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ABSTRACT: Wave propagation in unbounded layered media with a new formulation of 

Axisymmetric Scaled Boundary Finite Element Method (AXI-SBFEM) is derived. Dividing 

the general three-dimensional unbounded domain into a number of independent two-

dimensional ones, the problem could be solved by a significant reduction in required storage 

and computational time. The equations of the corresponding Axisymmetric Scaled Boundary 

Finite Element (AXI-SBFE) are derived in detail. For an arbitrary excitation frequency, the 

dynamic stiffness could be solved by a numerical integration method. The dynamic response 

of layered unbounded media has been verified with the literature. Numerical examples 

indicate the applicability and high accuracy of the new method. 

 

Keywords: Axisymmetric Scaled Boundary Finite Element Method, Fourier Series, Layered 

System. 

 

 

INTRODUCTION 

 

Correctly modeling of radiation damping in 

the infinite soil is one of the major challenges 

in wave propagation problem. Finding the 

solution of the wave propagation in 

heterogeneous layered systems are 

unreachable analytically. Almost all of the 

existing strategies to model propogation of 

waves in layered continuum can be 

categorized as the boundary element method 

(Karabalis and Mohammadi, 1998; Coulier et 

al., 2014, Morshedifard and Eskandari-

Ghadi, 2017), the thin layer method (TLM) 

(Lysmer and Waas, 1972; Kausel and 

Roesset, 1975) or approximate methods 

(Wolf and Preisig, 2003; Baidya et al., 2006; 

Nogami and Mahbub, 2005) and semi-

analytical (Gazetas, 1980) or analytical 

methods (Ardeshir-Behrestaghi et al., 2013; 

Eskandari-Ghadi et al., 2014) 

The thin-layer method is semi-analytical 

widely used approach in frequency-domain 

formed on an axisymmetric Finite Element 

formulation. The Finite Element 

discretization matches the direction of 

layering. 

Another semi-analytical approach, the 

Scaled Boundary Finite Element Method 

(SBFEM) (Wolf, 2003), is particularly 

capable of dynamic analysis in unbounded 

domains. The SBFEM combines some 

important benefits of the Finite Element 

method and the boundary element method. 
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Not only does it reduce the spatial dimension 

of the problem but it also doesn’t require any 

fundamental solution. The material 

anisotropy can be implemented 

straightforwardly by modification of the 

constitutive matrix. A combined SBFE-FEM 

formulation could be used for dynamic SSI 

problems (Genes, 2012; Yaseri et al., 2012; 

Syed and Maheshwari, 2015; Rahnema et al., 

2016). 

SBFEM is originally uses a scaling center 

from which the whole boundary shall be 

observable. By the geometry transformation, 

it leads to an analytical formulation in the 

radial direction which could be solved 

numerically in the circumferential direction.  

Some modified SBFE formulations for 

parallel boundaries two-dimensional domains 

(Li et al., 2005), three-dimensional prismatic 

domains (Krome et al., 2017) and 

axisymmetric domain (Doherty and Deeks, 

2003) have been presented. However, none of 

these formulations can be utilized to model a 

truly three-dimensional layered media. In 

order to overcome this shortcoming, the 

scaling center is replaced by a scaling line in 

the modified formulation of (Birk and 

Behnke, 2012). It fully couples the 3D FEM 

with 2D SBFEM. In order to reduce the 

computational cost and accuracy of the 

solution, the formulation of (Birk and 

Behnke, 2012) has been modified to an 

axisymmetric SBFEM which only a line 

discretization is needed to find the solution. 

 

AXI-SBFEM 

 

Consider a scaling line, identical to the axis 

of symmetry (the z-axis) in AXI-SBFEM as 

shown in Figure 1. The radial direction ξ is 

perpendicular to the scaling line. ξ is 0 at the 

z-axis and 1 at the line S. 

 In this paper, the line S is revolved around 

the axis of symmetry in order to define the 

domain boundary, as shown in Figure1. The 

corresponding transformation is formulated 

as: 

 

𝑟 = 𝜉. 𝑟𝑠 (𝑠) (1a) 

𝑧 = 𝑧𝑠(𝑠) (1b) 

𝜃 = 𝜃 (1c) 

 

The displacement components of an 

axisymmetric solid in the cylindrical 

coordinate system (r, z, 𝜃) can be written as: 

 

 
Fig. 1. Axisymmetric domain modeled by SBFEM 
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𝑢𝑟(𝑟, 𝑧, 𝜃) =∑ 𝑢𝑟(𝑟, 𝑧, 𝜃, 𝑛)
∞

𝑛=0

= ∑(𝑢𝑟
𝑠

∞

𝑛=0

(𝑟, 𝑧, 𝑛)𝑐𝑜𝑠𝑛𝜃

+ 𝑢𝑟
𝑎(𝑟, 𝑧, 𝑛) sin 𝑛𝜃)   

(2a) 

𝑢𝑧(𝑟, 𝑧, 𝜃) =∑ 𝑢𝑧(𝑟, 𝑧, 𝜃, 𝑛)
∞

𝑛=0

= ∑(𝑢𝑧
𝑠

∞

𝑛=0

(𝑟, 𝑧, 𝑛)𝑐𝑜𝑠𝑛𝜃

+ 𝑢𝑧
𝑎(𝑟, 𝑧, 𝑛) sin𝑛𝜃)   

(2b) 

𝑢𝜃(𝑟, 𝑧, 𝜃) =∑ 𝑢𝜃(𝑟, 𝑧, 𝜃, 𝑛)
∞

𝑛=0

= ∑(−𝑢𝜃
𝑠

∞

𝑛=0

(𝑟, 𝑧, 𝑛)𝑠𝑖𝑛 𝑛𝜃

+ 𝑢𝜃
𝑎(𝑟, 𝑧, 𝑛) cos 𝑛𝜃)   

(2c) 

 

The governing equation for the linear 

elstodynamics state  

 

�̅�𝑇𝜎 + 𝜔2𝜌𝑢 = 0 (3) 

 

where 𝜎, u and �̅�: are stresses, displacements 

and the equilibrium operator in cylindrical 

coordinate. The strains follow from the 

displacements as 

 

𝜖 = 𝐿𝑢 (4) 

 

which L: is a differential operator in 

cylindrical coordinate and can be found in 

Aslmand et al. (2018). The approximate 

solution of Eq. (3) is obtained using a Fourier 

series in the direction of 𝜃 and linear shape 

functions along the S which leads to a series 

of ODEs in terms of 𝜉. Hence, a solution is 

written in the form 

 

{

𝑢𝑟(𝜉, 𝑠, 𝜃)
𝑢𝑧(𝜉, 𝑠, 𝜃)
𝑢𝜃(𝜉, 𝑠, 𝜃)

}

=  ∑{[𝐹𝑢
𝑠(𝜃, 𝑛)][𝑁(𝑠)}{𝑢𝑠(𝜉, 𝑛)}

∞

𝑛=0

+ [𝐹𝑢
𝑎  (𝜃, 𝑛)][𝑁(𝑠)]{𝑢𝑎  (𝜉, 𝑛)}}      

(5) 

where 

 

[𝐹𝑢
𝑠(𝜃, 𝑛)]

=  [
cos𝜃 0 0
0 cos 𝜃 0
0 0 − sin𝑛𝜃

] , [𝐹𝑢
𝑠(𝜃, 𝑛)]

=  [
sin n𝜃 0 0
0 sin n 𝜃 0
0 0 cos 𝑛𝜃

] 

(6) 

 

 [N(s)]: is the shape functions matrix, and 

{𝑢𝑠(𝜉, 𝑛)} and {𝑢𝑎(𝜉, 𝑛)}: stand for the 

variation of the nodal displacement in the 𝜉 

direction for the symmetric and anti-

symmetric Fourier terms, respectively.  

Mapping to the coordinate system of 

scaled boundary, the linear operator L is 

broken in parts such that: 

 

[𝐿] = [𝐿1]
𝜕

𝜕𝑟
+ [𝐿2]

𝜕

𝜕𝑧
+ [𝐿3]

1

𝑟

+ [𝐿4]
1

𝑟

𝜕

𝜕𝜃
+ [𝐿5]

1

𝑟
 
𝜕

𝜕𝜃
 

(7) 

 

The operators 𝛿/𝛿𝑟 and 𝛿/𝛿𝑧: are mapped 

to the scale boundary coordinate and the 

operator is then expressed as: 

 

[𝐿] = [𝑏1(𝑠)]
𝜕

𝜕𝑟
+ [𝑏2(𝑠)]

𝜕

𝜕𝑧

+ [𝑏3(𝑠)]
1

𝑟

+ [𝑏4(𝑠)]
1

𝑟

𝜕

𝜕𝜃

+ [𝑏5(𝑠)]
1

𝑟
 
𝜕

𝜕𝜃
 

(8) 

 

where [𝑏1] to [𝑏5] can be found in Aslmand 

et al. (2018). Multiplying Eq. (8) by Eq. (5) 

and substituting into strain-stress 

relationship, terms can be gathered resulting 

the following approximate stresses: 
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{𝜎(𝜉, 𝑠, 𝜃)} =

{
  
 

  
 
𝜎𝑟(𝜉, 𝑠, 𝜃)

𝜎𝑧(𝜉, 𝑠, 𝜃)

𝜎𝜃(𝜉, 𝑠, 𝜃) 

𝜏𝑟𝑧(𝜉, 𝑠, 𝜃)

𝜏𝑧𝜃(𝜉, 𝑠, 𝜃)

𝜏𝑟𝜃(𝜉, 𝑠, 𝜃)}
  
 

  
 

= ∑{[𝐷(𝑠)][𝐹𝜀
𝑠(𝑛, 𝜃)]([𝐵1

∞

𝑛=0

(𝑠)] {𝑢𝑠(𝜉, 𝑛)], 𝜉 (
1

𝜉
[𝐵2(𝑠, 𝑛)]

+ [𝐵3(𝑠)]) {𝑢𝑠(𝜉, 𝑛)})

+ [𝐷(𝑠)][ 𝐹𝜀
𝑎(𝑛, 𝜃)]([𝐵1(𝑠)], 𝜉 (

1

𝜉
[𝐵2(𝑠, 𝑛)] + [𝐵3(𝑠)]) {𝑢𝑎(𝜉, 𝑛)})} 

(9) 

 

where the terms 

 

[𝐵1 (𝑠)] = [𝑏1(𝑠)][𝑁(𝑠)] (10) 

[𝐵2(𝑠, 𝑛)] = [ [𝑏3(𝑠)] +  𝑛 [𝑏4(𝑠)]

−  𝑛 [𝑏5(𝑠)]] [𝑁 (𝑠)] 
(11) 

[𝐵3(𝑠)] = [𝑏2(𝑠)][𝑁(𝑠)],𝑠 (12) 

   

are introduced for convenience. [ 𝐹𝜀
𝑠(𝑛, 𝜃)] 

and [ 𝐹𝜀
𝑎(𝑛, 𝜃)]: stand for the variation in the 

circumferential direction. 

 

[ 𝐹𝜀
𝑠(𝑛, 𝜃)] =  

[
 
 
 
 
 
cos𝑛 𝜃
0
0
0
0
0

0
cos 𝑛𝜃
0
0
0
0

0
0

cos𝑛𝜃 
0
0
0

0
0
0

cos 𝑛𝜃
0
0

0
0
0
0

− sin𝑛𝜃
0

0
0
0
0
0

− sin𝑛𝜃]
 
 
 
 
 

 (13) 

 

and 

  

[ 𝐹𝜀
𝑠(𝑛, 𝜃)] =  

[
 
 
 
 
 
sin𝑛 𝜃
0
0
0
0
0

0
sin 𝑛𝜃
0
0
0
0

0
0

sin𝑛𝜃 
0
0
0

0
0
0

sin𝑛𝜃
0
0

0
0
0
0

cos 𝑛𝜃
0

0
0
0
0
0

cos 𝑛𝜃]
 
 
 
 
 

 (14) 

 

The virtual work’s principle for the 

dynamic case states: 

 
𝛿𝑈 +  𝛿𝐾 −  𝛿𝑊 = 0 (15) 

 

where U, K and W: are internal strain energy, 

structure’s kinetic energy and external work 

caused by boundary traction {𝑡(𝑠, 𝜃)}, 
respectively (It is supposed that all of the 

surface tractions are in the near field). The 

contribution of the three terms to the virtual 

work will be derived in the following. To 

derive these three terms, the following form 

of virtual displacement.  

 

{𝛿𝑢 (𝜉, 𝑠, 𝜃)}

= ∑{[𝐹𝑢
𝑠(𝑛, 𝜃)] [𝑁(𝑠)]{𝛿𝑢𝑠(𝜉, 𝑛)}

∞

𝑛=0

+ [𝐹𝑢
𝑎(𝑛, 𝜃)] [𝑁(𝑠)]{𝛿𝑢𝑎(𝜉, 𝑛)}] 

(16) 
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is applied to the structure, where {𝛿𝑢𝑠(𝜉, 𝑛)} 
and {𝛿𝑢𝑎(𝜉, 𝑛)} includes symmetric and anti-

symmetric virtual nodal displacements for the 

nth term of the Fourier series. The 

corresponding virtual strain field proceed 

from Eq. (9) as:     

  

{𝛿𝜀(𝜉, 𝑠, 𝜃)} = ∑ {[𝐹𝜀
𝑠(𝑚, 𝜃)] ([𝐵1(𝑠)] {𝛿𝑢𝑠(𝜉,𝑚)}, 𝜉(

1

𝜉
[𝐵2(𝑠, 𝑚)]

∞

𝑚=0

+ [𝐵3(𝑠)]) {𝛿𝑢𝑠(𝜉,𝑚)}[𝐹𝜀
𝑎(𝑚, 𝜃)]([𝐵1(𝑠){𝛿𝑢𝑎(𝜉,𝑚)}, 𝜉 (

1

𝜉
[𝐵2(𝑠,𝑚)]

+ [𝐵3(𝑠)]){𝛿𝑢𝑎(𝜉,𝑚)})}  

(17) 

  
The virtual work equation (Eq. (15)) can be written as: 

  

∫ {𝛿𝜀 (𝜉, 𝑠, 𝜃)}𝑇

𝑉

{𝜎 (𝜉, 𝑠, 𝜃)}𝑑𝑉 + ∫ {𝛿𝑢(𝜉, 𝑠, 𝜃)}
𝑉

𝜌{�̈�(𝜉, 𝑠, 𝜃)}𝑑𝑉

− ∫ ∫ {𝛿𝑢 
2𝜋

0
𝑠

(𝛿𝑢 (𝑠, 𝜃)}𝑇{𝑡(𝑠, 𝜃)}|𝐽(𝑠)|𝑑𝜃𝑑𝑠 = 0 

(18) 

 

where 

 

𝑑𝑉 = |𝐽(𝑠)|𝜉𝑟𝑠(𝑠)𝑑𝜃 𝑑𝜉𝑑𝑠   (19) 

 

|𝐽(𝑠)|: is the discretized boundary’s 

Jacobian. Expansion of the internal virtual 

work could be done by substituting Eqs. (9), 

(17) and (19) into the first term of Eq. (18). It 

should be noted that for all m and n: 

 

∫ [𝐹𝜀
𝑠 (𝑛, 𝜃)]

2𝜋

0

[𝐹𝜀
𝑎  (𝑚, 𝜃)]𝑑𝜃

= ∫ [𝐹𝜀
𝑎  (𝑛, 𝜃)][𝐹𝜀

𝑠 (𝑚, 𝜃)]𝑑𝜃
2𝜋

0

= [0] 

(20) 

 

and for all 𝑚 and 𝑛 with 𝑚 ≠ 𝑛 ∶  

∫ [𝐹𝜀
𝑠 (𝑛, 𝜃)]

2𝜋

0

[𝐹𝜀
𝑠 (𝑚, 𝜃)]𝑑𝜃 = 

∫ [𝐹𝜀
𝑎  (𝑛, 𝜃)][𝐹𝜀

𝑎 (𝑚, 𝜃)]𝑑𝜃
2𝜋

0

= [0]   

(21) 

 

The following terms for convenience are 

introduced: 

 
[𝐷𝑎(𝑛, 𝑠)]

= [𝐷(𝑠)]∫ [𝐹𝜀
𝑠 (𝑛, 𝜃)][𝐹𝜀

𝑠 (𝑛, 𝜃)]𝑑𝜃    
2𝜋

0

 
(22) 

[𝐷𝑎(𝑛, 𝑠)]

= [𝐷(𝑠)]∫ [𝐹𝜀
𝑎  (𝑛, 𝜃)][𝐹𝜀

𝑎 (𝑛, 𝜃)]𝑑𝜃 
2𝜋

0

 
(23) 

 

and the series become: 
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∫ {𝛿𝜀(𝜉, 𝑠, 𝜃)}𝑇

𝑉

{𝜎(𝜉, 𝑠, 𝜃)}𝑑𝑉

= ∑∫ ∫ ({[
𝑆

∞

1

𝐵1(𝑠)

∞

𝑛=0

] {𝛿𝑢𝑠(𝜉, 𝑛)},𝜉  

+ (
1

𝜉
[𝐵2(𝑠, 𝑛)] + [𝐵3(𝑠)]) {𝛿𝑢𝑠(𝜉, 𝑛)}}𝑇 . [𝐷𝑎(𝑛, 𝑠)]. {[𝐵1(𝑠)] {{𝑢𝑠(𝜉, 𝑛)},𝜉

+ (
1

𝜉
[𝐵2(𝑠, 𝑛)] + [𝐵3(𝑠)]) {𝑢𝑠(𝜉, 𝑛)}}

+ {[𝐵1(𝑠)] {{𝛿𝑢𝑎(𝜉, 𝑛)},𝜉

+ (
1

𝜉
[𝐵2(𝑠, 𝑛)]

+ [𝐵3(𝑠)]) {𝛿𝑢𝑎(𝜉, 𝑛)}}

𝑇

. [𝐷𝑎(𝑛, 𝑠)]. {[𝐵1(𝑠)]{𝑢𝑎(𝜉, 𝑛)}𝜉 (
1

𝜉
[𝐵2(𝑠, 𝑛)]

+ [𝐵3(𝑠, 𝑛)]) {𝑢𝑎(𝜉, 𝑛)}})𝜉|𝐽(𝑠)|𝑟𝑠(𝑠)𝑑𝑠𝑑𝜉 

(24) 

 

Using Green's theorem, the area integrals 

involving {𝛿𝑢(𝜉, 𝑛)}𝜉 are integrated with 

respect to 𝜉 in line around S and leads to: 

  

𝛿𝑈 = ∑({𝛿𝑢𝑠
∞

𝑛=0

(𝑛)}𝑇{[𝐸0𝑠(𝑛)]{𝑢𝑠(𝑛)}𝜉 + {[𝐸
1𝑠(𝑛)𝑇 + [𝐸3𝑠(𝑛)]){𝑢𝑠(𝑛)}

− ∫ {
∞

1

𝛿𝑢𝑠(𝜉, 𝑛)}𝑇{[𝐸0𝑠(𝑛)]𝜉{𝛿𝑢𝑠(𝜉, 𝑛)}𝜉𝜉 + {[𝐸
0𝑠(𝑛) − [𝐸1𝑠(𝑛)])

+ [𝐸1𝑠(𝑛)}𝑇 +  𝜉[𝐸3𝑠(𝑛)] − 𝜉[𝐸3𝑠(𝑛)]𝑇){𝑢𝑠(𝜉, 𝑛)}𝜉

+ (−
1

𝜉
[𝐸2𝑠(𝑛)] + [𝐸3𝑠(𝑛)] − [𝐸4𝑠(𝑛)] − [𝐸4𝑠(𝑛)]𝑇

− 𝜉[𝐸5𝑠(𝑛)]) {𝑢𝑠(𝜉, 𝑛)} 𝑑𝜉 + {𝛿𝑢𝑎(𝑛)}𝑇{[𝐸0𝑎(𝑛)]{𝑢𝑎(𝑛)}𝜉

+ ([𝐸1𝑎(𝑛)]𝑇 + [𝐸3𝑎(𝑛)𝑇 + [𝐸3𝑎(𝑛)]) {𝑢𝑎(𝑛)}}

− ∫ {
∞

1

𝛿𝑢𝑎(𝜉, 𝑛)}𝑇{[𝐸0𝑠(𝑛)]𝜉{𝛿𝑢𝑎(𝜉, 𝑛)}𝜉𝜉 + {[𝐸
0𝑎(𝑛) − [𝐸1𝑎(𝑛)])

+ [𝐸1𝑎(𝑛)] + 𝐸1𝑎(𝑛)}𝑇 +  𝜉[𝐸3𝑎(𝑛)] − 𝜉[𝐸3𝑎(𝑛)]𝑇}{𝑢𝑎(𝜉, 𝑛)}𝜉

+ (−
1

𝜉
[𝐸2𝑎(𝑛)] + [𝐸3𝑎(𝑛)] − [𝐸4𝑎(𝑛)] − [𝐸4𝑎(𝑛)]𝑇

− 𝜉[𝐸5𝑎(𝑛)]) {𝑢𝑎(𝜉, 𝑛)}} 𝑑𝜉) 

(25) 

 

where the components are: 

 

[𝐸0𝑠/𝑎(𝑛)] =  ∫[𝐵1

𝑠

(𝑠)]𝑇[𝐷𝑠/𝑎(𝑛, 𝑠)][𝐵1(𝑠)]|𝐽(𝑠)|𝑟𝑠(𝑠)𝑑𝑠 (26a) 
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[𝐸1𝑠/𝑎(𝑛)] =  ∫[𝐵2

𝑠

(𝑠, 𝑛)]𝑇[𝐷𝑠/𝑎(𝑛, 𝑠)][𝐵1(𝑠)]|𝐽(𝑠)|𝑟𝑠(𝑠)𝑑𝑠 (26b) 

[𝐸2𝑠/𝑎(𝑛)] =  ∫[𝐵2

𝑠

(𝑠, 𝑛)]𝑇[𝐷𝑠/𝑎(𝑛, 𝑠)][𝐵2(𝑠, 𝑛)]|𝐽(𝑠)|𝑟𝑠(𝑠)𝑑𝑠 (26c) 

[𝐸3𝑠/𝑎(𝑛)] =  ∫[𝐵1

𝑠

(𝑠)]𝑇[𝐷𝑠/𝑎(𝑛, 𝑠)][𝐵3(𝑠)]|𝐽(𝑠)|𝑟𝑠(𝑠)𝑑𝑠 (26d) 

[𝐸4𝑠/𝑎(𝑛)] =  ∫[𝐵2

𝑠

(𝑠, 𝑛)]𝑇[𝐷𝑠/𝑎(𝑛, 𝑠)][𝐵3(𝑠)]|𝐽(𝑠)|𝑟𝑠(𝑠)𝑑𝑠 (26e) 

[𝐸5𝑠/𝑎(𝑛)] =  ∫[𝐵3

𝑠

(𝑠)]𝑇[𝐷𝑠/𝑎(𝑛, 𝑠)][𝐵1(𝑠)]|𝐽(𝑠)|𝑟𝑠(𝑠)𝑑𝑠 (26f) 

  

The discretized boundary S can be split 

into linear 2-node elements. The global 

coefficient matrices are the assembly of the 

computed coefficient matrices for each 

element over the discretized boundary.  

The virtual kinetic energy can be written 

as: 

  

𝛿𝑘 = ∫{𝛿𝑢(𝜉, 𝑠, 𝜃)}

𝑉

𝜌{�̈�(𝜉, 𝑠, 𝜃)}𝑑𝑉

=  ∑∫ ∫  ({[𝐹𝑢
𝑠 (𝑛, 𝜃)][𝑁(𝑠)]{

𝑆

∞

1

∞

𝑛=0

𝛿𝑢𝑠(𝜉, 𝑛)]

+ [𝐹𝑢
𝑎 (𝑛, 𝜃)][𝑁(𝑠)]{𝛿𝑢𝑎(𝜉, 𝑛)}}𝑇 . 𝜌. [𝐹𝑢

𝑠 (𝑛, 𝜃)][𝑁(𝑠)]{�̈�𝑠(𝜉, 𝑛)}
+ [𝐹𝑢

𝑎 (𝑛, 𝜃)][𝑁(𝑠)]{�̈�𝑠(𝜉, 𝑛)}})𝜉|𝐽(𝑠)|𝑟𝑠(𝑠)𝑑𝑠𝑑𝜉 

(27) 

  

with the mass density 𝜌. The mass matrices are found as: 
 

[𝑀0𝑠/𝑎](𝑛) =  ∫[𝑁(𝑠)]𝑇

𝑆

[𝑇𝑠/𝑎(𝑛)�̈�[𝑁(𝑠)]𝑟𝑠(𝑠)|𝐽(𝑠)|𝑑𝑠 (28) 

 

where 
 

[𝑇𝑠(𝑛)] =  ∫ [𝐹𝑢
𝑠 (𝑛, 𝜃)]

2𝜋

0

[𝐹𝑢
𝑠 (𝑛, 𝜃)]𝑑𝜃 = ∫ [

𝑐𝑜𝑠2 𝑛𝜃 0 0
0 𝑐𝑜𝑠2 𝑛𝜃 0
0 0 𝑠𝑖𝑛2 𝑛𝜃

]

2𝜋

0

 (29a) 

[𝑇𝑎(𝑛)] =  ∫ [𝐹𝑢
𝑎 (𝑛, 𝜃)]

2𝜋

0

[𝐹𝑢
𝑎  (𝑛, 𝜃)]𝑑𝜃 = ∫ [

𝑠𝑖𝑛2 𝑛𝜃 0 0
0 𝑠𝑖𝑛2 𝑛𝜃 0
0 0 𝑐𝑜𝑠2 𝑛𝜃

]

2𝜋

0

 (29b) 

 

Eq. (27) leads to: 
 

𝛿𝐾 = ∑∫{𝛿𝑢𝑠(𝜉, 𝑛)}𝑇 [𝑀0
𝑠 (𝑛)]{�̈�𝑠(𝜉, 𝑛)}𝜉𝑑𝜉

∞

1

+ {𝛿𝑢𝑎(𝜉, 𝑛)]𝑇[𝑀0
𝑎(𝑛)]{�̈�𝑎(𝜉, 𝑛)}𝜉𝑑𝜉  

∞

𝑛=0

 (30) 
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 Formulation of the boundary tractions follows: 

   

{𝑡(𝑠, 𝜃)} = ∑{

∞

𝑛=0

[𝐹𝑢
𝑠 (𝑛, 𝜃)]{𝑡𝑠(𝑠, 𝑛)} + [𝐹𝑢

𝑎  (𝑛, 𝜃)] {𝑡𝑎(𝑠, 𝑛)}} (31) 

  

where {𝑡𝑠(𝑠, 𝑛)} and {𝑡𝑎(𝑠, 𝑛)}: are 

amplitudes of tractions. The external virtual 

work of surface tractions (Eq. (18)) then 

becomes: 

 

∫ ∫  {𝛿𝑢(𝑠, 𝜃)}𝑇{𝑡(𝑠, 𝜃)}|𝐽(𝑠)|𝑑𝜃𝑑𝑠 = ∑∑∫ ∫ {

2𝜋

0𝑆

∞

𝑛=0

{𝛿𝑢𝑠(𝑚)}𝑇[𝑁(𝑠)}𝑇[

∞

𝑚=0

2𝜋

01

𝐹𝑢
𝑠 (𝑚, 𝜃)]

+ {𝛿𝑢𝑠(𝑚)}𝑇[𝑁(𝑠)}𝑇[𝐹𝑢
𝑎 (𝑚, 𝜃)]}{[𝐹𝑢

𝑎  (𝑛, 𝜃)]{𝑡𝑠(𝑠, 𝑛)}

+ [𝐹𝑢
𝑎 (𝑛, 𝜃)]{𝑡𝑎 (𝑠, 𝑛)}}|𝐽(𝑠)|𝑑𝜃𝑑𝑠  

(32) 

  

Decoupling the symmetric and anti- symmetric terms with respect to 𝜃 leads to: 

 

𝛿𝑊 = ∑{{

∞

𝑛=0

𝛿𝑢𝑠(𝑛)}𝑇{𝑃𝑠(𝑛)} + {𝛿𝑢𝑎(𝑛)}𝑇 {𝑃𝑎(𝑛)}}        (33) 

               
where {𝑃𝑠(𝑛)} and {𝑃𝑎(𝑛)}: are equivalent 

nodal forces obtained from load 

decomposition into Fourier series, and 

expressed as: 

 

[𝑃𝑠/𝑎(𝑛)] = ∫[𝑁(𝑠)]𝑇

𝑆

[𝑇𝑠/𝑎(𝑛)]{𝑡𝑠(𝑠, 𝑛)}|𝐽(𝑠)|𝑑𝑠 (34) 

 

Eq (15) then becomes: 

 

∑ {∞
𝑛=0 𝛿𝑢

𝑠(𝑛)}𝑇{[𝐸0𝑠(𝑛)] {𝑢𝑠(𝑛)}𝜉 + ([𝐸
1𝑠(𝑛)]𝑇 + [𝐸3𝑠(𝑛)]){𝑢𝑠(𝑛)}} −

∫ {
∞

1
𝛿𝑢𝑠(𝜉, 𝑛)}𝑇{[𝐸0𝑠(𝑛)]𝜉{𝛿𝑢𝑠(𝜉, 𝑛)}𝜉𝜉 + {[𝐸

0𝑠(𝑛) − [𝐸1𝑠(𝑛)]) + [𝐸1𝑠(𝑛)}𝑇 +  𝜉[𝐸3𝑠(𝑛)] −

𝜉[𝐸3𝑠(𝑛)]𝑇){𝑢𝑠(𝜉, 𝑛)}𝜉 + (−
1

𝜉
[𝐸2𝑠(𝑛)] + [𝐸3𝑠(𝑛)] − [𝐸4𝑠(𝑛)] − [𝐸4𝑠(𝑛)]𝑇 −

𝜉[𝐸5𝑠(𝑛)]) {𝑢𝑠(𝜉, 𝑛)}}𝑑𝜉 + ∫ {𝛿𝑢𝑠(𝜉, 𝑛)}𝑇[𝑀0
𝑠(𝑛)]

∞

1
{�̈�𝑠(𝜉, 𝑛)}𝜉𝑑𝜉 − ∑ {𝛿𝑢𝑠(𝑛)}𝑇∞

𝑛=0 {𝑃𝑠(𝑛)} +

 {{𝛿𝑢𝑎(𝑛)}𝑇{[𝐸0𝑎(𝑛)[𝑢𝑎(𝑛)]}𝜉 + ([𝐸
1𝑎(𝑛)]𝑇[𝐸3𝑎(𝑛)]){𝑢𝑎(𝑛)}} −

∫ {
∞

1
𝛿𝑢𝑎(𝜉, 𝑛)}𝑇{[𝐸0𝑎(𝑛)]𝜉{𝛿𝑢𝑎(𝜉, 𝑛)}𝜉𝜉 + {[𝐸

0𝑎(𝑛) − [𝐸1𝑎(𝑛)]𝑇) +  𝜉[𝐸3𝑎(𝑛)] −

𝜉[𝐸3𝑎(𝑛)]𝑇)[𝑢𝑎(𝜉, 𝑛)}𝜉 + (−
1

𝜉
[𝐸2𝑎(𝑛)] + [𝐸3𝑎(𝑛)] − [𝐸4𝑎(𝑛)] − [𝐸4𝑎(𝑛)]𝑇 −

𝜉[𝐸5𝑎(𝑛)]) {𝑢𝑎(𝜉, 𝑛)} 𝑑𝜉} + ∫ {𝛿𝑢𝑠(𝜉, 𝑛)}𝑇[𝑀0
𝑠(𝑛)]

∞

1
{�̈�𝑎(𝜉, 𝑛)}𝜉𝑑𝜉 − ∑ {𝛿𝑢𝑎(𝑛)}𝑇∞

𝑛=0  {𝑃𝑎(𝑛)}) = 0  

(35) 
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in order for Eq. (35) to be satisfied for all 

𝛿𝑢𝑠(𝜉, 𝑛) and  𝛿𝑢𝑎(𝜉, 𝑛), the following 

requirements must be met for each of the 

symmetric/anti-symmetric Fourier series 

term: 

  

{𝑃𝑠(𝑛)} = [𝐸0𝑠(𝑛)𝑢𝑠(𝑛)𝜉 + ([𝐸
1𝑠(𝑛)]𝑇 + [𝐸3𝑠(𝑛)]){𝑢𝑠(𝑛)} (36) 

[𝐸0𝑠(𝑛)]𝜉 {𝑢𝑠(𝜉, 𝑛)]𝜉𝜉
+ ([𝐸0𝑠(𝑛)] − [𝐸1𝑠(𝑛)] + [𝐸1𝑠(𝑛)]𝑇 + 𝜉[𝐸3𝑠(𝑛)] − 𝜉[𝐸3𝑠(𝑛)]𝑇){𝑢𝑠(𝜉, 𝑛)}𝜉
+𝜔2[𝑀0

𝑠(𝑛)]𝜉{𝑢𝑠(𝜉, 𝑛)} = 0 

(37) 

{𝑃𝑎(𝑛)} = [𝐸0𝑎(𝑛)𝑢𝑎(𝑛)𝜉 + ([𝐸
1𝑎(𝑛)]𝑇 + [𝐸3𝑎(𝑛)]){𝑢𝑎(𝑛)} (38) 

[𝐸0𝑎(𝑛)]𝜉 {𝑢𝑎(𝜉, 𝑛)]𝜉𝜉
+ ([𝐸0𝑎(𝑛)] − [𝐸1𝑎(𝑛)] + [𝐸1𝑎(𝑛)]𝑇 + 𝜉[𝐸3𝑎(𝑛)] − 𝜉[𝐸3𝑎(𝑛)]𝑇){𝑢𝑎(𝜉, 𝑛)}𝜉
+𝜔2[𝑀0

𝑎(𝑛)]𝜉{𝑢𝑎(𝜉, 𝑛)} = 0 

(39) 

   
Eqs. (36-39) and (38-39) are pairs of 

equations. Based on the number of required 

terms to represent the load or displacement, a 

number of equations could be solved 

separately, and the total stresses and 

displacements are obtained by superposition. 

Eqs. (37) and (39) are the displacement SBFE 

equations for each term of Fourier series in an 

unbounded layered system. 

In order to derive an equation in dynamic 

stiffness which is the fraction of the coupling 

forces to the coupling displacement, a 

transformation of equations is made in the 

following. 

 

AXI-SBFE Equation in Dynamic Stiffness 

The internal nodal forces {𝑄𝑠(𝜉, 𝑛)} and 
{𝑄𝑎(𝜉, 𝑛} could be expressed applying the 

virtual work’s principle. 
 

{𝑄𝑠(𝜉, 𝑛)}
= [𝐸0𝑠(𝑛)]𝜉{𝑢(𝜉, 𝑛)},𝜉
+ ([𝐸1𝑠(𝑛)]𝑇 + 𝜉 [𝐸3𝑠(𝑛)]){𝑢(𝜉, 𝑛)}   

(40) 

{𝑄𝑎(𝜉, 𝑛)}
= [𝐸0𝑎(𝑛)]𝜉{𝑢(𝜉, 𝑛)},𝜉
+ ([𝐸1𝑎(𝑛)]𝑇 + 𝜉 [𝐸3𝑎(𝑛)]){𝑢(𝜉, 𝑛)} 

(41) 

 

In the case of an unbounded domain, the 

external nodal loads ({𝑅𝑠(𝜉, 𝑛)} and 

{𝑅𝑎(𝜉, 𝑛)}) are related to the internal nodal 

forces ({𝑄𝑠(𝜉, 𝑛)} and {𝑄𝑎(𝜉, 𝑛)}) as follows: 
 

{𝑅𝑠(𝜉, 𝑛)} =  −{𝑄𝑠(𝜉, 𝑛)} (42a) 

{𝑅𝑎(𝜉, 𝑛)} =  −{𝑄𝑎(𝜉, 𝑛)} (42b) 

 

The dynamic stiffness 𝑆𝑠(𝜔, 𝜉, 𝑛)and 

𝑆𝑠(𝜔, 𝜉, 𝑛) are defined as: 

 
{𝑅𝑠(𝜉, 𝑛)} =  {𝑆𝑠(𝜔, 𝜉, 𝑛)]{𝑢𝑠(𝜉, 𝑛)}

− {𝑅𝐹𝑠(𝜉, 𝑛)} 
(43a) 

{𝑅𝑎(𝜉, 𝑛)} =  {𝑆𝑎(𝜔, 𝜉, 𝑛)]{𝑢𝑎(𝜉, 𝑛)}
− {𝑅𝐹𝑎(𝜉, 𝑛)} 

(43b) 

 

The terms {𝑅𝐹𝑠(𝜉, 𝑛}) and  {𝑅𝐹𝑎(𝜉, 𝑛)} in 

Eqs. (43a-43b) correspond to the symmetric 

and anti-symmetric nodal loads arising from 

volume forces. Substituting Eqs. (40-41) and 

(43a-43b) in Eqs. (42a-42b) yields: 

 
−{𝑆𝑠(𝜔, 𝜉, 𝑛)]{𝑢𝑠(𝜉, 𝑛)}
+ {𝑅𝐹𝑠(𝜉, 𝑛)}
= [𝐸0𝑠(𝑛)]𝜉{𝑢𝑠(𝜉, 𝑛)},𝜉
+ ([𝐸1𝑠(𝑛)]𝑇

+ 𝜉 [𝐸3𝑠(𝑛)]){𝑢𝑠(𝜉, 𝑛)}   

(44a) 

−{𝑆𝑠(𝜔, 𝜉, 𝑛)]{𝑢𝑠(𝜉, 𝑛)}
+ {𝑅𝐹𝑠(𝜉, 𝑛)}
= [𝐸0𝑠(𝑛)]𝜉{𝑢𝑠(𝜉, 𝑛)},𝜉
+ ([𝐸1𝑠(𝑛)]𝑇

+ 𝜉 [𝐸3𝑠(𝑛)]){𝑢𝑠(𝜉, 𝑛)}   

(44b) 

 

Differentiating Eqs. (44a-44b) with 

respect to  𝜉 yields:  
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−{𝑆𝑎(𝜔, 𝜉, 𝑛)],𝜉 {𝑢
𝑠(𝜉, 𝑛)}

− {𝑆𝑠(𝜔, 𝜉, 𝑛)}{𝑢𝑠(𝜉, 𝑛)},𝜉
+ {𝑅𝐹𝑆(𝜉, 𝑛)},𝜉
− [𝐸0𝑠(𝑛)]𝜉{𝑢𝑠(𝜉, 𝑛)},𝜉𝜉
− ([𝐸0𝑠(𝑛)] + [𝐸1𝑠(𝑛)]𝑇

+ 𝜉[𝐸3𝑠(𝑛)]){𝑢𝑠(𝜉, 𝑛)},𝜉
− [33𝑠(𝑛)]{𝑢𝑠(𝜉, 𝑛)} = 0 

(45a) 

−{𝑆𝑎(𝜔, 𝜉, 𝑛)],𝜉 {𝑢
𝑠(𝜉, 𝑛)}

− {𝑆𝑎(𝜔, 𝜉, 𝑛)}{𝑢𝑎(𝜉, 𝑛)},𝜉
+ {𝑅𝐹𝑎(𝜉, 𝑛)},𝜉
− [𝐸0𝑠(𝑛)]𝜉{𝑢𝑎(𝜉, 𝑛)},𝜉𝜉
− ([𝐸0𝑎(𝑛)] + [𝐸1𝑎(𝑛)]𝑇

+ 𝜉[𝐸3𝑎(𝑛)]){𝑢𝑎(𝜉, 𝑛)},𝜉
− [𝐸3𝑎(𝑛)]{𝑢𝑎(𝜉, 𝑛)} = 0 

(45b) 

 

Adding Eqs. (45a-45b) and the SBFE Eqs. 

(37-39) and multiplying by  𝜉 yields: 
 

𝜉 (−[𝑆𝑠(𝜔, 𝜉, 𝑛)] − [𝐸1𝑠(𝑛)]
− 𝜉[𝐸3𝑠(𝑛)]𝑇){𝑢𝑠(𝜉, 𝑛)},𝜉

+ 𝜉(−[𝑆𝑠(𝜔, 𝜉, 𝑛)],𝜉 −
1

𝜉
[𝐸2𝑠(𝑛)] 

− [𝐸4𝑠(𝑛)] − [𝐸4𝑠(𝑛)]𝑇

− 𝜉[𝐸5𝑠(𝑛)]) {𝑢𝑠(𝜉, 𝑛)}
+  𝜔2[𝑀0𝑠(𝑛)]𝜉2{𝑢𝑠(𝜉, 𝑛)}
+ 𝜉{𝑅𝐹𝑠(𝜉, 𝑛)},𝜉 = 0 

(46a) 

𝜉 (−[𝑆𝑎(𝜔, 𝜉, 𝑛)] − [𝐸1𝑠(𝑛)]
− 𝜉[𝐸3𝑎(𝑛)]𝑇){𝑢𝑎(𝜉, 𝑛)},𝜉

+ 𝜉(−[𝑆𝑎(𝜔, 𝜉, 𝑛)],𝜉 −
1

𝜉
[𝐸2𝑎(𝑛)]

− [𝐸4𝑎(𝑛)] − [𝐸4𝑎(𝑛)]𝑇

− 𝜉[𝐸5𝑎(𝑛)]) {𝑢𝑎(𝜉, 𝑛)}
+ 𝜔2[𝑀0𝑎(𝑛)]𝜉2{𝑢𝑎(𝜉, 𝑛)}
+ 𝜉{𝑅𝐹𝑎(𝜉, 𝑛)},𝜉 = 0 

(46b) 

 

Eqs. (44a-44b) are solved for 𝜉 𝑢,𝜉,. 
 

[𝐸0𝑠(𝑛)]−1((−[𝑆𝑠(𝜔, 𝜉, 𝑛)]
− [𝐸1𝑠(𝑛)]𝑇 − 𝜉 [𝐸3𝑠(𝑛)]){𝑢𝑠(𝜉, 𝑛)}

+ {𝑅𝐹𝑆(𝜉, 𝑛)}) =  𝜉{𝑢𝑠(𝜉, 𝑛)},𝜉 

(47a) 

[𝐸0𝑎(𝑛)]−1((−[𝑆𝑎(𝜔, 𝜉, 𝑛)]
− [𝐸1𝑎(𝑛)]𝑇 − 𝜉 [𝐸3𝑎(𝑛)]){𝑢𝑎(𝜉, 𝑛)}
+ {𝑅𝐹𝑎(𝜉, 𝑛)}) =  𝜉{𝑢𝑎(𝜉, 𝑛)},𝜉 

(47b) 

 

Eqs. (46a-46b) are substituted in Eqs. 

(47a-47b). 
 

(−[𝑆𝑠(𝜔, 𝜉, 𝑛)] − [𝐸1𝑠(𝑛)
− 𝜉[𝐸3𝑠(𝑛)𝑇)[𝐸0𝑠(𝑛)]−1(−[𝑆𝑠(𝜔, 𝜉, 𝑛)]
− [𝐸1𝑠(𝑛)]𝑇 − 𝜉[𝐸3𝑠(𝑛)]){𝑢𝑠(𝜉, 𝑛)}

+  𝜉(−[𝑆𝑠(𝜔, 𝜉, 𝑛)],𝜉 −
1

𝜉
[𝐸2𝑠(𝑛)

− [𝐸4𝑠(𝑛)]𝑇 − 𝜉[𝐸5𝑠(𝑛)]){𝑢𝑠(𝜉, 𝑛)}
+ 𝜔2[𝑀0(𝑛)]𝜉2 {𝑢𝑠(𝜉, 𝑛)}
− 𝜉{𝑅𝐹𝑆(𝑛)(𝜉)},𝜉 − (−[𝑆

𝑠(𝜔, 𝜉)]

− [𝐸1𝑠(𝑛)]
− [𝐸3𝑠(𝑛)]𝑇)[𝐸0𝑠(𝑛)]−1{𝑅𝐹𝑠(𝜉, 𝑛)} = 0 

(48a) 

(−[𝑆𝑎(𝜔, 𝜉, 𝑛)] − [𝐸1𝑠(𝑛)
− 𝜉[𝐸3𝑎(𝑛)𝑇)[𝐸0𝑎(𝑛)]−1(−[𝑆𝑎(𝜔, 𝜉, 𝑛)]
− [𝐸1𝑎(𝑛)]𝑇 − 𝜉[𝐸3𝑎(𝑛)]){𝑢𝑎(𝜉, 𝑛)}

+  𝜉(−[𝑆𝑎(𝜔, 𝜉, 𝑛)],𝜉 −
1

𝜉
[𝐸2𝑎(𝑛)

− [𝐸4𝑎(𝑛)]𝑇 − 𝜉[𝐸5𝑎(𝑛)]){𝑢𝑎(𝜉, 𝑛)}
+ 𝜔2[𝑀0(𝑛)]𝜉2 {𝑢𝑠(𝜉, 𝑛)}
− 𝜉{𝑅𝐹𝑎(𝑛)(𝜉)},𝜉 − (−[𝑆

𝑎(𝜔, 𝜉)]

− [𝐸1𝑎(𝑛)]
− [𝐸3𝑎(𝑛)]𝑇)[𝐸0𝑎(𝑛)]−1{𝑅𝐹𝑎(𝜉, 𝑛)} = 0 

(48b) 

 

For any displacements, the terms related 

with {𝑢𝑠(𝜉, 𝑛)} and {𝑢𝑎(𝜉, 𝑛)} should 

disappear. Thus, Equations for the dynamic 

stiffness matrix is acquired. 

 
([𝑆𝑠(𝜔, 𝜉, 𝑛)] + [𝐸1𝑠(𝑛)]
+ 𝜉[𝐸3𝑎(𝑛)]𝑇[𝐸0𝑠(𝑛)]−1[[𝑆𝑠(𝜔, 𝜉, 𝑛)]
+ (𝐸1𝑠(𝑛)]𝑇 + 𝜉[𝐸3𝑠(𝑛)])
− 𝜉[𝑆𝑠(𝜔, 𝜉, 𝑛)],𝜉 − 𝜉 ([𝐸

4𝑠(𝑛)]

+ [𝐸4𝑠(𝑛)]𝑇) − 𝜉2[𝐸5𝑠(𝑛)]

+ 𝜔2𝜉2[𝑀0𝑠(𝑛)] = 0 

(49a) 

([𝑆𝑎(𝜔, 𝜉, 𝑛)] + [𝐸1𝑎(𝑛)]

+ 𝜉[𝐸3𝑎(𝑛)]𝑇[𝐸0𝑎(𝑛)]−1[[𝑆𝑎(𝜔, 𝜉, 𝑛)]
+ (𝐸1𝑎(𝑛)]𝑇 + 𝜉[𝐸3𝑎(𝑛)])
− 𝜉[𝑆𝑎(𝜔, 𝜉, 𝑛)],𝜉 − ([𝐸

2𝑎(𝑛)]

− 𝜉([𝐸4𝑎(𝑛)]𝑇) − [𝐸4𝑎(𝑛)]𝑇)

− 𝜉2[𝐸5𝑎(𝑛)] + 𝜔2𝜉2 [𝑀0𝑎(𝑛)] = 0 

(49b) 

 

Eqs. (49a-49b) are the AXI-SBFE 

equation in dynamic stiffness for an infinite 

layered medium.  

The nonlinear first-order differential 

equation of variable 𝜉 is solved for a 

particular frequency 𝜔∗, employing a Runge-

Kutta numerical integration method. 

Utilizing an asymptotic expansion of the 

dynamic stiffness, the required initial value 

for the numerical integration is calculated in 

the following. 
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Expression of Dynamic Stiffness as Power 

Series in 𝝃 

The unknown matrix of dynamic stiffness 

[𝑆∞(𝜉, 𝑛)] for both symmetric and anti-

symmetric is expanded as a decreasing 

exponent power series in (𝜉). In the following 

the superscript s and a and the series number 

n has been omitted for convenience. 

 
[𝑆∞(𝜉)] ≈ (𝜉)1[𝐶∞] + (𝜉)

0[𝐾∞]

+ ∑
1

(𝜉)𝑗
[𝐴𝑗]   

𝑚

𝑗=1

 
(50) 

 

The eigenvalue problem 

 
[𝑀0][Φ] = [𝐸0][Φ][𝑚0],      
[Φ]𝑇[𝐸0][Φ] = [𝐼],         
[Φ]𝑇[𝑀0][Φ] = [𝑚0]. 

(51) 

 

is used to transform Eq. (49a-49b) into: 

 
([𝑠∞(𝜉)] + [𝑒1] + 𝜉[𝑒3]𝑇) ([𝑠∞(𝜉)]

+ [𝑒1]𝑇 + 𝜉[𝑒3] )

− 𝜉 [𝑠∞(𝜉)],𝜉  

− [𝑒2] − 𝜉([𝑒4] + [𝑒4]𝑇) − 𝜉2[𝑒5]
+ 𝜔2𝜉2[𝑚0] = 0, 

(52) 

 

with 

 
[𝑠∞(𝜉)] = [Φ]𝑇[𝑆∞(𝜉)] [Φ] (53) 

[𝑒𝑗] =  [Φ]𝑇[𝐸𝑗][Φ],                        

𝑗 = 1,2,… ,5.          
(54) 

 

Eq. (50) could be written as: 

 
[𝑠∞(𝜉)] ≈ (𝜉)1[𝑐∞] + (𝜉)

0[𝑘∞]

+ ∑
1

(𝜉)𝑗
[𝑎𝑗].    

𝑚

𝑗=1

 
(55) 

 

where 

 
[𝑐∞] = [Φ]

𝑇[𝐶∞][Φ],         [𝑘∞]
= [Φ]𝑇 [𝑘∞]

= [Φ],      [𝑎𝑗]

= [Φ]𝑇[𝐴𝑗][Φ]. 

(56) 

 

The derivative with respect to [𝑠∞(𝜉)],𝜉 is 

expressed as: 

 

[𝑠∞(𝜉)],𝜉 ≈ [𝑐∞] −∑
𝑗

(𝜉)𝑗
[𝑎𝑗],

𝑚

𝑗=1

 (57) 

 

The power series Eq. (55) and its 

derivative Eq. (57) are substituted in Eq. (52). 

Sorting by decreasing powers of 𝜉 and 

equating the associated terms with zero, the 

coefficients [𝑐∞], [𝑘∞] and [𝑎𝑗] could be 

found. The quadratic term yields: 

 
[𝑐∞][𝑐∞] + [𝑒

3]𝑇[𝑐∞][𝑒
3] + [𝑒3]𝑇[𝑒3]

− [𝑒5] + 𝜔2[𝑚0] = 0 
(58) 

 

Eq. (58) is an algebraic Riccati equation 

for the coefficient [𝐶∞] which could be 

solved by the Schur decomposition of related 

Hamiltonian matrix. The linear term yields: 

 
([𝑐∞] + [𝑒

3]𝑇)[𝑘∞] + [𝑘∞] [𝑐∞] +
[ 𝑒3] = −[(𝑐∞] + [𝑒

3]𝑇)[𝑒1]𝑇 −
[𝑒1]([𝑐∞] + [𝑒

3]) + [𝑐∞] + ([𝑒
4] +

[𝑒4]𝑇).                                  

(59) 

 

Eq. (59) is a Lyapunov equation for the 

coefficient [𝑘∞]  which its solution involves 

solving a Sylvester equation (Bartels and 

Stewart, 1972) followed by a Schur 

decomposition. The constant term yields: 

 
([𝑐∞] + [𝑒

3]𝑇)[𝑎1] + [𝑎1]([𝑐∞] +
[ 𝑒3]= -([𝑘∞] + [𝑒

1])([𝑘∞] + [𝑒
1]𝑇) +

[𝑒2]) 

(60) 

 

Similar to Eq. (59), Eq. (60) is also a 

Lyapunov equation for the coefficient [a1]. 

For higher order terms [aj], j > 1, equations 

can be obtained in a similar approach. 

Construction of the initial value of the 

dynamic stiffness is straightforward by 

assessing Eq. (65) for a large finite value  𝜉ℎ,. 
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[𝑆∞(𝜔∗, 𝜉ℎ)]
≈ ([Φ]−1)𝑇 {𝜉ℎ[𝐶∞] + [𝑘∞]

+ ∑
𝑗

(𝜉ℎ)
𝑗
[𝑎𝑗]}[Φ]

−1  

𝑚

𝑗=1

 

(61) 

 

In order to consider material damping in 

the formulation given above, Linear 

hysteretic material damping has been applied 

by using a complex shear modulus G* instead 

of the real one G. 

 
𝐺∗ = (1 + 𝑖. 2𝐷)𝐺 (62) 

 

where the damping ratio and the imaginary 

unit has been indicated by symbols D and i, 

respectively. Using Eq. (66), the complex 

coefficient matrices [E0*] – [E5*] follow from 

those given in Eqs. (26a-26f) 

 

[𝐸𝑖∗] = (1 + 𝑖. 2𝐷)[𝐸𝑖],   𝑖 = 0,1, … ,5. (63) 

 

The mass matrix [M0] stays unchanged due 

to the material damping. 

 

NUMERICAL EXAMPLES 

 

In this section, dynamic response of an 

infinite soil layer has been calculated based 

on the derivation presented before. An 

axisymmetric SBFEM code has been 

developed in the MATLAB programming 

language. Despite the general formulation of 

SBFEM, just a straight line is discretized. The 

obtained numerical results using the proposed 

method is compared to the well known thin 

layer method (Lysmer and Waas, 1972; 

Kausel and Roesset, 1975) for different terms 

of Fourier series. 

 

Uniformly Distributed Pressure along the 

Depth in Homogenous Material  

Consider a hollow unbounded cylinder of 

radius 1, thickness 1 and Poisson’s ratio υ = 

1/3. The discretization used with one element 

of order 10 (Figure 2). Using the Gaussian–

Lobatto–Legendre quadrature for the 

numerical integrations alongside the element, 

the nodes and integration points match 

together. Two cases with free or fixed bottom 

have been calculated in the analysis. An 

axisymmetric harmonic uniform pressure of 

amplitude 1 and in a frequency range of 0 to 

10 with 100 steps has been applied in 

horizontal direction along the depth and the 

displacement of top node due to this loading 

has been calculated and compared with the 

TLM solution in Figures 3 and 4. Due to the 

axisymmetric loading, the computation was 

done for the first term of Fourier series (n = 

0). The results of the current approach are in 

excellent agreement with the TLM. 

 

 
Fig. 2. Discretization of an unbounded cylinder 
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Fig. 3. Real and imaginary displacement of top node due to applied time harmonic pressure (Free bottom) 
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Fig. 4. Real and imaginary displacement of top node due to applied time harmonic pressure (fixed bottom) 

  

Linearly Varying Pressure along the 

Depth in a Homogenous Material 

In this example, a linearly antisymmetric 

varying pressure of amplitude 1 at the top and 

0 at the bottom has been applied in horizontal 

direction and the displacement has been 

calculated and compared with the TLM 

solution in Figure 5. The comparison has 

been done for different terms of Fourier series 

(n = 0,1,2) along the depth and for 5 layers 

discretization (Figure 5). Again the results 

match very well with the TLM solutions. 
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Fig. 5. The displacement of discretized line for different terms of series (n = 0,1,2) and for different circular 

frequencies (ω = 0,3) 

 

CONCLUSIONS 

 

In this paper, an axisymmetric scaled 

boundary Finite Element formulation for 

elasto-dynamic analysis of three-dimensional 

unbounded layered media is derived. The 

formulation was based on different terms of 

Fourier series and a numerical integration is 

required to solve for the dynamic stiffness. 

Although the examples presented for the 

isotropic case, the current approach is not 

restricted to isotropic material. Generally, 

anisotropic material can be modeled simply 

by modifying the elasticity matrix in 

program. 

The novel axisymmetric SBFEM 

formulation has been validated with the well-

known thin layer method formulation for 

different example.  

Summarizing, it can be said that the 

proposed formulation is very well suited for 

the wave propagation of unbounded layered 

systems and it could be coupled seamlessly to 

a formulation of near field to study the 

problem of dynamic soil structure interaction. 
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