تعداد نشریات | 161 |
تعداد شمارهها | 6,572 |
تعداد مقالات | 71,028 |
تعداد مشاهده مقاله | 125,499,578 |
تعداد دریافت فایل اصل مقاله | 98,762,167 |
تهیه نقشه آرسنیک در خاکهای استان آذربایجان شرقی و بررسی امکان کنترل آزادسازی آن (مطالعه موردی شهرستان هشترود) | ||
تحقیقات آب و خاک ایران | ||
دوره 51، شماره 8، آبان 1399، صفحه 2101-2110 اصل مقاله (794.56 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2020.299653.668548 | ||
نویسندگان | ||
مصطفی مارزی1؛ حسن توفیقی ** 1؛ محسن فرحبخش1؛ کریم شهبازی2 | ||
1گروه علوم و مهندسی خاک، دانشکده مهندسی و فناورزی کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
2بخش آزمایشگاه ها، موسسه تحقیقات خاک و آب، کرج، ایران | ||
چکیده | ||
آرسنیک عنصری سمی بوده و سطوح افزایشیافته آن در منابع آب و خاک مشکلات متعددی را برای مردم شهرستان هشترود به وجود آورده است. فقدان اطلاعات در مورد وضعیت خاک منطقه به آرسنیک باعث شد تا تحقیق حاضر با هدف بررسی غلظت و پراکنش آرسنیک در خاکهای منطقه هشترود و بررسی امکان کنترل آزادسازی آن طراحی و اجرا شود. به این منظور 53 نمونه خاک سطحی از منطقه جمعآوری و غلظت آرسنیک کل آنها اندازهگیری و نقشه پراکنش غلظت آرسنیک تهیه شد. بهمنظور بررسی امکان کاربرد مواد اصلاحی برای کاهش آزادسازی آرسنیک، پنج نمونه خاک آلوده انتخاب و مواد اصلاحی گچ و هیدروکسید آهن هر کدام در سه سطح به آنها افزوده شد. نتایج نشان داد که خاکهای منطقه آلوده به آرسنیک هستند؛ بهطوریکه میانگین غلظت آرسنیک در کل خاکهای مورد مطالعه 36/49 میلیگرم بر کیلوگرم بود اما بیش از 80 درصد خاکهای مورد مطالعه غلظتی کمتر از حد مجاز داشتند. خاکهای کشاورزی روستاهای قوپوز و قزللو بیشترین مقدار آلودگی به آرسنیک را داشتند. کاربرد هیدروکسید آهن باعث کاهش معنیدار آزادسازی آرسنیک در خاکهای مختلف شد؛ بهطوریکه کاربرد 10 تن در هکتار هیدروکسید آهن به ترتیب 5/64، 4/82، 7/83، 9/98 و 100 درصد مقدار آرسنیک محلول را در خاکهای 1، 2، 3، 4 و 5 کاهش داد و افزایش سطح کاربرد در این مطالعه باعث کاهش شدیدتر آزادسازی آرسنیک شد. بهطور مشابه گچ نیز باعث کاهش معنیدار آزادسازی آرسنیک شد و آزادسازی کمتر آرسنیک با افزایش کاربرد گچ مشاهده شد. در مقایسه با گچ، هیدروکسید آهن ماده اصلاحی بسیار مؤثرتر و مناسبتری میباشد. | ||
کلیدواژهها | ||
آلودگی خاک؛ آزادسازی آرسنیک؛ خاکهای کشاورزی | ||
عنوان مقاله [English] | ||
Arsenic Mapping in the East Azarbaijan Province and the Feasibility Study of Decreasing Arsenic Release (A Case Study of Hashtrood) | ||
نویسندگان [English] | ||
Mostafa Marzi1؛ Hasan Towfighi1؛ Mohsen Farahbakhsh1؛ karim Shahbazi2 | ||
1Department of Soil Science,, Faculty of Agricultural Engineering and Technology, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran | ||
2Department of laboratories, Soil and Water Research Institute, Karaj, Iran | ||
چکیده [English] | ||
The increased levels of Arsenic, a poison element, in the soils and waters of Hashtrood city have caused different health issues for the people. Due to the lack of information about the arsenic content of the soils, the present study was conducted to survey the soil arsenic distribution and the possibility of reducing arsenic release from the soils. For this purpose, 53 soil samples from the top layer were collected and the arsenic concentration and distribution map was determined. Additionally, in order to evaluate the effect of iron hydroxide and gypsum as soil amendments, five polluted soil samples were selected and treated with the proposed amendments; each at three levels. The results revealed that the agricultural soils of the studied area are polluted by arsenic, as its average concentration was 49.36 mg/kg, but more than 80 percent of the studied soils had a lower concentration than the standard level. The agricultural soils of Ghopoz and Ghezellou showed the highest arsenic contamination. Application of iron hydroxide reduced the arsenic releasement in different soils significantly, as 10 ton/hectare iron hydroxide application reduced arsenic solution 64.5, 82.4, 83.7, 98.9, and 100 percent in the soils of 1, 2, 3, 4, and 5, respectively. Increasing the level of iron hydroxide application decreased arsenic release more intensively. Similarly, the gypsum decreased the arsenic release significantly and its reduction was more by increasing gypsum application In comparison to gypsum, the iron hydroxide was much more effective in controlling the arsenic releasement. | ||
کلیدواژهها [English] | ||
agricultural soils, arsenic releasement, soil pollution | ||
مراجع | ||
Arco-Lázaro, E., Pardo, T., Clemente, R., & Bernal, M. P. (2018). Arsenic adsorption and plant availability in an agricultural soil irrigated with As-rich water: Effects of Fe-rich amendments and organic and inorganic fertilisers. Journal of Environmental Management, 209, 262-272 Azam, M. S., Shafiquzzaman, M., & Nakajima, J. (2010). Effect of Calcium and Magnesium Addition on Arsenic Leaching from Paddy Field Soil of Bangladesh. Journal of Water and Environment Technology, 8(4), 329-338 Baba Akbari Sari, M., Farahbakhsh, M., Savaghebi, G., & Najafi, N. (2014). Investigation of arsenic concentration in some of the calcareous soils of ghorveh and arsenic uptake by maize, wheat and rapeseed in a natural contaminated soil. Water and Soil Science, 23(4)1-16. Behbahaninia, A., & Salmasi, R. (2016). Investigation on Heavy Metals Concentrations and Determination of Their Relations with Soil Properties around Hashtrood Town, East Azerbaijan Province. Journal of Environmental Science and Technology, 18(2)59-65. Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal, 54(5), 464-465 Department of Environment, I., Republic, of, Iran,. (2016). Standards for soil and water resources and related guidlines (In Farsi). 1, 166. Duker, A. A., Carranza, E., & Hale, M. (2005). Arsenic geochemistry and health. Environment International, 31(5), 631-641 Flora, S. J. S. (2014). Handbook of arsenic toxicology: Academic Press Garcia-Sanchez, A., Alvarez-Ayuso, E., & Rodriguez-Martin, F. (2002). Sorption of As (V) by some oxyhydroxides and clay minerals. Application to its immobilization in two polluted mining soils. Clay Minerals, 37(1), 187-194 Hartley, W., Edwards, R., & Lepp, N. W. (2004). Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short-and long-term leaching tests. Environmental Pollution, 131(3), 495-504 Hartley, W., & Lepp, N. W. (2008). Remediation of arsenic contaminated soils by iron-oxide application, evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake. Science of the Total Environment, 390(1), 35-44. He, Z., Shentu, J., Yang, X., Baligar, V. C., Zhang, T., & Stoffella, P. J. (2015). Heavy metal contamination of soils: Sources, indicators and assessment. Jang, M., Hwang, J. S., Choi, S. I., & Park, J. K. (2005). Remediation of arsenic-contaminated soils and washing effluents. Chemosphere, 60(3), 344-354. Kamunda, C., Mathuthu, M., & Madhuku, M. (2016). Health risk assessment of heavy metals in soils from Witwatersrand gold mining basin, South Africa. International Journal of Environmental Research and Public Health, 13(7), 663. Karimi, N., & Alavi, M. (2016). Arsenic contamination and accumulation in soil, groundwater and wild plant species from Qorveh County, Iran. Biharean Biol, 10(2), 69-73 Keshavarzi, B., Moore, F., Mosaferi, M., & Rahmani, F. (2011). The source of natural arsenic contamination in groundwater, west of Iran. Water Quality, Exposure and Health, 3(3-4),135-147. Kim, S.-O., Kim, W.-S., & Kim, K.-W. (2005). Evaluation of electrokinetic remediation of arsenic-contaminated soils. Environmental Geochemistry and Health, 27(5-6), 443-453. Masue, Y., Loeppert, R. H., & Kramer, T. A. (2007). Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum: iron hydroxides. Environmental Science & Technology, 41(3), 837-842 Meharg, A. A., & Hartley‐Whitaker, J. (2002). Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist, 154(1), 29-43 Miretzky, P., & Cirelli, A. F. (2010). Remediation of arsenic-contaminated soils by iron amendments: a review. Critical Reviews in Environmental Science and Technology, 40(2), 93-115. Mosaferi, M., Nemati, S., Armanfar, F., Nadiri, A., & Mohammadi, A. (2017). Geogenic Arsenic Contamination in Northwest of Iran; Role of Water Basin Hydrochemistry. Journal of Environmental Health and Sustainable Development, 2(1), 205-216. Mosaferi, M., Shakerkhatibi, M.,Dastgiri, S., Jafar-abadi, M. A., Khataee, A., & Sheykholeslami, S. (2014). Natural Arsenic Pollution and Hydrochemistry of Drinking Water of an Urban Part of Iran. Avicenna Journal of Environmental Health Engineering, 1(1). Nabiolahi, K., Haidari, A.,Tomanian, N., & Savaghebi, G. R. (2013). Relationship of soil characteristics in different geomorphic surfaces with spatial variability of soil arsenic (Case study: Bijar, Kurdistan Province). Soil management and sustainable production, 3, 1-27. Page, A. (1965). Methods of soil analysis. Part 2. Chemical and microbiological properties: American Society of Agronomy, Soil Science Society of America Santos-Francés, F., Martínez-Graña, A., Alonso Rojo, P., & García Sánchez, A. (2017). Geochemical Background and Baseline Values Determination and Spatial Distribution of Heavy Metal Pollution in Soils of the Andes Mountain Range (Cajamarca-Huancavelica, Peru). International Journal of Environmental Research and Public Health, 14(8), 859 Sparks, D. L., Page, A., Helmke, P., Loeppert, R., Soltanpour, P., Tabatabai, M., Sumner, M. (1996). Methods of soil analysis. Part 3-Chemical methods: Soil Science Society of America Inc. Visconti, F., & de Paz, J. M. (2012). Prediction of the soil saturated paste extract salinity from extractable ions, cation exchange capacity, and anion exclusion. Soil Research, 50(7), 536-550. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29-38 Webber, M., & Shamess, A. (1987). Heavy metal concentrations in Halton region soils: An assessment for future municipal sludge utilization. Canadian Journal of Soil Science, 67(4), 893-903. Ying, L., Shaogang, L., & Xiaoyang, C. (2016). Assessment of heavy metal pollution and human health risk in urban soils of a coal mining city in East China. Human and Ecological Risk Assessment: An International Journal, 22(6), 1359-1374 Zandsalimi, S., Karimi, N., & Kohandel, A. (2011). Arsenic in soil, vegetation and water of a contaminated region. International Journal of Environmental Science & Technology, 8(2), 331-338 | ||
آمار تعداد مشاهده مقاله: 550 تعداد دریافت فایل اصل مقاله: 398 |