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In this paper, we compute the asymptotic average of
the decimals of some real numbers. With the help of
this computation, we prove that if a real number cannot
be represented as a finite decimal and the asymptotic
average of its decimals is zero, then it is irrational. We
also show that the asymptotic average of the decimals
of simply normal numbers is 9/2.
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1 Introduction

One of the interesting topics in the theory of real numbers is to decide the irrationality
of a real number based on the properties of the sequence of its decimal expansions [2, 5,
10, 12, 13, 14, 19]. We mention two of such beautiful results:

• Bundschuh in [2], as a generalization of Mahler’s theorem in [12], proves that if g, h ≥
2 are two fixed integers, then the positive real number 0.(g0)(g1)(g2) . . . (gn) . . . is
irrational, where (gn) is to mean the number gn written in base h.

• Hegyvári in [10] proves that if (an)n∈N is a strictly increasing sequence of positive in-
tegers for which

∑∞
n=1 1/an =∞, then the decimal fraction α = 0.(a1)(a2) . . . (an) . . .

is irrational, where (an) is to mean the positive integer number in base 10.
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Hardy and Wright (cf. [8, Theorem 137]) show that the real number

r = 0.r1r2r3 . . . rn . . . = 0.011010100010 . . . ,

is irrational, where rn = 1 if n is prime and rn = 0 otherwise. Their beautiful proof is based
on this fact that no non-constant polynomial in Z[X] is a prime-representing function [8,
Theorem 21]. We recall that a function f(x) is said to be a prime-representing function
if f(x) is a prime number for all positive integral values of x [15]. In Section 2, by The
Chebychev’s Estimate Theorem [7, Theorem 4.2.1] and calculating the asymptotic average
(Cesaro summation) of the decimals of some real numbers, we give an alternative proof
for Hardy and Wright’s theorem (see Theorem 2.8).
Note that this is a corollary of the main theorem of this paper which says that if a real
number r cannot be represented as a finite decimal and the asymptotic average of its
decimals is zero, then r is irrational (see Theorem 2.5).
In Corollary 2.6, we show that if (an)n∈N is a strictly increasing sequence of positive

integers such that lim
n→+∞

n

an
= 0, then r =

+∞∑
n=1

bn
10an

is irrational, where each 1 ≤ bn ≤ 9 is

a positive integer.
Section 3 is devoted to the asymptotic average of the decimals of simply normal numbers.
Let us recall that a real number r is a simply normal number to base b if for the deci-
mals (rn)n∈N of the fractional part (0.r1r2r3 . . . rn . . . )b of the real number r, we have the
following property:

lim
n→+∞

card{j : 1 ≤ j ≤ n, rj = d}
n

=
1

b
,

where d ∈ {0, 1, 2, . . . , b − 1} [1, Definition 4.1]. In Theorem 3.1, we prove that if r is a
simply normal number to base b, then the asymptotic average of the decimals of r is equal

to
b− 1

2
. We need to recall that a fractional part of a real number r is the non-negative

real number frac(r) := |r|−b|r|c, where |r| is the absolute value of r and brc is the integer
part of r.
In Proposition 3.2, we show that the asymptotic average of the decimals of Champernowne
number is 9/2. Note that Champernowne number is the number

C10 = 0.1234567891011121314151617181920 . . . ,

whose sequence of decimals is the increasing sequence of all positive integers. Since we are
not aware of this point if the asymptotic average of the decimals of all irrational numbers
exists and if it exists we do not know of a systematic method to calculate it, we propose
a couple of questions at the end of the paper (check Questions 3.4).
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2 A Criterion for the Irrationality of Some Real Num-

bers

First we recall some facts related to real numbers in order to fix some definitions and
terminologies. Let us recall that every real number to base b can be expressed by a
decimal expansion, and this expansion can be performed in only one way [20, p. 38]. To
be more precise, a real number is regular with respect to some base number b when it
can be expanded in the corresponding number system with a finite number of negative
powers of b [18, p. 316]. A regular number is also called a real number with finite decimal
[9, p. 25]. It is easy to see that a real number r with respect to some base number b is

regular if and only if there are coprime integer numbers p and q such that r =
p

q
and q

contains no other prime factors than those that divide b [18, p. 316]. In this paper, if the
fractional part of a regular number to base b is

α = (0.r1r2 . . . rn)b,

we only consider the representation with an infinite series of (b− 1):

α = (0.r1r2 . . . (rn − 1)(b− 1) . . . )b.

Therefore, if we agree always to pick the non-terminating expansion in the case of regular
numbers, then fractional part of each real number to base b corresponds uniquely to an
infinite decimal (0.r1r2r3 . . . rn . . . )b. Finally, we assert that if (rn)n∈N is a sequence in
real numbers, the sequence of the averages is defined as follows:

an =
r1 + r2 + · · ·+ rn

n
.

Definition 2.1. Let the fractional part of a real number r to base b be

(0.r1r2 . . . rn . . . )b.

Then, we define the asymptotic average (Cesaro summation) of the decimals of the real
number r by

Avb(r) = lim
n→+∞

r1 + r2 + · · ·+ rn
n

,

if it exists. Usually, we denote Av10(r) by Av(r) if there is no fear of any ambiguity.

In the following, we calculate the asymptotic average of the decimals of some real numbers:

Theorem 2.2. Let the decimals (rn)n∈N of the fractional part

(0.r1r2r3 . . . rn . . . )b

of a real number r satisfy the following:
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lim
n→+∞

card{j : 1 ≤ j ≤ n, rj = d}
n

= ωd,

where d ∈ {0, 1, 2, . . . , (b− 1)}, 0 ≤ ωd ≤ 1, and
b−1∑
d=0

ωd = 1. Then,

Avb(r) =
b−1∑
d=1

(d · ωd).

Proof. Let A(d, n) = {j : 1 ≤ j ≤ n, rj = d}. By assumption,

lim
n→+∞

cardA(d, n)

n
= ωd.

This means that for any ε > 0, there is a natural number Nd such that if n > Nd, then∣∣∣∣cardA(d, n)

n
− ωd

∣∣∣∣ < ε.

Now, if we define N = max{Nd}b−1d=0, for each n > N , we have the following:

ωd − ε <
cardA(d, n)

n
< ωd + ε. (2.3)

Since
r1 + r2 + · · ·+ rn

n
=

∑b−1
d=0

∑
i∈A(d,n) ri

n
=

∑b−1
d=1 d cardA(d, n)

n
,

by using the inequality (2.3), we have the following:∣∣∣∣∣r1 + r2 + · · ·+ rn
n

−
b−1∑
d=1

d · ωd

∣∣∣∣∣ < b(b− 1)ε

2
.

Hence,

Avb(r) =
b−1∑
d=1

d · ωd

and the proof is complete.

Let us recall that any rational number is expressible as a finite decimal (if it is regular)
or an infinite periodic decimal. Conversely, any decimal expansion which is either finite
or infinite periodic is equal to some rational number [17, p. 32]. Since in this paper, we
only consider the infinite decimal representation of a finite decimal number, we have the
following:
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Corollary 2.4. Let r be a rational number. Then Avb(r) exists and is a positive rational
number. Moreover, if the fractional part of the rational number r to base b is

(0.r1r2 . . . rnp1p2 . . . pm)b,

then

Avb(r) =
p1 + p2 + · · ·+ pm

m
.

In particular, if r is regular to base b, then

Avb(r) = b− 1.

Now we prove the main theorem of our paper:

Theorem 2.5 (A Criterion for the Irrationality of Some Real Numbers). Let r be a real
number such that Avb(r) = 0. Then r is irrational.

Proof. From Definition 2.1, it is clear that Avb(r) is non-negative. Also by Corollary 2.4,
Avb(r) is positive if r is rational. Therefore, if Avb(r) = 0, then r is irrational and the
proof is complete.

Corollary 2.6. Let (an)n∈N be a strictly increasing sequence of positive integers such that

lim
n→+∞

n

an
= 0.

Define r =
+∞∑
n=1

bn
10an

, where 1 ≤ bn ≤ 9 is a positive integer, for each n ∈ N. Then, r is

irrational.

Proof. Av(r) ≤ 9 · lim
n→+∞

n

an
= 0.

Remark 2.7. By Corollary 2.6, the Liouville’s constant

` =
+∞∑
n=1

1

10n!
,

[21, Theorem 6.6] is irrational.

Let us recall that π(n) = card{p ∈ P : p ≤ n} is the prime counting function, where P is
the set of all prime numbers. The Chebychev’s Estimate Theorem states that there exist
positive constants A1 and A2 such that

A1 ·
n

lnn
< π(n) < A2 ·

n

lnn
,

for all n ≥ 2 [7, Theorem 4.2.1]. One of the nice corollaries of this theorem says that

limn→+∞
π(n)

n
= 0 [7, Corollary 4.2.3]. We use this to give an alternative proof for the

following result brought in the book by Hardy and Wright [8]:
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Theorem 2.8. [8, Theorem 137] The real number

r = 0.r1r2r3 . . . rn · · · = 0.011010100010 . . . ,

where rn = 1 if n is prime and rn = 0 otherwise, is irrational.

Proof. It is clear that
r1 + r2 + r3 + · · ·+ rn

n
=
π(n)

n
. Since Av(r) = lim

n→+∞

π(n)

n
= 0 [7,

Corollary 4.2.3], r is irrational (Corollary 2.6). This finishes the proof.

3 The Asymptotic Average of the Decimals of Simply

Normal Numbers

Let us recall that a real number r is a simply normal number to base b if for the deci-
mals (rn)n∈N of the fractional part (0.r1r2r3 . . . rn . . . )b of the real number r, we have the
following property:

lim
n→+∞

card{j : 1 ≤ j ≤ n, rj = d}
n

=
1

b
,

where d ∈ {0, 1, 2, . . . , b− 1} [1, Definition 4.1].

Theorem 3.1. Let r be a simply normal number to base b. Then Avb(r) =
b− 1

2
.

Proof. By Theorem 2.2, Avb(r) =
b−1∑
d=1

(d · 1

b
) =

b− 1

2
.

Let us recall that a real number r is algebraic if it is the root of a polynomial f(X) ∈ Z[X],
otherwise it is transcendental [6, 16]. The set of transcendental numbers is uncountable
[3]. For a masterful exposition of some central results on irrational and transcendental
numbers, refer to [16].

Proposition 3.2. The following statements hold:

1. There is a transcendental number r such that Av(r) 6= 0.

2. There is a transcendental number r such that Av(r) = 0.

Proof. (1): The Champernowne number,

C10 = 0.1234567891011121314151617181920 . . . ,

whose sequence of decimals is the increasing sequence of all positive integers, is a simply
normal number (cf. [4] and [1, Theorem 4.2]). So, by Theorem 3.1, Av(r) 6= 0. On the
other hand, C10 is transcendental [11].

(2): The Liouville’s constant ` =
+∞∑
n=1

1

10n!
is transcendental [21, Theorem 6.6] while by

Corollary 2.6, we have Av(`) = 0.
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Remark 3.3. With the help of Corollary 2.4, it is easy to see that if s ∈ (0, 9] ∩ Q, then
there is a rational number r such that Av(r) = s. Based on this, the following questions
arise:

Questions 3.4. 1. Is there any irrational (transcendental) number r such that Av(r)
does not exist?

2. Is there any irrational (transcendental) number r such that Av(r) = s, for an arbi-
trary s in (0, 9] ∩ (R−Q),?

3. Does the asymptotic avergage of the decimals of the irrational number
√

2 exist and
if it exists, what is that? The same question arises for other celebrated irrational
numbers such as e, π, γ, and log3

2, where

γ = lim
n→+∞

(
− lnn+

n∑
k=1

1

k

)
is the Euler-Mascheroni constant?

Acknowledgments

This work is supported by the Golpayegan University of Technology. Our special thanks
go to the Department of Engineering Science at the Golpayegan University of Technology
for providing all the necessary facilities available to us for successfully conducting this
research.

References

[1] Bugeaud, Y.: Distribution Modulo One and Diophantine Approximation, Cambridge
University Press, Cambridge, 2012.

[2] Bundschuh, P.: Generalization of a recent irrationality result of Mahler, J. Number
Theory 19 (1984), 248–253.
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