
Special Report on Emission Scenarios 
(SRES). However, IPCC (2014) introduced 
Representative Concentration Pathways 
(RCPs) in the Fifth Assessment Report 
(AR5). Specifically, RCPs are the trajectories 
of greenhouse gas concentrations (Ma et al., 
2016) related to the greenhouse gases, 
aerosols, ozone, land use and land cover 
changes in the future; however, the previous 
scenarios only encompassed forcing of the 
greenhouse gases and aerosols (Meinshausen 
et al., 2011). Newer scenarios, i.e. RCPs, 
have improved the representation of the real 
world due to including the projections of 
greenhouse gases time-dependently (Taylor 
et al., 2012). Indeed, IPCC answered 
disparate scientific vicissitudes relating to the 
projection of the climate for the newer 
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scenarios at Coupled Model Intercomparison 
Project Phase 5 (CMIP5) (Chen et al., 2014; 
Ul Hasson et al., 2016). Depending on the 
radiative forcing at the end of the 21st 
Century, RCPs were categorized as RCP2.6, 
RCP4.5, RCP6 and RCP8.5 (Ma et al., 2016). 
The interested readers may consult the 
related resources such as Chaturvedi et al. 
(2012), Chou et al. (2014), Jones and 
Thornton (2013), Ma et al. (2016), 
Meinshausen et al. (2011), and Semenov and 
Stratonovitch (2015) to gain more detailed 
information regarding the RCPs.  
McSweeney et al. (2015) analyzed the 
CMIP5 GCMs in southeast Asia, Europe and 
Africa to select the best GCMs. They 
nominated three models, i.e. MIROC-ESM, 
MIROC-ESM-CHEM and IPSL-CM5B-LR 
as “implausible.” Bao and Wen (2017) 
applied the NEX-GDDP data set to project 
the near- and long-term future climate over 
China by means of representing it as a new 
downscaled data set with extremely high 
resolution that reduces the biases of GCMs 
and with the potential to be widely employed 
in the future. Daksiya et al. (2017) 
investigated the maximum daily precipitation 
for Jakarta, Indonesia in the future time 
period using three downscaling techniques, 
i.e. LARS-WG, SDSM and NEX-GDDP, by 
considering different models and scenarios. 
As they mentioned, the problem with LARS-
WG is that it does not take the newer 
scenarios. Even though it has been applied in 
studies such as Semenov and Stratonovitch 
(2015) and Ma et al. (2016) for the newer 
scenarios, its ultimate version, i.e. LARS-
WG6.0, is undergoing some experiments. On 
the other hand, SDSM just involve one 
GCM, i.e. CanESM2, for the newer 
scenarios. Therefore, they utilized the third 
approach, i.e. the NEX-GDDP data set. The 
results depicted enhancing of about 20 
percent of the daily precipitation maxima for 
the region in the future time period. Chen et 
al. (2017) assessed the future precipitation 
extreme events in China by means of the 
NEX-GDDP data set and introduced it as a 
new downscaled data set with high 
resolution. Moreover, the ability of the data 
set in projecting the precipitation extreme 
events and long-term climate change was 
evaluated, and its power was compared with 
the CMIP5 GCMs' outputs. The study 

denoted the great competence of the data set 
in projecting the spatial patterns of the 
precipitation extreme events over China. In 
comparison with the GCMs' outputs, the 
NEX-GDDP data set's outputs demonstrated 
more resemblance to the observation data, 
higher Pearson’s correlation, less relative 
errors and uncertainty; moreover, the NEX-
GDDP data set introduced more details at 
local to regional scale. Therefore, they 
prognosticated this data set, especially for 
climate change impact studies in local scales, 
would probably achieve more popularity in 
the future. Jones and Thornton (2013) 
represented Marksim as a prevalent 
downscaling procedure to produce daily 
downscaled climate data for an ensemble of 
GCMs and different scenarios. Its 
development had taken more than 20 years 
and as the producers predicted its power has 
been ascended by including more calibration 
stations and newer scenarios in its new (web) 
version. In a study by Jones and Thornton 
(2013), 73 precipitation stations, including 
numerous precipitation situations, were 
deemed worldwide. The results depicted 
Marksim could estimate the precipitation 
accurately so that the variances of the 
observed and simulated precipitation data 
demonstrated minimal differences. However, 
the higher errors were approximately related 
to the colder climates.   
GCMs are not capable of taking into account 
the hydrological processes, which typically 
occur at the finer scales (Kundzewicz et al., 
2007). Indeed, due to some imperatives 
accompanied by manifold statistical 
approaches and computer programs, climate 
change impact studies have been restricted to 
some specific sites and climatic scenarios 
(Wilby et al., 2004). Learning and applying 
downscaling approaches are challenging and 
time-consuming for researchers, especially 
those with restrictive statistical and 
programming virtuosity. Moreover, IPCC 
introduces new assessment reports every few 
years, and therefore, not only would the 
GCMs be obsolescence but also emission 
scenarios would change so that the regression 
equations or transmission functions are 
contemporized to downscale the GCMs' 
outputs. Additionally, even though the 
observation data, at least for several synoptic 
stations, are required for the regional and 
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national projects, for regions over than the 
USA, especially for the developing countries, 
it is often difficult to obtain access to the 
synoptic observation data, especially during 
the recent decades (Funk et al., 2010); 
however, the accuracy of the selected 
downscaling method in simulating the 
climatic variables should be verified. Even 
though the satellite technology is being 
developed and it can measure some aspects 
of climate and weather, it cannot be taken 
into account as a surrogate for the field 
observations. Furthermore, the output format 
of the GCMs is not always in a type to be 
directly employed in the hydrological 
models. Therefore, an outstanding process 
must be done on this data format before using 
it in a meaningful way. This process may 
include the spatial and temporal downscaling 
of the GCMs' outputs (Jones and Thornton, 
2013).  
Different downscaling approaches with the 
advantages and disadvantages exist so that 
every approach is appropriate for a specific 
purpose (Wilby et al., 2009). Downscaling 
approaches have uncertainties. By 
considering the GCMs' outputs, it is obvious 
that climate change projections are not 
analogous everywhere during the past and 
future time periods. In other words, no 
coincidence exists between the GCMs for 
some regions (Wilby, 2007). Many 
uncertainties exist in relation to the tropical 
storms and regional precipitation patterns in 
most parts of Africa, Southern Asia and Latin 
America so that considering different 
scenarios and GCMs, especially for these 
regions, are recommended. Moreover, 
assessing the local impacts of climate change 
is not always adequate, and evaluating the 
uncertainty of different downscaling 
approaches is challenging. Additionally, 
information of the near future (3-20 years) 
does not exist (Washington et al., 2006). 
However, using the outputs of GCMs that 
have been already verified by the observation 
data sets is a quick way to achieve the 
downscaled climate data (Trotochaud et al., 
2016). Being globally applicable and 
requiring few inputs are the main benefits of 
these data sets. 

Even though the computing processes are not 
identical in the NEX-GDDP and Marksim 
data sets, some similarities exist such that 
they can be compared. They include some 
analogous GCMs and emission scenarios, i.e. 
RCP4.5 and RCP8.5, with the same temporal 
and spatial resolutions; they include outputs 
with the same time period of 2010-2095; they 
have been downscaled by the statistical 
downscaling approach; and finally, they are 
globally downscaled and have been verified 
and re-evaluated many times. 
Even though some studies exist that  
evaluate the climatic downscaled data  
sets, few studies that have assessed their 
operation over a small-scale region, i.e.  
over a synoptic station. In this study, firstly, 
the methodology utilized in producing  
the NEX-GDDP and Marksim data sets  
is represented. Then, the uncertainty of  
the NEX-GDDP and Marksim data sets for 
both RCP4.5 and RCP8.5 scenarios are 
evaluated over the Lali region, southwest 
Iran for the time period 2010-2016. Even 
though these data sets are downscaled 
globally, it is better to evaluate their 
uncertainties. Finally, not only the better data 
set selected but also the GCMs with the 
lowest uncertainties are selected so that 
climate change would be projected with 
sufficient accuracy during the future time 
period (2021-2050) in relation to the present 
time period (1961-1990). 
 
2. Material and Methods 
The Lali region is located in the north of 
Khuzestan Province, southwest Iran (Figure 
1). Daily observation data of the Lali 
synoptic station, which is only available for 
the time period 2007-2016, was gathered 
from Iran Meteorological Organization 
(2018). The average temperature and 
precipitation are 25.11°C and 396 mm/year, 
respectively, for the time period 2007-2016. 
According to de Martonne climatic aridity 
index, the Lali climate type is semi-arid. 
The NEX-GDDP and Marksim data sets are 
available online at 
https://cds.nccs.nasa.gov/nex-gddp and 
http://gisweb.ciat.cgiar.org/MarkSimGCM, 
respectively.
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Table 1. The details of GCMs involved in the NEX-GDDP (Thrasher and Nemani, 2015) and Marksim 
(http://gisweb.ciat.cgiar.org/MarkSimGCM/docs/doc.html) data sets. 

Common GCMs involved in the NEX-GDDP and Marksim data sets 

Model name Modelling center Atmospheric resolution (lat×lon) 

BCC-CSM1-1 Beijing Climate Center, China Meteorological Administration 2.8125×2.8125° 

CSIRO-MK3-6-0 
Common wealth Scientific and Industrial Research Organization in 
collaboration with the Queensland Climate Change Centre of 
Excellence 

1.850×1.875° 

GFDL-CM3 NOAA/Geophysical Fluid Dynamics Laboratory, US 2×2.5° 

GFDL-ESM2G NOAA/Geophysical Fluid Dynamics Laboratory, US 2×2.5° 

GFDL-ESM2M NOAA/Geophysical Fluid Dynamics Laboratory, US 2×2.5° 

IPSL-CM5A-LR L’Institut Pierre-Simon Laplace (IPSL), France 1.875×3.75° 

IPSL-CM5A-MR L’Institut Pierre-Simon Laplace (IPSL), France 1.25874×2.5° 

MIROC5 
Center for Climate System Research, National Institute for 
Environmental Studies, and Frontier Research Center for Global 
Change, Japan 

1.40625×1.40625° 

MIROC-ESM 
National Institute for Environmental Studies, The University of Tokyo, 
Japan 

2.8125×2.8125° 

MIROC-ESM-CHEM 
National Institute for Environmental Studies, The University of Tokyo, 
Japan 

2.8125×2.8125° 

MRI-CGCM3 Meteorological Research Institute, Japan 1.125×1.125° 

NorESM1-M Norwegian Climate Centre 1.875×2.5° 

GCMs only involved in the NEX-GDDP data set 

Model name Modelling center Atmospheric resolution (lat×lon) 

ACCESS1-0 
Commonwealth Scientific and Industrial Research Organization and 
the Bureau of Meteorology, Australia 

1.25×1.875° 

BNU-ESM 
College of Global Change and Earth System Science, Beijing Normal 
University 

2.8×2.8° 

CanESM2 Canadian Center for Climate Modelling and Analysis 2.8×2.8° 

CCSM4 National Center for Atmospheric Research, US 0.9375×1.25° 

CESM1-BGC Community Earth System Model Contributors 0.9×1.25° 

CNRM-CM5 Centre National de Recherches Météorologiques (CNRM), France 1.40625×1.40625° 

INM-CM4 Institute for Numerical Mathematics 1.5×2°  

MPI-ESM-LR Max Planck Institute for Meteorology, Germany 1.875×1.875° 

MPI-ESM-MR Max Planck Institute for Meteorology, Germany 1.875×1.875° 

GCMs only involved in the Marksim data set 

Model name Modelling center Atmospheric resolution (lat×lon) 

BCC-CSM 1.1(m) Beijing Climate Center, China Meteorological Administration 2.8125×2.8125° 

FIO-ESM The First Institute of Oceanography, SOA, China 2.8125×2.8125° 

GISS-E2-H NASA Goddard Institute for Space Studies 2×2.5° 

GISS-E2-R NASA Goddard Institute for Space Studies 2×2.5° 

HadGEM2-ES Met Office Hadley Centre 1.2414×1.875° 

 
The NEX-GDDP data set includes 
precipitation and temperature projection for 
the retrospective period of 1951-2005 and 
prospective period of 2006-2099, as 
mentioned for 21 GCMs under the newer 
scenarios, involving medium-low (RCP4.5) 
and high (RCP8.5) emission scenarios, with 
the spatial resolution of 25° (25 km × 25 km) 
(Meinshausen et al., 2011; Taylor et al., 
2012; Thrasher and Nemani, 2015). During 

the downscaling process, the simulated 
retrospective data have been utilized as the 
training data so that they have been 
compared with the observation data. Then, 
the calculated relationships have been 
employed for downscaling of the prospective 
climatic projections. Indeed, all 42 climatic 
projections related to 21 GCMs and two 
RCPs have been downscaled similarly. 
Global Meteorological Forcing Data set 
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(GMFD) is employed for modeling the 
surface of the Earth, which is available at 
Terrestrial Hydrology Research Group, 
Princeton University (Sheffield et al., 2006). 
This data set combines the observation and 
reanalysis data, and it is available at the 
spatial resolutions of 0.25, 0.5 and 1 degrees 
and time steps of three-hourly, diurnal and 
monthly. After the bias-correction stage, 
which corrects the bias of the GCMs' outputs 
by making a comparison between the outputs 
and GMFD, the monthly climatic trends of 
data have been extracted. These trends are 
preserved in the corrected data and therefore, 
the probable statistical biases, especially the 
variances of the GCMs are corrected. At the 
spatial disaggregation stage, the corrected 
GCMs data is interpolated into the GMFD 
data grid with a resolution of 0.25°. 
Moreover, the relative spatial patterns of 
precipitation and temperature during the 
retrospective period are preserved in the 
future climate change. Finally, the frequency 
of the time periods with precipitation or 
temperature anomalies is maintained the 
same. 
 The Marksim data set is a third-order 
Markov chain weather simulator that is 
capable of predicting the occurrences of the 
wet days (Jones and Thornton, 2013). 
Developed during the last 20 years, Marksim 
introduces the GCMs’ data for the time 
period 2010-2095 (Trotochaud et al., 2016). 
It is based on the WorldClim data set, which 
includes the observational weather data of the 
National Oceanic and Atmospheric 
Administration (NOAA), National Climate 
Data Center (NCDC) and Global Historical 
Climatology Network (GHCN). Marksim 
employs the stochastic downscaling and 
climatic grouping approaches to downscale 
the projections of the GCMs (Hijmans et al., 
2005). 
Both Marksim’s web and software versions 
are similar; however, the interfaces differ. A 
user-friendly web version of Marksim is 
available, which introduces whether singular 
or every combination of the GCMs’ 
simulations. The user is capable of defining 
the repetition number for the reproduction of 
the climatic data, i.e. precipitation, the 
minimum and maximum temperatures, and 
the solar radiation. The output data is in the 
diurnal time step for a specific year. 

According to personal communication with 
Jones, Peter G. Marksim can simulate the 
time period 2021-2050 by selecting the year 
2035 and repetition number 30. Finally, 
Random number seed is the initial value 
provided to the generator. Marksim 
downscales the future data through 
calibrating the GCMs' outputs for the 20th 
century in relation to the WorldClim data by 
means of the Markov chain regression (Jones 
and Thornton, 2013) and then, applying the 
developed regression models to the GCMs 
for the 21st century. 
In relation to the present/historical time 
period, GCMs involved in Marksim have 
been run for the past 50-100 years. The 
GCMs' outputs have been modeled pixel by 
pixel by the polynomial regression approach. 
A data gap exists for the time period 1985-
2010. No data exist for the years beyond 
2095 because an extrapolation approach, 
which causes an extra error, would be 
required. An interpolation process has been 
carried out to convert the energy between the 
enormous atmospheric columns with low 
resolution (1-2°) and the finer ones. 
Moreover, the differences between the 
predictands of the future and base time 
periods are settled. In other words, a fifth-
order polynomial function is correlated to the 
pixels of the GCMs to produce a time trend 
and then, the interpolation is applied to a 
finer grid. Finally, a third-order Markov 
chain with an autoregressive estimation 
downscales data to daily time steps. When 
using an ensemble of GCMs, Marksim 
utilizes the average of the polynomial 
functions. In relation to downscaling, the 
methodology involves reanalyzing the 
average differences between the observation 
data of synoptic stations and pixels or 
atmospheric columns of the GCMs’ outputs; 
therefore, a statistical relationship is 
produced. A spatial downscaling is 
additionally applied by an interpolation 
considering 16 nodes surrounding the cell. 
Marksim takes into account 720 climate 
types all over the world to calculate the 
precipitation generator coefficients of third-
order Markov. Weather typing is an aspect of 
Marksim that employs the most resembling 
climate in the world for a changing climate; 
however, new climates cannot be modeled. 
When the initial conditions change during 
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simulation, not only does the regression may 
modify but also the climate may differ. When 
GCMs’ differentials exceed the Marksim’s 
climate types, the algorithm extrapolates the 
most similar current climate type. The longer 
the simulation, the more probable would be 
to encounter this plight (Jones and Thornton, 
2013). According to Jones, Peter G. Marksim 
(personal communication) deems 45000 
observation synoptic stations globally, and 
9600 climatic stations have been utilized in 
the calibration stage. Even though, the third-
order Markov chain has been employed for 
simulating the precipitation, Marksim 
estimates the minimum and maximum 
temperatures using the SIMMETEO 
approach (Geng et al., 1988). Actually, 
WorldClim, which includes data in the time 
period 1961-1990 for most stations, 
represents the current climate; the method 
utilized in the WorldClim data is the same as 
Hutchinson (1997). Finally, after the 
calibration, some stations including different 
climatic types have been simulated for 
verification.   
In this study, the statistical criteria are the 
Root Mean Square Error (RMSE), the 
monthly average differences and the monthly 
variance differences between the GCMs' 
outputs and the observation data. The RMSE 
equation is: RMSE = 	ට∑ (ି)మొసభ                                 (1) 

where Oi and Pi are the observed and 

simulated values for the ith condition 
(Mohanty et al., 2015). The lower the RMSE, 
the more ability of the model to simulate. 
 
3. Results 
The monthly-average precipitation, minimum 
temperature and maximum temperature in the 
Lali region during the verification time 
period are 33.84 mm, 18.41°C and 31.89°C, 
respectively (Table 2). Tables 3 and 4 
illustrate the RMSE, the average and 
variance differences between the GCMs' 
outputs and observation data for 
precipitation, the minimum and maximum 
temperatures considering all GCMs involved 
in the NEX-GDDP and Marksim data sets 
under RCP4.5 and RCP8.5, respectively, 
during the verification time period.  
In relation to precipitation, the Marksim’s 
GCMs demonstrate lower RMSE and 
average differences, and higher variance 
differences than the NEX-GDDP GCMs. 
Both data sets illustrate fewer amounts of 
RMSE and variance differences under 
RCP4.5 than RCP8.5. For the NEX-GDDP 
data set, the average differences depict fewer 
amounts under RCP4.5 than RCP8.5; 
however, in relation to the Marksim data  
set the situation is inversed. Even though  
the Marksim data set overestimates 
precipitation, the NEX-GDDP data set 
underestimates it and this underestimation is 
more than the Marksim's overestimation 
(Tables 3 and 4). 

 
 

Table 2. The monthly-average observation data in the Lali region during the verification time period (2010-2016). 

Month Pr (mm) Tmin (°C) Tmax (°C) 

January 81.15 7.51 17.57 

February 44.44 8.83 19.53 

March 64.91 11.42 23.99 

April 35.49 16.51 30.44 

May 15.08 23.02 37.55 

June 0.01 27.03 43.38 

July 0.06 29.77 45.70 

August 0.06 29.18 45.04 

September 0.86 25.23 41.11 

October 15.89 20.21 34.24 

November 70.08 13.53 24.61 

December 78.04 8.74 19.49 

Mean 33.84 18.41 31.89 
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Table 3. The RMSE, average (da=observation average-simulated average) and variance differences (dv=observation 

variance-simulated variance) between the GCMs' outputs and observation data for precipitation (Pr (mm)), the 
minimum temperature (Tmin (°C)) and the maximum temperature (Tmax (°C)) considering all GCMs 
involved in the NEX-GDDP and Marksim data sets under RCP4.5 during the verification time period. 

GCMs 

NEX-GDDP Marksim 

Pr Tmin Tmax Pr Tmin Tmax 

dv da RMSE dv da RMSE dv da RMSE dv da RMSE dv da RMSE dv da RMSE 

BCC-CSM1-1 -190.3 1.6 18.0 14.1 3.2 3.4 -0.2 1.1 1.5 -199.4 -1.4 11.9 4.3 1.3 1.5 -10.8 -0.9 1.4 

CSIRO-MK3-6-0 -233.6 2.2 11.7 9.6 3.5 3.6 -3.9 1.5 1.6 -268.6 -1.9 11.8 3.9 2.0 1.5 -7.9 -0.8 1.3 

GFDL-CM3 350.9 6.3 15.4 10.0 3.1 3.3 2.4 0.6 1.1 -141.2 -2.3 10.8 1.8 0.9 1.2 -10.6 -1.4 1.7 

GFDL-ESM2G -132.1 0.9 18.0 16.1 3.1 3.4 5.3 0.8 1.0 -289.0 -2.9 13.9 5.7 1.1 1.4 -8.2 -1.1 1.5 

GFDL-ESM2M -14.9 5.5 16.8 13.3 3.5 3.7 3.9 1.2 1.5 -381.8 -6.4 13.7 7.9 1.7 2.0 -9.0 -0.4 1.1 

IPSL-CM5A-LR 625.5 16.0 24.1 16.9 3.0 3.3 8.8 0.7 1.1 -235.8 -0.7 13.8 8.8 0.9 1.3 -4.7 -0.9 1.4 

IPSL-CM5A-MR 242.0 12.5 26.3 19.6 2.9 3.3 10.5 0.8 1.2 -283.1 -1.4 12.3 8.0 1.1 1.6 -1.2 -0.9 1.2 

MIROC5 241.4 6.1 13.4 5.3 3.3 3.4 -2.0 1.2 1.3 -147.8 -0.7 10.5 2.2 1.1 1.5 -11.5 -1.0 1.6 

MIROC-ESM 218.9 5.4 11.8 11.8 3.5 3.6 2.9 1.5 1.7 -155.9 -3.4 12.1 4.0 1.1 1.4 -5.3 -0.7 1.1 

MIROC-ESM-CHEM 487.5 10.2 14.5 8.4 3.1 3.2 -2.6 0.8 1.1 -174.1 -4.4 11.2 3.8 0.9 1.4 -6.4 -0.9 1.5 

MRI-CGCM3 203.9 5.6 16.7 17.3 3.3 3.5 13.7 1.2 1.6 -138.0 -2.4 10.3 9.6 1.4 1.6 -0.9 -0.6 1.0 

NorESM1-M -18.2 0.8 13.0 11.6 3.3 3.4 -0.7 1.5 1.8 -67.3 0.8 13.3 4.0 1.3 1.7 -4.2 -0.9 1.6 

Mean 148.4 6.1 16.6 12.8 3.2 3.4 3.2 1.1 1.4 -207.0 -2.3 12.1 5.3 1.2 1.5 -6.7 -0.9 1.4 

ACCESS1-0 91.7 2.4 15.6 5.2 3.2 3.3 -4.5 1.3 1.8 - - - - - - - - - 

BNU-ESM 436.2 21.1 7.3 8.0 3.2 3.3 -0.8 1.1 1.4 - - - - - - - - - 

CanESM2 -63.2 -0.4 10.9 13.7 2.8 3.0 5.6 1.0 1.3 - - - - - - - - - 

CCSM4 81.9 5.4 18.0 12.1 3.1 3.3 4.4 1.0 1.3 - - - - - - - - - 

CESM1-BGC 387.4 8.5 17.9 17.1 3.2 3.4 10.0 0.9 1.4 - - - - - - - - - 

CNRM-CM5 -1274.8 -6.0 29.2 10.2 3.1 3.3 -5.6 1.9 2.1 - - - - - - - - - 

INM-CM4 477.2 -10.1 14.6 13.2 3.9 4.0 5.0 1.7 1.8 - - - - - - - - - 

MPI-ESM-LR 639.0 12.5 19.8 11.3 2.9 3.1 -0.6 0.8 1.1 - - - - - - - - - 

MPI-ESM-MR 264.4 5.0 14.5 10.6 2.8 3.0 -3.8 1.0 1.3 - - - - - - - - - 

Mean 115.6 5.0 18.0 11.3 3.1 3.3 1.1 1.2 1.5 - - - - - - - - - 

BCC-CSM 1.1(m) - - - - - - - - - -56.6 -1.4 10.5 1.8 1.1 1.3 -10.3 -1.1 1.5 

FIO-ESM - - - - - - - - - -256.5 -2.4 11.8 5.2 1.6 1.8 -6.1 -0.5 1.2 

GISS-E2-H - - - - - - - - - -377.6 -3.7 13.0 7.5 1.1 1.5 -4.9 -0.6 1.2 

GISS-E2-R - - - - - - - - - -466.5 -8.4 15.7 7.4 1.2 1.5 -5.5 -0.5 1.2 

HadGEM2-ES - - - - - - - - - -362.7 -3.4 13.9 4.8 1.1 1.4 -6.4 -1.2 1.6 

Mean - - - - - - - - - -304.0 -3.9 13.0 5.4 1.2 1.5 -6.6 -0.7 1.3 

Total mean 134.3 5.3 16.6 12.2 3.2 3.4 2.3 1.1 1.4 -235.4 -2.7 12.4 5.3 1.2 1.5 -6.7 -0.8 1.4 
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Table 4. The RMSE, average (da=observation average-simulated average) and variance differences (dv=observation 
variance-simulated variance) between the GCMs' outputs and observation data for precipitation (Pr (mm)), the 
minimum temperature (Tmin (°C)) and the maximum temperature (Tmax (°C)) considering all GCMs 
involved in the NEX-GDDP and Marksim data sets under RCP8.5 during the verification time period. 

GCMs 

NEX-GDDP Marksim 

Pr Tmin Tmax Pr Tmin Tmax 

dv da RMSE dv da RMSE dv da RMSE dv da RMSE dv da RMSE dv da RMSE 

BCC-CSM1-1 212.0 8.1 19.9 5.8 3.0 3.0 -5.1 0.6 1.3 -146.1 1.0 13.7 1.1 1.1 1.4 -8.3 -1.3 1.8 

CSIRO-MK3-6-0 305.6 9.8 15.7 4.6 3.4 3.5 -6.9 1.2 1.3 -197.6 -1.0 11.2 3.4 1.2 1.4 -7.1 -0.9 1.3 

GFDL-CM3 246.5 8.9 14.8 3.0 2.5 2.7 -6.3 0.3 0.8 -59.4 -1.5 10.5 0.6 0.8 1.4 -11.4 -1.4 1.9 

GFDL-ESM2G 246.1 6.5 13.8 9.9 2.8 2.9 -2.4 0.6 1.0 -67.0 1.4 13.7 6.6 1.0 1.4 -5.4 -1.3 1.6 

GFDL-ESM2M 369.4 7.9 22.7 9.6 3.6 3.7 1.8 1.2 1.4 -324.6 -2.9 14.7 5.8 1.5 1.7 -7.7 -0.8 1.4 

IPSL-CM5A-LR 604.5 14.2 23.1 15.3 3.4 3.6 -0.8 0.8 1.2 -225.4 -0.7 13.0 7.3 0.8 1.3 -3.7 -1.2 1.6 

IPSL-CM5A-MR 540.4 13.2 23.0 15.3 3.2 3.4 5.2 0.9 1.4 -269.7 -2.5 12.1 9.6 0.9 1.5 -0.8 -0.9 1.3 

MIROC5 212.2 6.6 17.0 7.7 3.5 3.5 -0.9 1.4 1.6 -600.6 -6.1 15.6 5.0 0.7 1.2 -9.6 -1.1 1.5 

MIROC-ESM 539.3 9.0 16.4 7.8 3.3 3.4 -0.7 1.0 1.3 -241.1 -5.9 15.4 5.5 1.2 1.4 -3.8 -0.7 1.1 

MIROC-ESM-CHEM -861.3 -3.1 23.8 8.2 2.4 2.6 -7.9 0.7 1.0 -257.5 -3.4 12.5 3.3 1.0 1.4 -10.4 -1.0 1.8 

MRI-CGCM3 -108.2 4.0 21.9 14.9 3.5 3.6 6.3 1.3 1.8 -296.5 -3.1 15.8 10.0 1.4 1.7 -0.8 -0.6 1.4 

NorESM1-M 178.4 2.5 11.2 9.6 2.9 3.0 4.0 1.0 1.4 -46.2 -1.9 10.8 4.5 1.1 1.5 -3.1 -0.8 1.4 

Mean 207.1 7.3 18.6 9.3 3.1 3.3 -1.2 0.9 1.3 -227.6 -2.2 13.2 5.2 1.1 1.5 -6.0 -1.0 1.5 

ACCESS1-0 -334.7 9.2 25.0 6.7 3.0 3.1 -3.7 1.2 1.4 - - - - - - - - - 

BNU-ESM 216.8 7.6 16.4 9.4 2.7 2.9 0.1 0.7 1.0 - - - - - - - - - 

CanESM2 -94.1 1.6 18.2 8.5 2.6 2.7 0.4 0.6 1.2 - - - - - - - - - 

CCSM4 367.6 9.1 15.0 8.4 3.3 3.4 -0.7 0.6 0.7 - - - - - - - - - 

CESM1-BGC -552.4 -0.4 15.7 10.0 3.1 3.2 -7.9 1.2 1.3 - - - - - - - - - 

CNRM-CM5 596.6 13.0 20.6 13.0 2.8 3.0 7.6 0.3 0.7 - - - - - - - - - 

INM-CM4 1.4 0.0 10.8 11.0 3.4 3.6 -1.9 1.6 1.7 - - - - - - - - - 

MPI-ESM-LR -41.9 3.6 16.5 13.1 3.0 3.2 3.2 1.1 1.4 - - - - - - - - - 

MPI-ESM-MR 333.8 8.5 13.7 5.2 3.0 3.0 -10.7 0.9 1.1 - - - - - - - - - 

Mean 54.8 5.8 16.9 9.4 3.0 3.1 -1.5 0.9 1.2 - - - - - - - - - 

BCC-CSM 1.1(m) - - - - - - - - - -3.5 0.1 11.2 4.5 1.0 1.3 -4.2 -1.2 1.6 

FIO-ESM - - - - - - - - - -231.5 -2.9 10.8 7.5 1.5 1.8 -3.1 -0.3 1.0 

GISS-E2-H - - - - - - - - - -505.7 -1.8 14.6 7.6 1.0 1.4 -4.8 -0.9 1.4 

GISS-E2-R - - - - - - - - - -514.8 -7.8 13.9 7.1 1.2 1.5 -4.9 -0.5 1.1 

HadGEM2-ES - - - - - - - - - -246.4 -2.5 12.1 3.9 1.0 1.3 -6.2 -1.3 1.7 

Mean - - - - - - - - - -300.4 -3.0 12.5 6.1 1.1 1.5 -4.7 -0.8 1.4 

Total mean 141.8 6.7 17.9 9.4 3.1 3.2 -1.3 0.9 1.2 -249.0 -2.5 13.0 5.5 1.1 1.5 -5.6 -0.9 1.5 

 
The NEX-GDDP data set demonstrates better 
operation criteria than the Marksim data set 
by considering all GCMs whether in common 

or not as an ensemble under both RCPs. In 
other words, for the NEX-GDDP data set the 
common GCMs have higher RMSE, average 
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and variance differences than uncommon 
GCMs, and for the Marksim data set the 
situation is the antithesis of the NEX-GDDP 
data set. 
In relation to precipitation, NorESM1-M  
has the fewest values of RMSE, average  
and variance differences, i.e. the best 
operation criteria, in comparison with the 
other GCMs in both NEX-GDDP and 
Marksim data sets. 
The outputs of model NorESM1-M in the 
Marksim data set indicate more precipitation, 
especially for the wet months, in the future 
time period than the present/historical time 
period under both scenarios. The 
present/historical time period is only 
available for the NEX-GDDP data set. The 
outputs of model NorESM1-M in the NEX-
GDDP data set approximately depict lower 
precipitation in winter (January to March) 
and more precipitation in autumn (October to 
December) in the future time period than the 
present/historical time period under both 
scenarios. NorESM1-M outputs of 
precipitation for the Marksim data set are 
approximately smoother than the NEX-
GDDP data set under both scenarios. Finally, 
the model, in both data sets, has projected 
higher precipitation under RCP4.5 than 
RCP8.5 during the early months of the year; 
however, during the late months of the year 
the situation is exactly the opposite (Figure 
2). 
Even though the NEX-GDDP GCMs operate 

better for the maximum temperature than the 
minimum temperature, the Marksim GCMs 
operate almost the same for both of them. 
Considering the operation criteria for the 
Marksim GCMs makes it obvious that 
GFDL-CM3 has the best operation to project 
the minimum temperature under both RCPs. 
Moreover, considering the operation criteria 
in both data sets makes it obvious that the 
maximum temperature is projected better by 
the NEX-GDDP GCMs than the Marksim 
GCMs, especially by considering the 
variance differences. On the other side, the 
minimum temperature is projected better by 
the Marksim GCMs than the NEX-GDDP 
GCMs (Tables 3 and 4). 
In conclusion, in relation to the minimum and 
maximum temperatures, the best GCM was 
selected among the Marksim and NEX-
GDDP GCMs, respectively, which is GFDL-
CM3 for both minimum and maximum 
temperatures. 
The minimum and maximum temperatures 
would escalate in the Lali region during the 
future time period than the present/historical 
time period. This temperature escalation is 
demonstrated by both NEX-GDDP and 
Marksim data sets; however, the Marksim 
data set depicts more temperature increment 
than the NEX-GDDP data set. Finally, the 
minimum and maximum temperatures 
demonstrate slightly more augmentation 
under RCP8.5 than RCP4.5 (Figures 3 and 
4). 

 

 
Figure 2. Projection of the monthly-average precipitation by NorESM1-M in the NEX-GDDP and Marksim data sets 

under RCP4.5 and RCP8.5 for the present/historical (His) and future (Sim) time periods. 
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Table 5 demonstrates the values and changes 
of precipitation, the minimum temperature, 
and the maximum temperature for both data 
sets and emission scenarios using NorESM1-
M for precipitation and GFDL-CM3 for the 
minimum and maximum temperatures in the 
future time period than the present/historical 
time period.  
Precipitation would probably change between 
-0.40 and +9 % using the selected model  
and the NEX-GDDP data set, and +19.20  
and +20.73 % using the selected model  
and the Marksim data set in the future  
time period than the present/historical  
time period. The minimum temperature 
would probably variate between +2.25 and 

+2.89°C using the selected model and the 
NEX-GDDP data set, and +4.24 and +4.78°C 
using the selected model and the Marksim 
data set in the future time period than  
the present/historical time period. The 
maximum temperature would probably 
variate between +3.12 and +3.71°C using the 
selected model and the NEX-GDDP data set, 
and +5.08 and +5.58°C using the selected 
model and the Marksim data set in the future 
time period than the present/historical time 
period. As indicated previously, the 
minimum temperature and the maximum 
temperature were simulated better by the 
Marksim dataset and the NEX-GDDP data 
set, respectively. 

 

 
 

Figure 3. Projection of the monthly-average minimum temperature by GFDL-CM3 in the NEX-GDDP and Marksim data 
sets under RCP4.5 and RCP8.5 for the present/historical (His) and future (Sim) time periods. 

 

 
Figure 4. Projection of the monthly-average maximum temperature by GFDL-CM3 in the NEX-GDDP and Marksim 

data sets under RCP4.5 and RCP8.5 for the present/historical (His) and future (Sim) time periods. 
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Table 5. Precipitation, the minimum and maximum temperatures values and changes in the NEX-GDDP and Marksim 
data sets under RCP4.5 and RCP8.5 using NorESM1-M for precipitation and GFDL-CM3 for the minimum 
and maximum temperatures in the present/historical (His) and future (Sim) time periods. 

Variable Value/change 
NEX-GDDP Marksim 

His Sim_RCP4.5 Sim_RCP8.5 Sim_RCP4.5 Sim_RCP8.5 

Precipitation 
Value (mm) 30.4 30.28 33.14 36.71 36.24 

Change (%) - -0.4 9 20.73 19.2 

The minimum 
temperature 

Value (°C) 14.09 16.34 16.98 18.33 18.87 

Change (°C) - 2.25 2.89 4.24 4.78 

The maximum 
temperature 

Value (°C) 29.45 32.57 33.16 34.52 35.03 

Change (°C) - 3.12 3.71 5.08 5.58 

 
Enhancement of precipitation in the Lali 
region during some months of the year in the 
future time period than the present/historical 
time period may not improve hydrological or 
agricultural circumstances due to increments 
of the minimum and maximum temperatures. 
 
4. Discussion 
The operation of GCMs in relation to 
precipitation is inferior to the minimum and 
maximum temperatures in the Lali region 
(Tables 3 and 4). As a matter of fact, the 
correlation of precipitation is not without 
vicissitudes and it is a two-part model. One 
part determines whether it precipitates or not, 
and the other calculates the amount of 
precipitation. The last is controlled strongly 
by the air masses and local conditions. In 
actuality, precipitation does not follow any 
weather principles such as the air masses and 
topography in the Lali region. It is definitely 
difficult to find the diurnal correlation of 
precipitation in the arid areas since there is 
no precipitation at most days such that if a 
rainy day differs or does not match, the 
correlation will be zero. Further, precipitation 
does not have normal distribution. Indeed, it 
is recommended to employ the monthly 
averages and variances whether as the 
average or sum of monthly precipitation; 
thence, the normal distribution would be 
more probable 
(http://gismap.ciat.cgiar.org/MarksimGCM/d
ocs/FAQ.html). 
GCMs in both data sets under both RCPs 
overestimate the minimum temperature in the 
Lali region (Tables 3 and 4). Even though the 
NEX-GDDP data set under both RCPs 
overestimates the maximum temperature, the 
Marksim data set under both RCPs 

underestimates it in the Lali region. Indeed, 
most GCMs overestimate the average 
temperature over Northern Eurasia (Miao et 
al., 2014), the Arctic (Chylek et al., 2011), 
the Northern hemisphere (Zhao et al., 2013) 
and even in the world (Kim et al., 2012). The 
stratospheric aerosol concentration's 
enhancement due to the volcanos’ eruptions 
has lowered the temperature significantly 
during the recent years. This has not been 
considered in the GCMs' structures (Santer et 
al., 2014; Solomon et al., 2011).  
By considering the GCMs’ outputs in both 
data sets, it is not recondite that the GCMs 
with higher resolutions do not imperatively 
demonstrate better projections than the 
GCMs with lower resolutions. NorESM1-M 
and GFDL-CM3 depicted the best results in 
the Lali region even though they do not have 
the highest resolutions (Table 1). 
Furthermore, the outputs of the uncommon 
GCMs demonstrate the ability of some 
GCMs in projecting the climatic variables. 
For instance, CanESM2 in the NEX-GDDP 
data set illustrates satisfactory results.  
The selected models were chosen by 
considering the operation criteria of the 
GCMs in both data sets. The results of this 
study have been reached by considering only 
seven years of the observation data (2010-
2016); however, had longer observations 
been taken into account, different results may 
have been achieved. The other point is that 
different results may be achieved for other 
regions.  
Yoo and Cho (2018) evaluated the 
performance of 20 GCMs in CMIP5 from the 
World Data Center for Climate (WDCC) as 
global, zonal and grid mean data structures. 
They employed different GCMs with 
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different grid resolutions, including NCAR-
CAM5 (1.250° × 0.938°) to IPSL-CM5A-LR 
(3.750° × 1.875°). However, NorESM1-M, 
as in the case of the Lali region, 
demonstrated the best performance according 
to the criteria like the RMSE considering the 
Global Precipitation Climatology Project 
(GPCP) data as the observation data in  
the time period 2006-2014. They additionally 
declared that the RMSE can disclose  
the average differences and standard 
deviations; therefore, it can be an appropriate 
criterion for the evaluation of the GCMs' 
predictions. 
Figures 5 and 6 illustrate the radar chart 
demonstrating the RMSE of the common 
models in the NEX-GDDP and Marksim data 
sets under both scenarios for precipitation 
and the average temperature. The Marksim’s 
GCMs demonstrate lower RMSE than the 
NEX-GDDP dataset for precipitation and the 
average temperature. Further, the RMSE of 
both data sets are moderately lower under 
RCP4.5 than RCP8.5. NorESM1-M portrays 
the best results for precipitation (Figure 5). In 
relation to the average temperature, not only 
does GFDL-CM3 represent the appropriate 
ability, but also MIROC-ESM-CHEM 
portrays capability (Figure 6). However, 

GFDL-CM3 outperforms MIROC-ESM-
CHEM since the mean of the variance 
differences for GFDL-CM3 and MIROC-
ESM-CHEM are 5.77 and 6.38, respectively. 
The emission scenarios may be the source of 
uncertainty; however, the error originated 
from the GCMs is more than the uncertainty 
derived from the emission scenarios (Daksiya 
et al., 2017). If other emission scenarios, i.e. 
RCP2.6 and RCP6, Had been included in the 
NEX-GDDP data set, interpreting of their 
projections could have been included and it 
may have eventuated in some satisfactory 
results. 
A multi-model ensemble includes many 
models produced by different research 
modelling centers in the world. However, the 
models' outputs approximately correlate in a 
multi-model ensemble due to initially, the 
similarity between the dynamical cores and 
the physical parameterizations and secondly, 
the same observation data included in them. 
Indeed, they constitute a cluster in relation to 
the simulation of climate change (Knutti et 
al., 2013; Masson and Knutti, 2011). The 
reader may consult Zubler et al. (2016) to 
obtain more information about the number of 
select possibilities from an ensemble point of 
view. 

 

 
Figure 5. Radar chart demonstrating the RMSE of the common models in the NEX-GDDP and Marksim data sets under 

RCP4.5 and RCP8.5 for precipitation. 
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Figure 6. Radar chart demonstrating the RMSE of the common models in the NEX-GDDP and Marksim data sets under 

RCP4.5 and RCP8.5 for the average temperature. 
 
IPCC (2013) stated ‘one model one vote’ and 
recommended considering all GCMs 
together. It is a challenge to determine 
unsatisfactory GCMs so that the relationship 
between the poor performance of the GCMs 
and the future projection of them is nebulous. 
McSweeney et al. (2015) cited some studies 
with down-weighting or exclusion of GCMs. 
Some authors like Overland et al. (2011) 
stated that not considering the unsatisfactory 
GCMs may reduce the uncertainties. In this 
study, in relation to the climate change 
impacts on the Lali region, which is a small-
scale study, the best models were selected 
and then, precipitation and temperature were 
projected according to the selected models in 
the future time period. 
Overland et al. (2011) and McSweeney et al. 
(2012) declared that selecting the best 
GCMs/GCM and removing the worst 
GCMs/GCM may be more accurate in the 
local studies, like the Lali region, than the 
regional (or large-scale) studies because the 
integral characteristics of the GCMs may be 
abundantly transparent in the local studies. 
The GCM selection process may be a key 
aspect exerting a powerful influence on the 
results. In this study, some statistical criteria 
like the RMSE have been employed; 
however, other approaches like McSweeney 
et al. (2015) may have been applied. 

Unfortunately, no standardized criterion 
exists for the GCM selection process in the 
literature (Nyunt et al., 2016). 
Evans (2009) evaluated the Middle East 
under climate change during the 21st century 
using the outputs of 18 GCMs under the A2 
emission scenario. The temperature 
demonstrated an escalation of 1.4 and 4K for 
the middle and late of the century, 
respectively. Even though precipitation 
depicted a reduction over the area, it 
portrayed an augmentation in a few areas, 
including the Lali region. Further, the 
performance of various GCMs was assessed. 
BCC and PCM had the most biases for 
precipitation and temperature, respectively, 
and CCSM, MIUB and MRI had the best 
performance for precipitation. This study was 
carried out in a regional scale over the 
Middle East, and for a specific region, like 
the Lali region, it is recommended to 
downscale the outputs of the GCMs to obtain 
detailed information. The downscaled 
outputs of different GCMs in the Lali region 
acknowledge the mentioned study. 
Nassery and Salami (2016) evaluated 16 
GCMs based on the weighting approach in 
Hamadan aquifer, west Iran and selected 
CGCM2.3.2a and HadCM3 as the best 
models in relation to precipitation and 
temperature, respectively. They employed 
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LARS-WG for downscaling and concluded 
that temperature would ascend about 1.4°C, 
and precipitation and runoff would change 
from -6 to +10 % and from -39 to +12 % 
both under A2 and B1 emission scenarios, 
respectively. Moreover, Samadi et al. (2010) 
applied the regression and some functional 
standards (RMSE, R2 and MAE) to evaluate 
the performance of some GCMs in 
Kermanshah synoptic station, west Iran. 
They demonstrated that HadCM3 operates 
the best in projecting the climatic variables, 
i.e. precipitation and temperature, in the 
study area. However, CGCM2.3.2a and 
HadCM3 are not included in both NEX-
GDDP and Marksim data sets to assess their 
operations in the Lali region. 
The NEX-GDDP and Marksim data sets have 
been employed in various studies without any 
statistical corrections (Bao and Wen, 2017; 
Chen et al., 2017; Daksiya et al., 2017; Jones 
and Thornton, 2013).  
Even though the Marksim data set has been 
utilized globally (Bharati et al., 2014; De 
Trincheria et al., 2015; Rao et al., 2015), 
little peer-reviewed literature has considered 
its evaluation and verification. However, it 
has been assessed in some studies (Kahimba 
et al., 2014; Mavromatis and Hansen, 2001; 
Mzirai et al., 2005), and the results have 
demonstrated the proven ability of this data 
set. However, some results have revealed a 
relatively poor operation of this data set in 
the reproduction of the inter-annual 
variability so that in some regions it may not 
operate as well as the other weather 
generators. One of the issues is that the 
precipitation variances are underestimated by 
this data set although this problem would be 
dissolved by resampling of the probable 
Markov coefficients (Jones, 2013). 
 
5. Conclusions 
Nowadays, some downscaled climatic data 
sets exist that enhance the ability to employ 
the climatic data worldwide even in the 
regions with little synoptic data, like the Lali 
region. In this study, the power of different 
GCMs in projecting the climate change 
impacts on the Lali region was characterized 
by taking into account some statistical 
criteria. Even though the NEX-GDDP and 
Marksim data sets may be utilized globally, it 
is recommended to employ the Marksim data 

set for the minimum temperature and the 
NEX-GDDP data set for the maximum 
temperature in the Lali region. In the case of 
precipitation, the NEX-GDDP data set 
demonstrated better results by considering 
the variance differences while the Marksim 
data set portrayed better results by 
considering the RMSE and the average 
differences in the Lali region. NorESM1-M 
and GFDL-CM3 depicted the best results for 
precipitation and temperature, whether the 
minimum temperature or the maximum 
temperature, respectively. The results of the 
selected GCM for the temperature 
represented warming of the Lali region. The 
results of the selected GCM for precipitation 
illustrated its increment using the Marksim 
data set, its decrement during the early 
months of the year, and its increment during 
the late months of the year using the NEX-
GDDP data set. While more precipitation 
was simulated by the GCMs under RCP4.5 
than RCP8.5 for both data sets in the winter, 
RCP8.5 illustrated more precipitation for the 
late months of the year. Generally, higher 
precipitation and temperature, either the 
minimum temperature or the maximum 
temperature, were projected by the Marksim 
data set than the NEX-GDDP dataset in the 
Lali region. 
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