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ABSTRACT

ARTICLE INFO

Let G = (V, E)) be a graph. A double Roman dominating
function (DRDF) on G is a function f : V — {0, 1,2,3}
such that for every vertex v € V' if f(v) = 0, then either
there is a vertex u adjacent to v with f(u) = 3 or there
are vertices = and y adjacent to v with f(z) = f(y) = 2
and if f(v) = 1, then there is a vertex u adjacent to
v with f(u) > 2. A DRDF f on G is a total DRDF
(TDRDF) if for any v € V with f(v) > 0 there is a
vertex u adjacent to v with f(u) > 0. The weight of f
is the sum f(V) =3 o, f(v). The minimum weight of
a TDRDF on G is the total double Roman domination
number of G. In this paper, we give a linear algorithm
to compute the total double Roman domination number
of a given tree.
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1 Introduction

Let G = (V,E) be a graph. A double Roman dominating function (DRDF) f : V —
{0,1,2,3} of G has the property that for every vertex v € V with f(v) = 0 either there
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is a vertex u € V adjacent to v with f(u) = 3 or there are vertices x,y € V adjacent to v
with f(z) = f(y) = 2 and for every vertex v € V with f(v) = 1 there is a vertex u € V
adjacent to v with f(u) > 2. Beeler et al. [2] introduced the concept of double Roman
dominating function. The concept of double Roman domination was further studied, see
for example [1, 5, 7, 8].

Shao et al. [6] introduced a new variant of double Roman dominating functions. A total
DRDF (TDRDF) is a DRDF f on G with an additional property that for every vertex
v €V with f(v) > 0 there is a vertex u € V adjacent to v with f(u) > 0.

The weight of a TDRDF f on G is the sum f(V) = >, ., f(v), denoted by w(f), and
the minimum weight of a TDRDF f is the total double Roman domination number of G,
denoted by 414r(G). They showed that the decision problem for the total double Roman
domination is NP-hard even when restricted to chordal and bipartite graphs. There are
many works that compute a variant of domination for a given tree, see for example,
13, 4, 8]. In This paper we give a dynamic programming algorithm that computes the
total double Roman domination of a given tree in linear time.

2 Total double Roman domination of trees

In this section, we give a linear algorithm (Algorithm 2.1) that computes the total double
Roman domination number of a given tree. Let G = (V, E) be a graph with v € V| let a
vertex w ¢ V and let a € {0,1,2,3} and b,c € {1,2,3}. We define the following.

e var(G,v =a) =min{w(f) : f is a TDRDF on G with f(v) = a},

e v,r(G,v=0w=2)=min{w(f): fisa DRDF on G+vw such that the restriction
of fto G —visaTDRDF on G —v, f(v) =0 and f(w) = 2},

e Yar(G,v = b,w = ¢) = min{w(f) : fis a TDRDF on G + vw with f(v) = b and
flw) =c}.

A v4r(G,v = a)-function is a minimum TDRDF f on G with f(v) = a, a y,z(G,v =
0, w = 2)-function is a minimum DRDF on G + vw such that the restriction of f to G — v
is a TDRDF on G — v, f(v) = 0 and f(w) = 2 and a vyr(G,v = b, w = ¢)-function is a
minimum TDRDF on G + vw with f(v) = b and f(w) = c.

Lemma 1:

Let Hy = (V4, Ey) and Hy = (V3, Es) be graphs with ViNV, =0, v € V; and u € V5, let
w be a vertex not in V3 UV, let G = (V; U Vo, By U Ey U {uv}) and let a € {1,2,3} and
b e {2,3}. Then,

(1) Year(G,v =0) = min{yar(H1,v = 0)+Yar(H2, v = 0), Year(H1,v = 0)+Yar(Ho, u =
1), Yar(Hi,v = 0,w = 2) + yar(Ha, v = 2) — 2, Year(H1 — v) + Vear(Ho, u = 3)},
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(11) Year(G,v = 1) = min{vear(H1,v = 1)+ar(H2,u = 0), vtar(H1,v = 1)+Yar(Ha, u =
1), Yar(Hi,v = L,w = 2) + yap(Hoyu = 2,w = 1) — 3, yar(H1,v = LLw =
3) —l—’}/th(HQ,’LL = 3,w = 1) — 4},

(119) Yar(G,v = 2) = min{yar(Hi,v = 2) + Yigp(Hz,u = 0,w = 2) — 2, yqr(Hy,v =
2,w=1)+vr(Hyyu=1,w=2) — 3, yar(H1,v = 2,w = 2) + yqr(Ha,u = 2,w =
2) - 47fyth(H17U - 2,'11) = 3) + thR(H%u - 3,U} - 2) - 5}7

(iv) %dR(G,U = 3) = miﬂ{’Yth(Hl,U = 3) =+ ’Yth(Hz - U),’Yth(HhU =3,w =1
Yar(He,u = 1L,w = 3) — 4, vur(Hi,v = 3,w = 2) + yar(Hz,u = 2,w = 3)
577th<H17 U= 37 w = 3) + ’Yth(H%u - 37 w = 3) - 6}7

<U> ’yzdR(GJU = va = 2) = min{ryédR<H1=U = va = 2) + thR<H2=u = O)?’YédR(HhU =
0,w = 2) + yar(Hz,u = 1), %ar(H1 — v) + Year(Ha, v = 2) + 2, year(H1 — v) +
’Yth(H%u - 3) + 2}7

(vi) Yar(G,v =1, w =b) = min{ygr(H1,v = 1, w = b) + yar(Hz,u = 0), Vear(H1,v =
Lw = b) + var(Hz,u = 1), var(Hy,v = 1L,w = b) + yar(Hy,u = 2,w = 1) —
1,7th(H1,U = 1,w = b) + ’)/th(HQ,U = 3,’LU = 1) — 1},

(vi7) Yar(G,v = 2,w = a) = min{yr(H1,v = 2,w = a) + Yup(Hu = 0,w =
2) = 2,var(Hi,v = 2,w = a) + yar(Ho,u = 1w = 2) — 2,yqr(H1,v = 2,w =
a) +Year(Ha,u = 2,w = 2) = 2,yar(H1,v = 2, w = a) +Yar(Ha, u = 3, w = 2) — 2},

(UW) ”Yth(G,U =3, w = Cl) = min{%dR(HbU =3,w = a) + ’Yth(HQ - U)/Yth(Hl?U =
3,w=a)+ Yr(Hoyu=1,w=3) =3, yar(H1,v =3, w = a) + yar(Hz,u = 2,w =
3) = 3,ar(Hy,v = 3,w = a) + yar(Hz,u = 3,w = 3) — 3},

(i) Yar(G —v) = Yar(Hy — v) + min{yar(H2,u = 0), ear(Ha,u = 1), Yiar(Ha,u =
2)77th(H27U = 3)}

Proof: Let f be a vr(G)-function and let x € {0,1,2,3} and ¢ € {1,2,3}. Clearly,
f(v) = z if and only if both f(v) = x and f(u) = 0, both f(v) = x and f(u) = 1, both
f(v) = x and f(u) = 2 or both f(v) = x and f(u) = 3. Let fi, fo, fi¥ and f;* be
restrictions of f to Hy, Hy, H; — v and Hy — u, respectively. Let ¢7%, ¢5%, g7~ g5,
g7’ g% hi%7% and A"~ be a yur(Hy,v = x)-function, vur(Hs, u = z)-function,
Yar(Hi,v = b,w = c¢)-function, yar(Hs,u = b,w = c¢)-function, vyar(H; — v)-function,
Yar(Hy — w)-function, ~,p(Hi,v = 0,w = 2)-function and ~j,z(H2,u = 0,w = 2)-
function, respectively, and let 0, = {(y,0)}, 1, = {(y, 1)}, 2, = {(y,2)} and 3, = {(v,3)},
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where y is a vertex. Assume that for every f,g € {glzb’:c,g;b’zc, [ e W=

{1,2,3}} we have Dy N D, = 0.

Let f(?]) = 0 and YtdR = min{")/th(Hl,U = O) + ’yth(Hg,u = 0),’}/th([’[1,1) = O) -+
Year(Hay,u = 1), viqp(Hy,v = 0,w = 2) + Yar(Ha, u = 2) — 2, vigr(Hy — v) + Yar(Ha, u =
3)}. So, fi is a TDRDF on H; with fi(v) = 0 and f, is a TDRDF on Hsy with fo(u) = 0,
function f; is a TDRDF on H; with fi(v) = 0 and f5 is a TDRDF on H, with fo(u) = 1,
function h = f; U2, is a DRDF on H; + vw such that the restriction of h to H; — v
is a TDRDF on H; — v, h(v) = 0 and h(w) = 2 and f, is a TDRDF on H, with
fa(u) = 2 or f;¥is a TDRDF on H; — v and fy is a TDRDF on H, with fy(u) = 3.
Hence, Yiar < Yar(G,v = 0). Conversely, g = g7’ U g5° is a TDRDF on G with
g1(v) = 0, function go = ¢7° U g5* is a TDRDF on G with go(v) = 0, the restriction
of g = h7"=2 U g5 to G is a TDRDF on G with gs(v) = 0 and g4 = ¢g7" U ¢g5° U 0,
is a TDRDF on G with g4(v) = 0. Hence, y4r(G,v = 0) < 7y4r. This, together with
Yar < Yar(G,v = 0), completes the proof of part (i).

Let f(v) = 1, let z # w be a vertex not in V(G) and let viqp = min{yar(Hi,v = 1) +
Year(Hz, v = 0), Vear(H1,v = 1) + yar(Hoyu = 1), ear(H1, v = 1L, w = 2) 4+ yar(Ha, u =
2w =1) — 3, var(H1,v = 1,w = 3) + Yqr(Hz,u = 3,w = 1) — 4}. So, f; is a TDRDF
on Hy with fi(v) =1 and fy is a TDRDF on Hy with fo(u) = 0, function f; is a TDRDF
on H; with fi(v) =1 and f; is a TDRDF on Hy with fo(u) = 1, function hy = f; U 2,
is a TDRDF on H; 4+ vw with hy(v) = 1 and hy(w) = 2 and hy = fo U 1, is a TDRDF
on Hy + uz with hy(u) =2 and ho(z) =1 or hy = f; U3, is a TDRDF on H; + vw with
hs(v) =1 and h3(w) = 3 and hy = fo U1, is a TDRDF on Hy + uz with hy(u) = 3 and
hi(z) = 1. Hence, Viar < Y1ar(G,v = 1). Conversely, g1 = g7+ U g5 is a TDRDF on G
with g;(v) = 1, function g, = ¢g7' U g5 is a TDRDF on G with g;(v) = 1, the restriction
of g3 = g7 "> U g, to G is a TDRDF on G with gs(v) = 1 and the restriction of
g =g " Ugy =" is a TDRDF on G with gs3(v) = 1. Hence, yqr(G,v = 1) < Y.
This, together with var < 1ar(G,v = 1), completes the proof of part (7).

Let f(v) = 2, let z # w be a vertex not in V(G) and let yqrp = min{yr(Hi,v = 2) +
Yiar(Ha, v = 0,0 = 2)=2, ygp(H1,v = 2, w = 1)+yar(Ha,u = 1, w = 2)—3, yar(Hy,v =
2,w = 2)+yqr(Hoyu = 2,w = 2)—4, Year(H1, v = 2, w = 3)+Yar(Ha,u = 3,w = 2) —5}.
So, f1is a TDRDF on H; with fi(v) = 2 and hy = fo U2, is a DRDF on Hy + uw such
that the restriction of hy to Hy — u is a TDRDF on Hy — u, hi(w) = 2 and hy(u) = 0,
function hy = f; U 1, is a TDRDF on H; + vw with hy(v) = 2 and he(w) = 1 and
hs = foU2, is a TDRDF on Hy + uz with h3(u) = 1 and hs(z) = 2, function hy = f1 U2,
is a TDRDF on H; 4+ vw with hy(v) = 2 and hy(w) = 2 and hy = fo U2, is a TDRDF
on Hy + uz with hs(u) = 2 and hz(z) = 2 or hg = f; U3, is a TDRDF on H; + vw with
he(v) = 2 and hg(w) = 3 and h; = fo, U2, is a TDRDF on Hy + uz with h7(u) = 3 and
hz(z) = 2. Hence, var < Y1ar(G,v = 3). Conversely, the restriction of g; = g7 U h;O’ZQ
to G is a TDRDF on G with g1(v) = 2, the restriction of g, = g7 >~ Ug; "> to G is a
TDRDF on G with g,(v) = 2, the restriction of g3 = ¢; - Ug, >~ to G is a TDRDF
on G with gs(v) = 2 and the restriction of gy = ¢ Ug; >~ to G is a TDRDF on G
with g4(v) = 2. Hence, vqr(G,v = 3) < yqr. This, together with viur < Var(G,v = 2),
completes the proof of part (ii7).
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Let f(v) = 3, let z # w be a vertex not in V(G) and let vgp = min{yar(Hi,v =
3) +7th(H2 — u), ’yth(Hl, V= 3, w = 1) +’7th(H2, u = 1, w = 3) — 4, 7th(H1, v = 3, w =
2) + Yar(Ha,u = 2,w = 3) — 5, %qr(Hy,v = 3,w = 3) + Yqr(Ha,u = 3,w = 3) — 6}.
So, f1 is a TDRDF on H; with fi(v) = 3 and f;* is a TDRDF on Hy; — u, function
hg = f1 U 1w is a TDRDF on H1 + vw with hg(U) = 3 and hg(w) =1 and ]’L3 = f2 U 32
is a TDRDF on Hs + uz with hs(u) = 1 and hs(z) = 3, function hy = f; U2, is a
TDRDF on H; + vw with hy(v) = 3 and hy(w) = 2 and hs = f, U3, is a TDRDF on
Hy + uz with hs(u) = 2 and hs(z) = 3 or hg = f; U3, is a TDRDF on H; + vw with
he(v) = 3 and hg(w) = 3 and hy; = fo U3, is a TDRDF on Hj + uz with hz(u) = 3 and
h7(z) = 3. Hence, Yiar < Var(G,v = 3). Conversely, g = ¢g7> U g, * U0, is a TDRDF
on G with g;(v) = 3, the restriction of g, = ¢g;° Ug, " to G is a TDRDF on G with
g2(v) = 3, the restriction of g5 = g7 >Ug, > to G is a TDRDF on G with gs(v) = 3
and the restriction of g4 = g7 > Ug; > to G is a TDRDF on G with ¢4(v) = 3. Hence,
Yar(G,v = 3) < Yqr. This, together with vir < Yiar(G,v = 3), completes the proof of
part (iv).

Similarly, we can prove parts (v) — (viii).

Since G — v = (H; — v) U Hy and graphs H; — v and H, are disjoint, yqr(G — v) =
Year(H1—=v)+var(Hz) = Year(Hi—v)+min{yar(Hz, v = 0), Vear(Ha, w = 1), Viar(Ha, u =
2), vear(Ha2,u = 3)}. This completes the proof of part (iz).

We say that a rooted tree T" with the vertex set V' = {vy,vs,...,v,} has Property 1 if
Jj <, where v; € V is the parent of v; € V.

Theorem 1. Let T be a tree. Algorithm TDRDNT(T) computes the total double
Roman domination number of 7" in linear time.

Proof. Let f be a vr(T)-function and let v € V(7). Clearly, f(v) € {0,1,2,3}. So,
Yar(T) = min{var(T,v = 0), var(T,v = 1), Yar(T,v = 2),var(T,v = 3)}. We can
compute a rooted tree T, with the root v and Property 1 for 7" in linear time. Clearly,
Year(T) = Yar(T,). Let u be a child of v in T, and let T, be the subtree of T, with
the root u. Clearly, T, is a rooted tree with Property 1. Since T, has Property 1,
Algorithm TDRDNT(T') considers T, before T,,. If T, is only a vertex, then in Lines
2-4 of Algorithm TDRDNT(T") computes values (i) — (iz) of Lemma 1 correctly. So, by
Lemma 1, Algorithm TDRDNT(T) computes values (i) — (ixz) of Lemma 1 for vertex v
correctly. Since Algorithm TDRDNT(T) returns min{~{,v{,~%,v$}, it returns y4r (7)),
that is, the total double Roman domination number of 7.

Clearly, the running time of each iteration of the for loops of Algorithm TDRDNT(T)
is O(1) and so the running time of Algorithm TDRDNT(T) is linear. This completes
the proof.
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Algorithm 2.1: TDRDNT(T)
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Input: A tree T of order n.
Output: The total double Roman domination number of 7.

Compute a rooted tree 7" = (V, E) with V' = {vy,--- ,v,} and Property 1.
for i e {1,....,n}) A(a€{0,1,2,3}) A (b,c€{1,2,3}) do
7 = 7(02) = oo;
We=b+c
B ¥(vi) = 0;

for i =n to 2 do
Let v; be the parent of v;;
7y =min{y] + 7,97 + 7, 75(02) + 77 — 2,7(v;) + 7 H
v =min{y; +97,7; +7597 97 = 3,07+ — 4
7; = min{y; +7(02) — 2,97 + 9% = 3,97 + 977 — 4,97 + 977 = 5
vy =min{y} +y(0:), 7" + 9% = 47+ 9P = 5,97 + 97 - 6]
Y(v5) = (v;) + min{y?, vj, 47,7 h
7;(02) = min{v;(02) + 77, 75(02) + i, ¥(v)) + 7 + 2,9(v) + %7 + 2}
for (b€ {2.31)A (a € {1,2.3}) do
7, =min{y® + 97,7 + 4L+ = Lyt + 90 - Lk
;¢ = min{y7* +9;(02) — 2,95 + 9% — 2,95 + 97 — 2,95 + %7 - 2%
7t = min{yf® + (i), 97" + 77 = 3,97+ = 3,97 + 900 = 3

return min{~{,v{, 7%, vi}
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