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Abstract 
Radon measurement on the surface can represent the subsurface condition. The measured Radon in 
geothermal field is caused by the source, which is usually a geothermal reservoir. This study did 
the inversion process for determining the depth and value of Radon Source. Another fact, non-
uniqueness of the solution can produce a result with different model parameter combinations. 
Hence, it can confuse the interpreter to determine the correct model. Based on this case, we 
proposed an inversion scheme that can minimize the non-uniqueness effect in the Radon data 
inversion. The scheme is started by Monte-Carlo inversion and finished by damped least-square. 
Monte-Carlo inversion, as one of the global optimizations, produce an appropriate starting model 
for the damped least squares. The damped least square method will finish the scheme fast. In order 
to be sure with the result, the whole scheme is repeated 19 times. The relative RMS error for the 
synthetic data is 0.07% to 0.32%  to  a depth difference of 7% from the synthetic model. With this 
synthetic data inversion test, the inversion scheme was applied to the real data from the Rajabasa 
Geothermal field. With this scheme, the section AA’ gives an error of 0.51% to 0.88% with a 
depth of 712 m and section BB’ gives an error of 5.79% to 5.27% with a depth of 728 m. This 
result is coherent with the magnetotelluric data in this area. 
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1. Introduction 
Radon is abundant in magmatic rock because 
they contain Uranium-238 as Radon sources.  
A Radon is a noble gas that dissolves  
easily in the geothermal fluid. As magmatic 
rock and geothermal fluid made contact 
inside the reservoir, the geothermal fluid  
will be containing a lot of Radon. Hence, it  
is assumed that the geothermal reservoir  
is the Radon source (Balcázar et al., 2010). 
Radon survey in the geothermal area  
has been carried out by Haerudin et al. 
(Haerudin et al., 2013) in Rajabasa 
Geothermal Field and by Haerudin et al. 
(Haerudin et al., 2016) in the Way Ratai 
Geothermal Field. 
Moreover, the geothermal fluid consists of 
Radium, which is the nearest Radon source. 
Hence, Radon will always be produced in the 
geothermal fluid while it migrates to the 
surface. The migration follows a diffusion-
convection mechanism (Fleischer et al., 1980; 
Tanner, 1980; Iakovleva and Ryzhakova, 

2003; Iskandar et al., 2005). The diffusion 
process follows the Flick’s Law (Schroeder 
et al., 1965; Mogro-Campero and Fleischer, 
1977), which will reach only several meters 
(Krister and Lennart, 1982). While the 
significant process that makes Radon move 
to the surface follow the Darcy’s Law of 
convection. Because Radon migrates from 
the reservoir in the geothermal fluid, the 
existence of fault and fracture under the 
surface becomes an essential factor for the 
migration (Figure 1). 
Radon inside the reservoir is assumed to have 
starting concentration value as N. That value 
will be reduced as it travels and decays then 
becomes Nt. While the Radon source (N) in 
the reservoir cannot be measured yet, the 
Radon value of the surface can be measured 
by Radon detector. From the Radon on the 
surface, we can backwardly determine the 
value of the Radon source (N) by using the 
inversion method. 
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From Monte-Carlo calculation, we got 1000 
models with the RRMSE range of 6.55% to 
52.84% (Figure 8a). In this study, we try to 
apply two schemes of the final model, which 
were the best model from the Monte-Carlo 
calculation and the average model from 10% 
smallest error model. From these schemes, 
the first one gave a very fluctuating model, 
with an error of 6.55% (Figure 8b). The 
second one gave a model, which had a 
similar pattern to the data, with an error of 
4.12% (Figure 8c). From this result, we chose 
the model of the second scheme as the 
starting model for damped least-square 
inversion (Figure 9). 
Forward modeling equation in the previous 
explanation (Equation 6) can be written in 
matrix form as Equation (11). g represents 
forward modeling function as in Equation (6), 
d represents response or calculated data from 
forward modeling process (Zhdanov, 2002). 
The response or calculated data here have a 
similar treatment to the real data, which is 
picked from 70 cm beneath the surface. 

d g(m)                                                   (11) 

where m is the model vector, which follows 
the pattern bellow 

1 2[N , N ,..., N , ]m n d                                 (12) 

N is the Radon source segment width and d is 
the depth of the Radon source.  
The damped least square algorithm in this 
study based on singular value decomposition 
that had been used in (Ekinci and Demirci, 
2008) for DC resistivity method. We tried to 
modify this inversion scheme, suited the 
Radon method. The damped least square 
equation is stated as: 

2 1( )m A A I A dT                            (13) 

Δm is an update model vector that has m 
number segments model, Δd is a data 
difference vector between observed data and 
calculated data from forward modeling 
process. This vector has n number of 
elements following the number of the data. A 
is a Jacobian matrix, I is an identity matrix, 
and ε is a damping factor. The Jacobian 
matrix is a matrix of differentiation forward  
 

modeling over models which approximated 
by the forward difference scheme in 
Equations (14) and (15). 

n

m





g
A

m
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( ) ( )n m m n m

m

  




g m m g m
A

m
                   

(15) 

Jacobian matrix, A, has a dimension of n×m, 
where n and m are data number and model 
parameter number, respectively. The matrix 
A can be reformed into three different vectors 
by using singular value decomposition (SVD) 
method as: 

A USV T                                                   (16) 

From the singular value decomposition 
process, the U matrix (n×m) is a data 
eigenvector, V (m×m) is a model parameter 
eigenvector. S (m×m) is a diagonal matrix 
with the value of λ1, λ2, …, λm, this value is 
also called singular value of A matrix. The 
correction value of the model parameter in 
Equation (13) can be expressed again in the 
new term as: 

2 2
j Tdiag

j



 
  



 
 
 
  

m V U d                      (17) 

In Equations (13) and (17), we can see that 
there is a damping factor (ε). This damping 
factor has a crucial role in regulating the 
inversion process. The first function is to 
prevent a matrix singular, which cannot be 
inverted. The other is to control the 
convergence speed of the inversion process 
in Equation (17). We can choose two ways of 
the damping factor value, which is large or 
small value. Figure (10) shows the error 
value that changes every iteration  
for different choices of the damping factor. 
When the damping factor is large, the 
inversion process will be stable because the 
correction of the model is small. However, it 
will make the convergence obtained in longer 
calculation. The other choice is a small 
damping factor, where the model update is 
big and the convergence is faster. However, 
the inversion process cannot be stable.
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7. Conclusions 
Radon measurement on the surface can 
represent the subsurface condition. From 
measurement on the surface, we tried to do 
an inversion. The inversion can show the 
source parameters, which are the Radon 
concentration and depth of the source. We 
proposed a combination of global 
optimization method and a least square 
method to overcome non-uniqueness problem 
while maintaining a fast computation. We 
used Monte-Carlo and Damped least-square 
inversion as the Monte-Carlo is a direct and 
straightforward approach for determining the 
starting model for the damped least square 
method. The damped least square variant that 
we used was based on singular value 
decomposition. From the experiment, we got 
that the Monte Carlo process gave adequate 
starting model to the damped least squares. 
The damped least squares gave a final model 
that is similar to the synthetic model, which 
gave errors between 0.07% to 0.32% in 19 
repetitions. From that is repetition, we got a 
final model that similar to the synthetic 
model depth. The difference was relatively 
small, about 7%. We can say that this 
difference was relatively small because the 
inversion has considerable uncertainty from 
the non-uniqueness problem.  
From here, we can say that the inversion 
scheme that we proposed was quite 
successful. Therefore, we tried to use this 
scheme to invert the real data. The Radon 
two sets of data were from Rajabasa 
geothermal area in Indonesia. There are two 
sets of data, which are the section AA’ and 
the section BB’. The section AA’ inversion 
gave an error range between 0.51% to 0.88% 
and the depth of 712 m. On the other hand, 
from the section BB’ we got error in the 
range between 5.27% to 5.79% with a depth 
of 728 m. These two final depth results give a 
consistent result with the magnetotelluric 
measurement from Dimwani et al. (2011). 
We can conclude that the inversion scheme 
of Monte-Carlo and damped least square 
method can be used for determining the 
geothermal reservoir depth, especially in 
Rajabasa geothermal area. 
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