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Abstract
Challenges such as advances in technology, demands of the global market, and

limited warehouse spaces

resort manufacturing

industries to subcontracting.

Subcontracting has been a considerable alternative in the manufacturing industries and
is utilized as a strategic tool to diminish operation costs primarily to address the
problem of scarcity when the firm faces a large demand on the commodity it supplies.
The present study employed a mathematical model among firms engaging in
subcontracting in search of an optimal schedule in the manufacture of the product and
distribution of production time involved with an objective of obtaining a maximum
profit. The constraints in the mathematical formulation included the total demand,
processing capacity, available supply, processing rate, and time. The plausibility and the
possible utility of the mathematical model has been explored employing sequential
quadratic programming algorithm in the search of the optimal solutions.

Keywords: Subcontracting; Mathematical model; Constrained optimization; Nonlinear programming.

Introduction

Subcontracting, more commonly referred to as a
sweating system, began between the late 1800s and
early 1900s and the conventional subcontracted laborer
was the tailor working in an apartment in New York
City throughout the end of the nineteenth century [1].
The concept of sweating includes hiring out of the
competing manufacturers to competing contractors the
components of clothes, which in succession, given to
laborers to be manufactured [2]. Over the years,

manufacturing industries have been challenged by
several technological advances and demands of the
global market [3, 4] along with the shortage and limited
warehouse spaces [5, 6]. Hence, concepts were designed
and theories were formulated to address these problems
[3], to create sustainable frameworks and to propose
better policies [7, 8]. Moreover, models were built to
optimize operation processes [6, 8-14] while employing

several computational approaches and numerical
algorithms [5, 6, 15, 16].
Nowadays, subcontracting has already been a
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considerable option in the manufacturing industry, a
practice of assigning part of the obligations and tasks
under a contract to another party. It is mainly caused by
technological constraints where the manufacturer does
not have the ability or expertise to produce the good, or
capacity related limitations where the manufacturer has
insufficient production capacity. It can be employed as
a strategic tool to reduce operation cost and as means to
hedge against the capacity shortage when facing a large
demand [17], and subcontractors are employed by
administrators who are assumed to have general liability
for the completion and implementation within the given
limitations and deadlines.

Several factors such as in-house production cost,
subcontracting cost, delivery lead times, and demand
priorities should be identified when subcontracting.
With all these factors considered, along with an
appropriate mathematically formulated model, the
objective of maximizing the expected returns of the firm
can be realized. An analytical scheduling model for a
firm with an option of subcontracting specific demands
of clients while taking into consideration the production
cost is proposed on the assumptions that there are
multiple identical parallel in-house machines with
multiple subcontractors performing various production
processes. Further, each job can either be processed in-
house or can be outsourced to a subcontractor. As such,
when the firm is given a set of orders, it should
determine which job should be processed in-house or
outsourced such that it will yield a maximum profit.
Moreover, the mathematical model should determine
the optimal scheduling of time per production stage and
the distribution of finished products to the clients.

A scheduling model on subcontracting can be
employed by manufacturing companies with objectives
of maximizing revenue and minimizing cost while
maintaining a good business operation relationship
between clients and subcontractors. Consequently, the
utility of the results of the mathematical formulation in
this study allows developing companies to expand their
production while considering their operation limits and
meeting the demands of their respective clients. The
proposed scheduling model will address the problem of
manufacturing firms operating in a business
environment under the assumptions specified in this
study.

Materials and Methods

Mathematical Model Formulation

In this study, the following are the assumptions of the
mathematical model: a) the firm has multiple parallel
machines per stage, producing identical product in a
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given production stage. b) there is a finite number of
clients requiring varying amounts of demand. c) at each
production stage, the number of in-house and
subcontractor machines varies. d) there are multiple
subcontractors within each stage producing exactly the
same product as the firm. e) the in-house and outsource
product costs and processing time vary. f) no other
external sources of the product at any stage of the
production other than the subcontractors, and g) the
supply is constant throughout all the stages. To better
understand and visualize the presented problem under
the given assumptions, a schematic diagram is shown in
Figure 1.

The quantity ;i is to be processed on the j™ stage of
the production using the k& in-house machine,
ko =1,2,..,m,while the quantity Xj, is to be
processed on the /" stage of the production using the
k{h subcontractor  machine, k; = 1,2,...,q. The
aggregate amount at each ;" processing stage to be
supplied to the clients is s; and is equal to the total
available supply S. The allotted time for the completion
of the ;™ process or stage is denoted ast;, and the
allotted supply of finished product for the +* client is
denoted as y,.

An analytical scheduling model with an objective of
maximizing profit and minimizing cost given an option
of subcontracting revealed a significant reduction to the
objective value when the subcontracting option was
used [18]. In subcontracting, the firm should maintain
and satisfy due dates, focus on the time constraint and
technological feasibility, and take into consideration the
minimum use of possible resources [19]. As such, a firm
can decide whether to produce in-house or outsource,
assess the robustness of the policy, and identify which
option utilizes most of the resources [20].

In the formulation of any mathematical program, the
decision variables must be properly defined, the
objective is functionally constructed, and the constraints
are appropriately expressed. In this study, there are three
types of decision variables and these include the
quantity (x;y, ) to be produced at the j™ stage using the m
in-house machines or the quantity (Xj,) using the ¢
subcontractor machines, the processing time (t;) at the
j™ stage, and the allotted supply of finished product (y,.)
to the " client. Since the objective is to maximize the
profit level, it is necessary to define its two components,
namely the revenue (z;) and the cost (z,). If ¢, is the
price that client » is willing to pay for every finished
product, and the allocated supply for client r isy,,
forr =1,...,f, and if z; is the revenue function, then
this revenue function can be expressed as
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Figure 1. Schematic diagram of the production processes at different stages and the distribution of the manufactured units to the

different clients using the in-house and subcontractor machines.

Z1 = Z£=1 CrYr ()

Considering that the production cost g, on the J"
stage of the production using the k5" in-house machine,
and the production cost gj,, on the j™ stage of the
production using the k" subcontractor machine vary
depending on which stage of the process and machine a
product is in, the total production cost function z, can
be represented as

Zy = Xie1 Xkg=19jke Xjke T Z?:1zz1=1g_jk1fjk1- 2
Hence, the profit function (z; —z,), defined as

revenue function minus the cost function, can be
expressed as

— v/
2= 2= B &¥r — (X1 Zi=1 Gjko Xjko +
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i1 X o1 Gje Kjky)- 3)

The allotted quantity of finished product to be
supplied to client 7 is y,, the aggregate amount to be
supplied to the clients is S, the amount to be produced at
the j” process is s;, the total amount to be produced by
the k" in-house machine in the j process is Xjk,» While
the total amount to be produced by the kit
subcontractor machine in the /™ process is Xjk,> and the
quantity demanded of client r is d,.. The allotted time
for the production in the /™ process using both in-house
and subcontractor machines ist;, while T is the total
allotted time for all the processes, pjy, is the processing
time for the production in the /™ stage by the k" in-
house machine, and pj;, is the processing time for the
production in the /™ stage by the ki subcontractor
machine.
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The total demand constraint considers the combined
allotted quantity of finished products among clients, and
this should be equal to the total available supply since
there will be a limited supply of the finished products.
Thus, the total demand constraint is expressed as

v =S, @)

The processing capacity is the combined amount of
products processed through the in-house and
subcontractor machines per stage j. This will be
equivalent to S, which is constant throughout all the
stages. These products will be aggregated and then
distributed to the succeeding in-house and subcontractor
machines. The processing capacity constraint will take
the form of
Yho=1%jk, T Zzlzlfjkl =s; =S, forj=1,..,n 5

Since there will be limited supply for the finished
products, specific demands of the clients will be
prioritized depending on their rate of return for these
products, cases are either all or some of the demands of
a specific client will be met. This allotted supply
constraint can be expressed as

Y <d, forr=1,..,f. (6)

Moreover, the mathematical formulation will
consider processing time for both in-house and
subcontractor machines. The rate constraint is defined
as the sum of the total amount produced by each of the
machines divided by their respective processing time
multiplied to the allotted time in the completion of a
process in a particular stage. This rate constraint is
expressed as
Xjko q  Zjk

m — P
tj( ko:i?ko‘l‘ klzla)ﬁsj—&for]—1,...,n. (7)

The sum of the allotted time in all the stages of
production is less than or equal to the total allotted time
for the entire production process, and since the problem
seeks to determine the allotted time (t;) for each stage j,
the aggregate of the allotted time among the n stages
will be less than or equal to the total allotted time (7)),
and this time constraint is represented by

n
n G <T.

®

The processing time and allotted time at stage j are
greater than zero since any in-house or subcontractor
machine requires non-zero unit of time in the

DEP. Sumalapao, et al.

352

J. Sci. . R.Iran

completion of the job at any stage. These variables are
not necessarily integers, and these restrictions are
expressed as

Djky Pjiytj > 0. )

In this paper, all the remaining decision variables
assume non-negative real values since these are the
quantities allotted and to be distributed to the respective
clients. Further, the allocated supply for client » can
possibly take a value of zero. These non-negativity
restrictions can be expressed as

xjko' fjkl,yr > 0. (10)
Hence, the final mathematical model formulation for

this problem is
Minimize

Zp — 21 =
Z?=1Z",€nozlgfko Xjkg + Z?=1ZZ1=1‘9_]"€1 Xjk, —
DA (11)

subject to constraints defined as Equations 4-10.

Given this mathematical model formulation, several
optimization methods can be utilized in the search of the
optimal solution. In this paper, sequential quadratic
programming was employed.

Sequential Quadratic Programming Algorithm

Sequential quadratic programming (SQP) methods
belong to the most powerful nonlinear programming
algorithms used in solving differentiable nonlinear
programming problems [21]. The basic idea behind the
SQP algorithm is to formulate and solve a quadratic
programming sub-problem in each iteration, which is
obtained by linearizing the constraints and quadratically
approximating the Lagrangian function [22]. The
advantage of using SQP, compared to the traditional
Newton method, is that it allows for a systematic and
natural way of selecting the active set of constraints and
in addition, through the use of the merit function, the
convergence process may be controlled [23].

In order to determine the optimal solution of the
proposed mathematical formulation in this paper, we
generated MATLAB codes to obtain the solution. In
particular, we made use of the FMINCON function
found in the optimization toolbox of MATLAB, to
represent the specified mathematical model shown in
Equation 11.
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Initial Value Specification

An estimated initial starting value for the decision
variables is required in an iterative procedure. In fact,
starting value specification is one of the most difficult
problems encountered in estimating parameters of
nonlinear models [21], and the problem of indicating
initial values of the decision variables can be solved
with the proper understanding of the definition of the
parameters in the context of the phenomenon being
modeled. Wrong starting values result in longer
iteration, greater execution time, non-convergence of
the iteration, and possible convergence to an unwanted
local minimum sum of squares residuals [24]. One of
the frequently employed methods in specifying initial
values in search of an optimal solution is to find these
initial values in the basin of attraction of a global
minimum.

A basin of attraction is the set of points in the space
of system variables such that initial conditions chosen in
this set dynamically evolve to a particular attractor [25].
It refers to the collection of initial conditions leading to
long-time behavior that approaches the attractor(s) of a
dynamical system [26]. Also, an attractor is a set of
states, invariant under the dynamics, towards which
neighboring states in a given basin of attraction
asymptotically approach in the course of dynamic
evolution. It is defined as the smallest unit which cannot
be itself decomposed into two or more attractors with
distinct basins of attraction [25].

In this paper, since the optimal solution is expected
to be in the basin of attraction, the global minimum is
one of the possible initial values set in an attempt to
approach the optimal solution [26], and was the option
considered in specifying the initial values.

Results and Discussion

As an application of the proposed mathematical
formulation in this paper, several cases were
constructed. In the formulation of the corresponding
mathematical program for a particular case, the user is
required to provide specific information including the
number (m) of in-house machines and number (g) of
subcontractor machines involved per stage or process,
number (n) of stages or processes, the total number (f)
of clients, total amount (S) of products to be produced in
a given total allotted time (7).

The augmented matrix representation (X) of the
decision variables x;;, and X;y, is

X = [x]'ko|ffk1] =
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[x11 X12 Xim | X1 Xpg x1q]
X21 X2 Xom | X2 X X2q
Xn1  Xn2 Xnm | Xn1  Xn2 an

The vector notation of the decision variable t;

is [ty,tp, ..., t,], while the decision variable 7y,
is [yl, Vo e yf]. Hence, the cardinality of all the
decision variables involved in the formulation

isnx(m+q+1)+f.

The user is also required to provide values of the
following matrices: P, G, D, and C. The processing time
(pjk,) of in-house machines augmented with the
processing time (Pjx,) of subcontractor machines will
be denoted as matrix P. The production cost (gji,) of
in-house machines augmented with the production cost
(gjk,) of subcontractor machines will define matrix G.
The quantities demanded by and the returns of the
clients are denoted as matrices D and C, respectively.
These matrices P, G, D, and C are illustrated as follows:

P = [pfko |ﬁfk1]

P11 P12 Pim | P Diz P1q
_ P21 P22 Pom | D21 D22 P2q
: : : [ : : :
Pn1  Pn2 Pnm | ﬁnl ﬁnz ﬁnq
G= [g}'ko|gjk1] B _ B
[911 912 Iim | 1 Gz 91q]
_ 921 922 Jom | G21 G2z 92q
: : : | : : :
Lgnl In2 Inm | g_nl gnz gan
D= [dy, dp -, df]
C = [Cl, Czl ttty Cf]
1llustration A

A total amount of 15000 is needed to be produced in
500 days. A manufacturing firm has two in-house and
three subcontractor machines. Each product has to
undergo four stages before it is distributed to the six
clients. The processing time (P), production cost (G),
demand (D), and return (C) matrices are given as

75 75 | 80 75 90
p= 80 75 | 60 65 70
85 90 | 100 120 110
70 80 | 85 85 70
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160 150 | 400 450 350
C= 200 170 | 600 400 300
180 170 | 400 350 250
200 130 | 320 320 225

= [3000 2800 3500 3000 3300 2000]

C = [1250 1100 1300 1000 1050 1000]
The schematic representation of this problem is
illustrated in Figure 2A. Given S = 15000 and T = 500,
the mathematical programming formulation of this
problem is
Minimize

(zy —z;) = —1250y, — 1100y, — 1300y5 + 1000y,

—1050y5 — 1000y, + 160x;4

+ 150x, + 400x;; + 450,

+ 350%;53 + 200x,; + 170x,,

+ 600x,, + 400x,, + 300%,3

+ 180x3;, + 170x3, + 4003,

+ 350%3, + 250%33 + 200 x4

+ 130x4, + 320X, + 320%,,

+ 225%,3
subject to

X11+%15 + Xq1 + X1 + X3 = 15000

X9q + Xop + Xp1 + Xyy + X3 = 15000

X31 + X35 + X3q + X35 + X33 = 15000

Xa1 + Xgp + Xgq + X4y + X453 = 15000

t; +t, +t;+t, <500

Y1+ Y2 +y3+ Y.+ ys +ys = 15000
y1 < 3000
vy, <2800
y3 < 3500
v, <3000
s < 3300
Ve < 2000
X11 | X2

—_— =4 — 15000
50t 75 o0 =
X2z )
+—+— = 15000
65

X32 x_)_
120+110 = 15000
X2

X41 | Xg2 )
ty | —+ == —+—+— = 15000
4(70 80 85 85
Xjkgr Xjkeyr Vr = 0
t;>0

ko=12; ky =1,23; j =1,234, r=1,2,345,6

X11 | X12
(75 + 75

X X
tz( 2 252+
X32

X31
t _—
3(85 *90

x21

&
100

Xa1

A maximum profit of 7945000 was obtained in this
case, and the optimal solution showed that the total
amount of 15000 should be processed by the second in-
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house machines in the four stages. Further, a total of 75
days should be allotted in each of the first and second
stages of the production, while a total of 90 and 80 days
for the third and fourth stages, respectively. The optimal
solution revealed the amount to be supplied for the first,
second, third, fourth, fifth, and sixth clients are 3000,
2800, 3500, 1437, 3300, and 963 units, respectively.

Illustration B

A certain product has to undergo three stages in its
production processes. A firm has a total of three in-
house machines and one subcontractor machine and can
produce a total amount of 100 to be distributed to its
three clients five days from now. The matrices for
processing time (P), production cost (G), demand (D),
and return (C) are given as

15 15 1 | 1
=[2.5 25 15 | 2]
15 15 05 | 05
60 55 62 | 50
=|55 70 65 | 60]
60 50 55 | 40
= [45 45 40]

C = [260 210 230]

The diagram describing the representation of this
problem is shown in Figure 2B. Given a capacity of an
amount of 100 and five days completion time, the
problem can be mathematically formulated as

Minimize

(zy — z1) = =260y, — 210y, — 230y5 + 60x;4
+ 55x;, + 62x13 + 50%;; + 55x,;
+ 70x,, + 65x,3 + 60X,,+ 60x3,
+ 50x3, + 55x33 + 403,

subject to
Xq11 + X1 + X413 + X1, = 100
Xp1 + Xop + X3 + X1 = 100
X31 + X35 + X33 + X317 = 100
ti+t, +t3 <5
Y1 +y2+y3 =100

y; <45

Yy, <45

y3 < 40
X11 |, X12 )
(15+15+x13+x11)—100
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Figure 2. Schematic representations of illustrated cases using constrained supply chain scheduling.

X21 , X22 4 X23
tz(z.s + 2.5 + 15 +

X22

X23

X1
2
X32

X31
ts (ﬁ +

1.5

):

X33

0.5

100

X31
+ —
0.5

)=100

Xjkgr Xjkey) Yr 2 0
tj >0
ko=123; ky=1; j=123; r=123

An optimal value of 9550 defines the maximum
profit for this problem. The optimal solution revealed
that the total amount of 100 should be produced by the
subcontractor in the first stage of production, then all of
the 100 be processed using the first in-house machine in
the second stage and will then be eventually assigned to
the subcontractor on the third stage of production. A day
is allotted for the completion of the first process, while a
total of 2.5 days for the second process, and a half-day
for the third process. The maximum profit will be
obtained if the total supply of 100 will be distributed as
45, 15, and 40 to the first, second, and third clients,
respectively.

Conclusion

With the shortage of equipment and limited
warehouse spaces, along with technological advances
and high demands of the global market, most
manufacturing industries rely on subcontracting. The
present study employed a mathematical program which
can be utilized by firms engaging in subcontracting in
search for an optimal schedule in the distribution of the
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amount of production, the time needed at different
stages, and amount to supply in order to realize an
objective of maximizing the profit. Although there are
existing computational approaches in handling supply
chain related processes, the present study employed a
mathematical program which assumed that the firm has
its own machines and considered subcontracting as an
external source of the products to be processed and
eventually distributed in order to meet the demands of
its clients. The constraints in the formulated model
included the total demand, processing capacity, allotted
supply, rate, and time. The FMINCON function in
MATLAB along with SQP algorithm was utilized to
assess the feasibility of the problem and eventually to
determine the optimal schedule of some identified cases.
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