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Abstract 

Alzheimer's disease is an irreversible chronic neurodegenerative disease which is the 
most common cause of dementia among older adults. According to amyloid hypothesis, 
cholin neurotransmitters have important roles in CNS memory function, therefore 
cholinesterase inhibitors can improve the Alzheimer's symptoms. In recent decades, 
marine creatures have become interested for their huge medicinal effects and potential 
of pharmaceutical preparations. Marine classifications contain pharmacologically active 
compounds with capibilities for improvement of cognitive disorders. This article 
provides a comprehensive overview of cholinesterase inhibitors from marines in 4 
categories contain seaweeds, marine sponges, coelenterates and other invertebrates over 
the 47 years from 1970 to 2017 which resulted into important bioactive extracts and 
isolated compounds which representing a diverse range of structural classes such as 
pyrrole derivatives, sesquiterpene acetates, tetrazacyclopentazulene, bromotyrosine 
derivatives, plastoquinones, farnesylacetones and poly-alkylpyridinium polymers (Poly-
APS). For each structural group, the important compounds with cholinesterase 
inhibition activities were introduced. The result showed marins can be considered as 
important sources to discover new cholinesterase inhibitiors. 
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Introduction 
Alzheimer’s disease (AD) is a progressive and 

neurodegenerative disorder of hyppocampus and 
neocortex. AD is characterized by the deficits in the 
cholinergic system and absence of beta amyloid (Aβ) in 
the form of amyloid plaques. The significant role of 
cholinergic system is the regulation of learning, memory 
and emotional responces. Brain atrophy is the most 

obvious clinical observation in AD that the level of 
acetylcholin (ACh), as a neurotransmitter, is decreased 
due to rapid hydrolysis by acetylcholinesterase (AChE) 
[1, 2]. According to amyloid hypothesis, AChE involves 
in non-cholinergic secondary functions that change the 
position of Aβ in the senile plaques which resulted to 
dysfunction of cholinergic neurons in the basal 
forebrain moiety and cognitive decline in AD patients 
[3, 4]. Additionaly, In AD, the abnormal 
phosphorylation of specific sites on tau inhibit 
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microtubules binding ability and Aβ aggregation [5]. On 
the other hand, some reports indicate that the 
pathogenesis of Alzheimer’s disease is linked to the 
abnormal metal interaction with Aβ as well as metal-
mediated oxidative stress. Formation and accumulation 
of ROS within cells can exacerbate the disease 
pathogenesis by lipid, protein, DNA and RNA damage 
[6, 7]. These mechanisms cause the loss of brain 
neurons involved in cognitive disease [8]. In general, 
AD is an age-related disorder and a prevalent factor of 
dementia in elderly people. Therefore, the inhibition of 
AChE enzyme, which catalyzes the breakdown of ACh, 
is one of the most prescribed treatment strategies for 
AD [9, 10].  Hodges et al. showed that inhibition of 
AChE plays a key role not only in enhancing the 
cholinergic neruotransimission, but also in reducing the 
aggregation of Aβ in AD [11, 12].  The use of 
cholinesterase inhibitors (ChEIs) has been proven as the 
most useful therapeutic strategy for this type of 
dementia [13]. The brain of mamals contains two major 
forms of cholinesterases including AChE and 
butyrylcholinesterase (BuChE) that play important roles 
in cholinergic signaling. In human brain, BuChE is 
placed in glial cells and neurons [14, 15]. Nature is a 
rich and diverse source for discovery of new biological 
and chemical substances. In many type of traditional 
medicine systems, numerous plant's remedies have been 
used for traetment of cognitive disorders [16]. Natural 
products provide significant clues to develop 
medications which can be considered as novel lead 
compounds. They possess good biological activity 
against a wide range of unexplored diseases [17]. Some 
of the biological targetings of natural products are on 
slowing down the progress of Alzheimer’s disease [18]. 
Galantamine and rivastigmine are among the plant-
based AChE inhibitors, which have been approved by 
FDA [19]. Marine organisms are the wide resources for 
exploring novel compounds leading a new generation of 
drugs into the market for treatment of diseases with 
novel mechanism of action [20]. Ziconotide has been 
the first marine-derived peptide drug on the market as a 
reversible N-type voltage-sensitive calcium channel 
blocker [20, 21]. The pharmacological activities of 
marine compounds in the nervous system involve three 
areas contains stimulation of neurogenesis, targeting of 
receptors and neuron specific molecules [22]. Numerous 
marine invertebrates have shown biological activities 
and are helpful for the discovery of bioactive agents 
[23]. Among near to 7000 nomenclatured marine natural 
products, 25% classified into algae, 33% sponges, 18 % 
coelenterates (sea whips, sea fans and soft corals), and 
24% from other invertebrate phyla such as ascidians 
(called tunicates), opisthobranch molluscs (nudibranchs, 

sea hares), echinoderms (starfish, sea cucumbers) and 
bryozoans [24, 25]. 

The first compound with AChE inhibitory activity 
obtained from marine sources was 4-acetoxy-
plakinamine B (stigmastane) (36), an steroidal alkaloid 
from marine sponge Corticium sp. [22, 26]. Over the 
last decades significant investigations have been carried 
out to identify new marine-derivatives. These initiatives 
have been accompanied by specific programs directed 
towards the collection and characterization of marine 
natural compounds [27]. The present review focuses on 
AChEIs from marine resources with a brief available 
information of their chemical structures. 
 
Seaweeds (marine Algae) 

Seaweeds are a diverse macroscopic, saltwater-
dwelling type of plants which attacks the rocks in the 
intertidal zone on the substratum they can grow. 
According to seaweeds pigmentation, they broadly 
classified into Chlorophyceae (green algae), 
Phaeophyceae (brown algae) and Rhodophyta (red 
algae) [28, 29]. Algae are unicellular or multicellular 
organisms which have chlorophyll A and the accessory 
pigment β-carotene. They are tubular and surrounded by 
membranes [30]. Algae are known to be one of the most 
important producers of biomass in the marine 
environment and have been known to produce 
biological active secondary metabolites that might be 
used in the pharmaceutical industry [31].Two 
farnesylacetone (1-2) isolated from Korean brown 
algae, Sargassum sagamianum, showed moderate AChE 
inhibitory effect [32]. Phlorotannins including dieckol 
(3) and phlorofucofuroeckol (PFF) (4) found in brown 
Eisenia and Ecklonia algae, have abilities to inhibit the 
activity of AChE. Myung et al. showed that these 
compounds regulate the level of major central 
neurotransmitters in brain and may improve the 
cognitive performance in patients with 
neurodegenerative disorders [33]. Furthermore, Yoon et 
al. studied the ethanolic extracts of 27 Korean marine 
algae, for their AChE inhibitory activities. Among those 
the extract of Ecklonia stolonifera showed a significant 
inhibition. Two sterols and eight phlorotannins were 
isolated from E. stolonifera. eckstolonol (7) and 
phlorofucofuroeckol-A (8), exhibited inhibitory effects 
toward both AChE and BuChE while eckol (5), 6,6’-
bieckol (11), 2-phloroeckol (6) and 7-phloroeckol (9) 
demonstrated selective dose dependent inhibitory 
activities. However, phloroglucinol and triphlorethol-A, 
did not inhibit the cholinesterase enzymes. It may 
assume that degree of polymerization and closed-ring 
structure of phlorotannins is important for the inhibitory 
potential on cholinesterase inhibition  [34-36]. Seven 
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seaweeds collected by Wendy et al. in South Africa 
such as Caulerpa racemosa var. laetevirens, Codium 
capitatum, Halimeda cuneata represented AChE 
inhibitory effects [37, 38]. Two plastoquinones, 
sargaquinoic acid (12) and sargachromenol (13),were 
isolated from Sargassum sagamianum showed moderate 
AChE inhibition [39]. In an experiment performed by 
kartal et al., the extracts of 13 algae, two fresh-water 
plants and one sea grass were assessed for AChE 
inhibition. Among them, Spirogyra gratiana possessed 
the highest activity at concentration of 2.0 mg/ml [40]. 
The investigation on 11 seaweeds collected from Hare 
Island, Gulf of Mannar, Tamil Nadu in India, 
represented high inhibitory activities on AChE for the 
methanol extracts of Gracilaria gracilis, Cladophora 
fasicularis and Sargassum sp. as well as BuChE 
inhibition effects for Gracilaria gracilis, Gracilaria 
edulis and Sargassum sp. [41]. Fucoidan is a sulfated 
marine-derived polysaccharide [42]. Gao et al. showed 
excellent neuroprotective effects of fucoidan against 
Aβ-induced learning and memory impairment due to 
regulating the cholinergic system, reducing oxidative 
stress and inhibiting the cell apoptosis in AD model of 
rats [43]. Suganthy et al. examined the methanol 
extracts of 8 seaweeds, collected from Hare Island, Gulf 
of Mannar, Marine Biosphere Reserve, Tamil Nadu, 
India for cholinesterase inhibition. Hypnea valentiae, 
Ulva retiuclata showed dual cholinergic inhibition on 
both AChE and BuChE [13, 44]. Investigation on AChE 
inhibition of the enzyme-assisted extracts from 
Enteromorpha prolifera was carried out by Ahn et al. 
The extract of flavourzyme, a type of protease, showed 
the highest AChE inhibitory activity (89.92%) followed 
by neutrase extract (83.18%) and protamex extract 
(80.82%) as well as alcalase extract (78.84%). In the 
carbohydrase types, the extracts from promozyme 
(93.64%), maltogenase (92.22%), viscozyme (86.08%), 
termamyl (78.68%) and celluclast (78.35%) showed 
potent inhibitory activities [45]. The study on the edible 
brown alga, Eisenia bicyclis and its active components 
showed the oxidative stress and reduced neuronal cell 
death, may have potential to be used as a dietary 
neuroprotective agent in AD. Among six phlorotannins, 
eckol and 7-phloroeckol (9) significantly decreased Aβ-
induced cell death [34-36, 46]. In the recent studies, the 
correlation between antioxidant and cholinesterase 
inhibitory activity were verified [47]. A molecular 
docking study performed by Jung and colleagues in 
2010 on phlorotannins from E. bicyclis for human beta-
secretase1 inhibitory activity (hBACE1) showed these 
compounds have beneficial use in prevention and 
improvement of AD [48]. Furthermore, the EtOAc and 
n-BuOH fractions exhibited higher antioxidant and 

cholinesterase inhibiting activities [49]. Fang et al. 
identified four new glycolipids in n-hexane and 
dichloromethane fractions of Capsosiphon fulvescens 
that capsofulvesin A-C (14-16), exhibited AChE 
inhibitory activities [50]. Syad and colleagues showed 
that benzene extract of Gelidiella acerosa had 
significant inhibitory activities on both AChE and 
BuChE [51]. Kawee-ai et al. revealed that fucoxanthin 
(17) purified from microalga Phaeodactylum 
tricornutum expressed strong selective activity on 
BuChE versus AChE inhibition. Fucoxanthin is a 
marine carotenoid in brown seaweeds interacts with the 
peripheral anionic site of AChE and inhibits within non-
competitive manner [52]. A comparison among the 
extracts of eight different types of seaweeds from 
Persian Gulf by Ghannadi et al. showed highest AChE 
inhibitory activity for Sargassum boveanum while 
Cystoseira indica exhibited the least effect. The species 
from Rhodophyta (Gracilaria corticata and Gracilaria 
salicornia) represented moderate activities [53]. Syad et 
al. suggested that presence of triterpenoid in the 
dichloromethane extract of Sargassum wightii  might be 
the possible reason for its potential antioxidant and anti-
cholinesterase activities [54]. Chitosan, a linear 
polysaccharide obtained from deacetylation of chitin, 
has low solubility and must be converting to 
oligosaccharide, chitooligosaccharides (COS) [55-57]. 
Lee and colleagues, studied the AChE inhibitiry 
activities of six kinds of COS with different molecular 
weights (MW) from 50 to 90% of chitosan 
deacetylation. These findings suggest the degree of 
deacetylation of COS is a key factor for AChE 
inhibition [58]. In another study, Yoon et al. 
synthesized three COS derivatives aminoethyl-COS, 
dimethylaminoethyl-COS and diethylaminoethyl-COS. 
Then their AChE inhibitory activities were evaluated 
[59]. Seven classes of marine metabolites had reported 
to have anti-cholinesterase activity such as: 
sesquiterpene acetates [60-62], pyrrole derivatives [63, 
64], tetraza cyclopentazulenes [65], bromo tyrosines 
[66-68], plastoquinones [39], farnesyl acetones [33] and 
poly alkylpyridinium polymers [69-71]. These classes 
of marine metabolites also were evaluated by a docking 
simulation study to determine the most probable 
mechanism of inhibition leading to development of anti-
cholinesterase drugs with dual functions as AChE and 
Aβ-aggregation inhibitors [72]. In another study, the 
inhibitory activities of three Malaysian seaweeds 
(Padina australis, Sargassum polycystum, Caulerpa 
racemosa) were assessed on cholinesterase inhibition. S. 
polycystum and C. racemosa exhibited AChE inhibitory 
activities. Moreover, C. racemosa and P. australis were 
effective on BuChE inhibition [53, 73]. Murugan et al. 
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demonstrated that Padina australis possesses an 
appreciable amount of polyphenols with AChEI 
properties [74]. Bianco and colleagues, evaluated the 
AChE activities of 14 seaweeds (six Rhodophyta, six 
Ochrophyta and two Chlorophyta), eleven sponges, two 
ascidians, one bryozoan and one sea anemone species 
collected along the Brazilian and Spanish coast. 
Although all species showed AChE inhibition, the 
results indidated that extracts from seaweeds are more 
effective than marine invertebrates. Hypnea 
musciformis, Laurencia translucida and Palisada 
perforata exhibited the highest activities [75]. Machado 
et al. documented the chemical composition of 
Ochtodes secundiramea extract containing halogenated 
monoterpenes by GC–MS. This extract showed 48% 
AChE inhibition at the concentration of 400 µg/ml [76]. 
In some other studies, monoterpenes identified as a 
reversible competitive inhibitors of AChE [77, 78]. Due 
to amyloid hypothesis that Aβ-aggregation disrupts the 
brain cells and resulting in complete degeneration of 
neurons [3, 4, 11, 51, 72], Syad et al. demonstrated that 
Gelidiella acerosa might have direct interaction with 
Aβ 25–35 and prevention the aggregation process [79]. 
A review about neuroprotective activities of marine 
organisms in the experimental models of Alzheimer, 
Parkinson and ischemic brain stroke presented by Choi 
in 2015 demonstrated their molecular targets and 
mechanism of actions [33, 35, 39, 48, 49, 80]. 
Rengasamy et al. collected eight seaweeds from the 
intertidal region in KwaZulu-Natal, South Africa for 

AChE inhibition. The result showed Halimeda cuneata 
exhibited the highest activity [81]. Shanmuganathan and 
colleaguse evaluated the anti-cholinesterase activities of 
marine seaweed Padina gymnospora that the acetone 
extract showed the highest inhibitory activity. The 
assessment of amyloidogenic potential for P. 
gymnospora was performed with the same authors. The 
results suggested that the bioactive compound α-
bisabolol (18) isolated from algae had a significant 
inhibition for both AChE and BuChE comparing to 
donepezil and support its potential for the treatment of 
neurological disorders [82, 83]. Screening of 
cholinesterase inhibitory activity from microalgae were 
evaluated by kumar and colleagues that chloroform 
extract of Oscillatoria sp. exhibited the highest 
inhibition (87%) on AChE while acetone extract of 
Phormidium sp. showed maximum inhibition (36%) for 
BuChE [84]. In 2016, Alghazwi et al. focused on 
macroalgae-derived compounds with neuroprotective 
activities for prevention and treatment of 
neurodegenerative diseases such as AD [85]. Syad et al. 
demonstrated the neuroprotective effect of macroalga 
Gelidiella acerosa and determined the AChE and 
BuChE inhibitory activities by Ellman method [86, 87]. 
The results revealed the active component, phytol (35), 
has cholinesterase inhibitory potential at 5–25 mg/ml 
[51]. All the cholinesterase inhibitor substances from 
seaweeds are presented in Table 1 and the structures are 
shown in Figure 1. 
 

Table 1. Cholinesterase inhibitory activities of compounds from seaweeds 
Ref. BuChE inh. 

(IC50 or %) 
AChE inh. 
(IC50 or %) 

Compound(s)/Classification Structure 
Number 

Type Marine source 

[32, 
39] 

34 µM 65 µM (5E,10Z)-6,10,14-
trimethylpentadeca-5,10-dien-

2,12-dione/farnesylacetone 

1 Brown alga Sargassum sagamianum 

[32, 
39] 

23 µM 48 µM (5E,9E,13E)-6,10,4-
trimethylpentadeca-5,9,13-trien-

2,12-dione/farnesylacetone 

2 Brown alga Sargassum sagamianum 

[33, 
34] 

- 17.1 μM dieckol/phlorotannin 3 Brown algae Eisenia & Ecklonia sp. 

[33, 
34] 

- 27.4 μM phlorofucofuroeckol/phlorotannin 4 Brown algae Eisenia & Ecklonia sp. 

[33, 
34] 

- 20.5 μM eckol/phlorotannin 5 Brown alga Ecklonia stolonifera 

[33, 
34] 

- 38.1 μM 2-phloroeckol/phlorotannin 6 Brown alga Ecklonia stolonifera 

[33, 
34] 

0.27 µM 42.6 µM eckstolonol/phlorotannin 7 Brown alga Ecklonia stolonifera 

[33, 
34] 

136.7 μM 4.9 μM phlorofucofuroeckol-
A/phlorotannin 

8 Brown alga Ecklonia stolonifera 

[33, 
34] 

- 21.1 μM 7-phloroeckol/phlorotannin 9 Brown alga Ecklonia stolonifera 

[35] 0.95 μM 16 to 96.3 
μM 

phlorofucofuroeckol-
A/phlorotannin 

10 Brown alga Ecklonia cava 

[36] - 46.42 μM 6,6’-bieckol/phlorotannin 11 Brown alga Ishige okamurae 
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Marine sponges, sponge-derived microbes and fungi 
Marine sponges belonging to the phylum Porifera, 

have a high diversity of bioactive components [88, 89]. 
the sponge-derived chemicals with bioactive properties 
are prominent candidate for future pharmaceutical 
applications [90, 91]. Marine sponges contain diverse 
communities (bacteria, microalgae, fungi) which can 

comprise up to  40% of the sponge volume [92, 93]. In 
1998, Sepčić et al. isolated large polymeric 3-
alkylpyridinium salts, from marine sponge Reniera 
sarai with AChE inhibitory effect. The polymerization 
degree and the alkyl chains length, may play important 
roles for their inhibition activities [69-71]. 

The steroidal alkaloid, 4-acetoxy-plakinamine B 

Table 1. Ctd 
Ref. BuChE inh. 

(IC50 or %) 
AChE inh. 
(IC50 or %) 

Compound(s)/Classification Structure 
Number 

Type Marine source 

[35] - <9 mg/ml Crude extract - Green alga Caulerpa racemosa 
[35] - <9 mg/ml Crude extract - Green alga Codium capitatum 
[35] - <9 mg/ml Crude extract - Green alga Halimeda cuneata 
[35] - <9 mg/ml Crude extract - Green alga Ulva fasciata 
[35] - <9 mg/ml Crude extract - Red alga Amphiroa 

bowerbankii 
[35] - <9 mg/ml Crude extract - Red alga Amphiroa ephedraea 
[35] - <9 mg/ml Crude extract - Brown alga Dictyota humifusa 
[39] - 23.2 μM Sargaquinoic acid/plastoquinone 12 Brown alga Sargassum 

sagamianum 
[39] - 32.7 μM Sargachromenol/plastoquinone 13 Brown alga Sargassum 

sagamianum 
[40] - 42.5 % Crude extract - Green alga Spirogyra gratiana 
[41] 1.5 mg/ml 1.5 mg/ml Crude extract - Red alga Gracilaria gracilis 
[41] 0.6 mg/ml 1 mg/ml Crude extract - Brown alga Sargassum sp. 
[41] - 2 mg/ml Crude extract - Green alga Cladophora 

fasicularis 
[41] 1.3 mg/ml 3 mg/ml Crude extract - Red alga Gracilaria edulis 

[9,42] 3.9 mg/ml 2.6 mg/ml Crude extract - Red alga Hypnea valentiae 
[13, 44] 6.5 mg/ml 10 mg/ml Crude extract - Green alga Ulva retiuclata 

[50] >132 mg/ml 53.1 mg/ml (2S)-1-O-(6Z,9Z,12Z,15Z-
octadecatetraenoyl)-2-O-

(4Z,7Z,10Z,13Z-
hexadecatetraenoyl)-3-O-β-D-

galactopyranosyl glycerol 
(capsofulvesin A)/glycolipid 

14 Green alga Capsosiphon 
fulvescens 

[50] 114 µM 51.3 µM (2S)-l-O-(9Z,12Z,15Z-
octadecatrienoyl)-2-O-(10Z,13Z-

hexadecadienoyl)-3-O-β-D-
galactopyranosyl 

glycerol/(capsofulvesin 
B)/glycolipid 

15 Green alga Capsosiphon 
fulvescens 

[50] 185.5 µM 825 µM (2S)-1-O-(6Z,9Z,12Z,15Z-
octadecatetraenoyl)-3-O-β-D-
galacatopyranosyl glycerol/ 
(capsofulvesin C)/glycolipid 

16 Green alga Capsosiphon 
fulvescens 

[51] 78.4 % 54.2 % Crude extract - Red alga Gelidiella acerosa 
[52] 1.9 mM - Fucoxanthin/xanthophyll 17 Micro alga Phaeodactylum 

tricornutum 
[53] - 1 mg/ml Crude extract - Brown alga Sargassum boveanum 
[53] - 2.5 mg/ml Crude extract - Brown alga Sargassum 

oligocystum 
[54] 17.9 mg/ml 19.3 mg/ml Petroleum ether extract  Brown alga Sargassum wightii 
[54] 32.7 mg/ml 46.8 mg/ml Hexane extract  Brown alga Sargassum wightii 
[54] 12.9 mg/ml 27.2 mg/ml Benzene extract  Brown alga Sargassum wightii 
[54] 36.1 mg/ml 50.5 mg/ml Dichloromethane extract  Brown alga Sargassum wightii 
[73] >0.2 mg/ml 0.5 mg/ml Dichloromethane extract - Brown alga Padina australis 
[73] >0.2 mg/ml 0.1 mg/ml Hexane extract - Brown alga Sargassum 

polycystum 
[73] 0.1 mg/ml 0.1 mg /ml Hexane extract - Green alga Caulerpa Racemosa 
[74] - 1.5 mg/ml Polyphenolic fraction - Brown alga Padina australis 
[75] - 14.4 µg/ml Crude extract - Red alga Hypnea musciformis 
[75] - 16.4 µg/ml Crude extract - Red alga Laurencia 

Translucida 
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(stigmastane) (36), isolated from the methanol extract of 
Thai sponge Corticium sp., showed a prominent AChE 
inhibitory activity at 0.1 mg/ml [26, 94]. In a study of 
Orhan and colleagues, bioactivity of the selected 
Turkish marine sponges and three compounds from 
Agelas oroides were evaluated for AChE inhibition  and 
only oroidin (37) was active at the concentration of 100 
mg/ml [95]. Beedessee et al. examined the AChE 
inhibitory activities of 134 extracts obtained from 45 
species of marine sponges collected from Mauritius 
waters [96].The inhibition was determined by Ellman 
colorimetric method modified by Eldeen et al. [86]. A 
few number of AChE inhibitor compounds have been 
isolated from the bacterial associated sponge sources. 
The first bacterial report on AChEIs was about 
Streptomyces antibioticus. Cyclophostin was another 
AChEI isolated from Strepomyces lavendulae [97, 98]. 
In the other study, a new pyrroloquinoline alkaloid, 
marinoquinoline A, was found in a marine gliding 
bacterium, Rapidithrix thailandica. The AChE 
inhibitory activity of this compound was discovered 
because of its similarities with tacrine structure. Another 
research showed a novel marine bacteroidetes member, 
Ohtaekwangia kribbensis, also containes 
marinoquinoline A [99]. Towards finding novel anti-

cholinesterase agents from marine sponges associated 
strain of Bacillus subtilis and other marine bacteria, 
Siphonodictyon coralliphagum was introduced for the 
highest number of AChEIs. Several alkaloid and terpene 
derivatives with AChE inhibitory activities have been 
isolated from sponges. In a previous screening, the 
compound M18SP4Q, which showed the highest AChE 
inhibition, was originated from Bacillus subtilis [100]. 

The study performed by Wu and colleagues showed 
Talaromyces sp. strain LF458, a fungus associated with 
sponge Aulactinia verrucosa, produces new 
oxaphenalenones dimers. Talaromycesone B, the new 
isopentenyl talaroxanthenone, and the compound AS-
186c presented AChE inhibition [101]. In another study, 
El-Hady et al. evaluated tyrosinase and AChE inhibitory 
potential as well as antioxidant and antimicrobial 
activities of two fungi (FS1 and FS3) isolated from the 
sponges Amphimedon viridis and Agelas sp., 
respectively. The results showed only the mycelial 
extract from the static culture of FS3 (identified as 
Aspergillus sydowii strain W4-2) revealed inhibition on 
AChE [102]. In a mentioned study for investigation on 
29 marine species, all the sponges extracts showed 
AChE inhibitory activities [75]. Geodia barretti is a 
Norwegian coast sponge contains two novel brominated 

Table 1. Ctd 
Ref. BuChE inh. 

(IC50 or %) 
AChE inh. 
(IC50 or %) 

Compound(s)/Classification Structure 
Number 

Type Marine source 

[75] - 14.9 µg/ml crude extract - Red alga Porphyra perforata 
[81] - 70 µg/ml crude extract - Green alga Halimeda cuneata 
[82] <150 μg/ml <150 μg/ml acetone extract - Brown alga Padina gymnospora 
[82] <10 μg/ml <10 μg/ml α-bisabolol/monocyclic 

sesquiterpene alcohol 
18 Brown alga Padina gymnospora 

[84] - 87.5 % chloroform extract - Micro alga Oscillatoria sp. 
[84] 36.1 % - acetone extract - Micro alga Phormidium sp. 
[143] 12.6 μg/ml 1.4 μg/ml 2-(3-hydroxy-5-

oxotetrahydrofuran-3-yl) acetic 
acid 

19 Red alga Gloiopeltis furcate 

[143] 41.5 μg /ml 5.6 μg/ml glutaric acid 20 Red alga Gloiopeltis furcate 
[143] - 5.7 μg /ml succinic acid 21 Red alga Gloiopeltis furcate 
[143] 20.8 μg/ml 1.1 μg/ml nicotinic acid 22 Red alga Gloiopeltis furcate 
[143] 31.5 μg/ml 12.2 μg/ml (E)-4-hydroxyhex-2-enoic acid 23 Red alga Gloiopeltis furcate 
[143] - 1.2 μg/ml cholesterol/sterol 24 Red alga Gloiopeltis furcate 
[143] 5.5 μg/ml 2.3 μg/ml 7-hydroxycholesterol/sterol 25 Red alga Gloiopeltis furcate 
[143] 35.8 μg/ml 1.6 μg/ml uridine/nucleoside 26 Red alga Gloiopeltis furcate 
[143] 8 μg/ml 1.6 μg/ml glycerol/simple polyol 27 Red alga Gloiopeltis furcate 
[143] 32.6 μg/ml 7.4 μg/ml 5-(hydroxymethyl)-2-

methoxybenzene-1,3-diol 
28 Red alga Gloiopeltis furcate 

[143] 75.2 μg/ml 4.1 μg/ml (Z)-3-ethylidene-4 
methylpyrrolidine-2,5-dione 

29 Red alga Gloiopeltis furcate 

[143] - 7.5 μg/ml loliolide/carotenoid 30 Red alga Gloiopeltis furcate 
[143] - 6.3 μg/ml cholesteryl stearate/sterol 31 Red alga Gloiopeltis furcate 
[143] 6.6 μg/ml 11.5 μg/ml cis-5,8,11,14,17 eicosapentaenoic 

acid/fatty acid 
32 Red alga Gloiopeltis furcate 

[143] 15.9 μg/ml 12.5 μg/ml α-linolenic acid/fatty acid 33 Red alga Gloiopeltis furcate 
[85] - 84.4 μM dibenzo[1,4]dioxine- 2,4,7,9-

tetraol/phlorotannin 
34 Red alga Gloiopeltis furcate 

[144] 5.8 mg/ml 2.7 mg/ml phytol/acyclic diterpene alcohol 35 Red alga Gelidiella acerosa 
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a strong fluorescent pigment synthesized from P. 
axinellae samples obtained from the Bay of Naples, 
Italy, showed moderate inhibition on AChE from 
Electrophorus electricus, (eeAChE) [65] that may bind 
to nicotinic acetylcholine receptors (nAChR). Rozman 
et al. used the voltage-clamp technique for evaluation of 
its effect on Torpedo nAChR (α12βγδ) transplanted to 
Xenopus laevis oocytes [117]. Zooxanthellae are a 
group of dinoflagellate symbionts living in the tissues of 
many marine organisms, such as corals, jellyfish and 
molluscs that make up a large part of the reef 
widespread. For the use in photosynthesis, the host 
provides carbon dioxide and other waste products.  
Scleractinian corals, also called stony or true corals, are 
members of the phylum Cnidaria, class Anthozoa, order 
Scleractinia depositing massive amounts of calcium 
carbonate that make up the structure of coral reefs. 
Corals (Coelenterata: Alcyonacea) look more like plants 
than animals, such as sea fans and sea pens which have 
two roles, secretion of  digestive enzymes and 
absorbtion of digested organic substances from 
sediments [118]. El-Hady et al. separated marine fungus 
Emericella unguis 8429, a coral derived fungus, with 
AChE inhibitory activity [119]. In another study, the 
same research group assessed the inhibition of AChE 
for the soft coral associated fungus Aspergillus unguis 
SPMD-EGY [120]. Alcyonarians are rich sources of 
unique organic molecules, such as terpenes with 
significant biological activities [121]. Several new 
lobane and cembrane diterpenoids were isolated from 
the soft corals of the genera Lobophytum and Sinularia 
with significant AChE-inhibition [122]. Cladidiol (43), 
a new sesquiterpene from the soft coral genus Cladiella, 
[123], represented AChE-inhibition activity [124]. 
Gyrostoma helianthus is a large anemone which almost 
be hosted by symbiotic anemone fish [125]. Gomaa and 
the calleagues were Isolated and characterized a 
hydrazine derivative with AChE inhibitory activity from 
G. helianthus [126]. 

 
Other invertebrates 

Bouchet and collegues provided an accurate 
bibliographical and nomenclatural data for gastropod 
family-group names. There is not international 
nomenclature available due to difficulty in establishing 
the dates and authors. For that reason taxonomist do not 
insert molluscan family-group names in classifications 
[127]. Opisthobranches mollusc, Onchidellu binneyi, 
inhabits the rocky intertidal zone, in the Gulf of 
California. This invertebrate produces a defensive 
secretion contains onchidal as the major lipid-soluble 
component [60]. The toxicity of onchidal can be 
resulted from inhibition of proteins and its structural 

similarities with acetylcholine. Permanent inhibition of 
AChE by onchidal, results in potentially deadly 
cholinergic toxicity. Onchidal and other irreversible 
inhibitors of AChE are not suitable for direct use as an 
anti-cholinesterase inhibitors for human diseases but 
they could have potential for use in insecticides or 
pesticides [61]. 

Kigoshi et al. isolated turbotoxins A and B from the 
viscera of the Japanese gastropod, Turbo marmorata, 
that results showed AChE inhibitory effect for 
turbotoxin A (45) [128]. Bryozoans from the phylum 
Bryozoa are moss animals, termed zooids that are the 
most responsible organisms for fouling ship’s bottoms 
and solid surfaces [128]. The perennial marine 
bryozoan, Flustra foliacea, has biologically active 
brominated alkaloids and monoterpenes as well as some 
unusual pyrrolo(2,3-b)indoles skeleton. Compounds 
with prenylated physostigmine type marine structures, 
exhibit AChE inhibitory activities [129-132]. Another 
study represented the potent BuChE inhibition of 
isolated debromoflustramine B. Rivera-Becerril and 
colleagues synthesized both enantiomers of 
debromoflustramine B. The naturally occurring 
enantiomer, (-)-176, inhibited human BChE (IC50 = 
1.37μM)  [80, 133, 134]. Marine ascidians are from 
subphylum Urochordata that their bodies are covered by 
a substance similar to cellulose, called tunic and 
considered as a rich source of chemically diverse 
secondary metabolites [135-138]. Tadesse and 
colleagues isolated two new dibrominated compounds, 
pulmonarins A and B, from the sub-arctic ascidian 
Synoicum pulmonaria. Although both of them were 
non-competitive AChE inhibitors, pulmonarin B (46) 
was more active [139]. The proposed structures were 
verified by synthesis. analysis of both compounds 
revealed their function as reversible, noncompetitive 
inhibitors. AChE inhibition effects of two new 
brominated β-carbolines, irenecarbolines A and B (47-
48), from solitary ascidian, Cnemidocarpa irene were 
studied by Tadokoro et al. The IC50 values of tested 
compounds exhibited concentration-dependent 
inhibitions [140]. All the cholinesterase inhibitors from 
invertebrates and the structures are summarized in Table 
3 and Figure 3, respectively. 

 

Results 
AD is a neurodegenerative disease with multiple 

etiologies. The inhibition of cholinesterase enzymes are 
of the most prescribed treatment strategies for AD. The 
earliest examples of cholinesterase inhibitors, 
physostigmine and tacrine have been used to treat a 
range of conditions in AD. Unfortunately, due to the 
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