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Abstract 

Challenges such as advances in technology, demands of the global market, and 
limited warehouse spaces resort manufacturing industries to subcontracting. 
Subcontracting has been a considerable alternative in the manufacturing industries and 
is utilized as a strategic tool to diminish operation costs primarily to address the 
problem of scarcity when the firm faces a large demand on the commodity it supplies. 
The present study employed a mathematical model among firms engaging in 
subcontracting in search of an optimal schedule in the manufacture of the product and 
distribution of production time involved with an objective of obtaining a maximum 
profit. The constraints in the mathematical formulation included the total demand, 
processing capacity, available supply, processing rate, and time. The plausibility and the 
possible utility of the mathematical model has been explored employing sequential 
quadratic programming algorithm in the search of the optimal solutions. 
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Introduction 
Subcontracting, more commonly referred to as a 

sweating system, began between the late 1800s and 
early 1900s and the conventional subcontracted laborer 
was the tailor working in an apartment in New York 
City throughout the end of the nineteenth century [1]. 
The concept of sweating includes hiring out of the 
competing manufacturers to competing contractors the 
components of clothes, which in succession, given to 
laborers to be manufactured [2]. Over the years, 

manufacturing industries have been challenged by 
several technological advances and demands of the 
global market [3, 4] along with the shortage and limited 
warehouse spaces [5, 6]. Hence, concepts were designed 
and theories were formulated to address these problems 
[3], to create sustainable frameworks and to propose 
better policies [7, 8]. Moreover, models were built to 
optimize operation processes [6, 8-14] while employing 
several computational approaches and numerical 
algorithms [5, 6, 15, 16]. 

Nowadays, subcontracting has already been a 



Vol. 31  No. 4  Autumn 2020 DEP. Sumalapao, et al. J. Sci. I. R. Iran 

350 

considerable option in the manufacturing industry, a 
practice of assigning part of the obligations and tasks 
under a contract to another party. It is mainly caused by 
technological constraints where the manufacturer does 
not have the ability or expertise to produce the good, or 
capacity related limitations where the manufacturer has 
insufficient production capacity.  It can be employed as 
a strategic tool to reduce operation cost and as means to 
hedge against the capacity shortage when facing a large 
demand [17], and subcontractors are employed by 
administrators who are assumed to have general liability 
for the completion and implementation within the given 
limitations and deadlines. 

Several factors such as in-house production cost, 
subcontracting cost, delivery lead times, and demand 
priorities should be identified when subcontracting. 
With all these factors considered, along with an 
appropriate mathematically formulated model, the 
objective of maximizing the expected returns of the firm 
can be realized. An analytical scheduling model for a 
firm with an option of subcontracting specific demands 
of clients while taking into consideration the production 
cost is proposed on the assumptions that there are 
multiple identical parallel in-house machines with 
multiple subcontractors performing various production 
processes. Further, each job can either be processed in-
house or can be outsourced to a subcontractor. As such, 
when the firm is given a set of orders, it should 
determine which job should be processed in-house or 
outsourced such that it will yield a maximum profit. 
Moreover, the mathematical model should determine 
the optimal scheduling of time per production stage and 
the distribution of finished products to the clients. 

A scheduling model on subcontracting can be 
employed by manufacturing companies with objectives 
of maximizing revenue and minimizing cost while 
maintaining a good business operation relationship 
between clients and subcontractors. Consequently, the 
utility of the results of the mathematical formulation in 
this study allows developing companies to expand their 
production while considering their operation limits and 
meeting the demands of their respective clients. The 
proposed scheduling model will address the problem of 
manufacturing firms operating in a business 
environment under the assumptions specified in this 
study. 

 

Materials and Methods 
Mathematical Model Formulation 

In this study, the following are the assumptions of the 
mathematical model: a) the firm has multiple parallel 
machines per stage, producing identical product in a 

given production stage. b) there is a finite number of 
clients requiring varying amounts of demand. c) at each 
production stage, the number of in-house and 
subcontractor machines varies. d) there are multiple 
subcontractors within each stage producing exactly the 
same product as the firm. e) the in-house and outsource 
product costs and processing time vary. f) no other 
external sources of the product at any stage of the 
production other than the subcontractors, and g) the 
supply is constant throughout all the stages. To better 
understand and visualize the presented problem under 
the given assumptions, a schematic diagram is shown in 
Figure 1. 

The quantity ݔ௝௞బ is to be processed on the jth stage of 
the production using the ݇଴௧௛ in-house machine, ݇଴ = 1,2, … , ݉, while the quantity ̅ݔ௝௞భ is to be 
processed on the jth stage of the production using the ݇ଵ௧௛ subcontractor machine, ݇ଵ = 1,2, … ,  The .ݍ
aggregate amount at each jth processing stage to be 
supplied to the clients is ݏ௝ and is equal to the total 
available supply S. The allotted time for the completion 
of the jth process or stage is denoted as ݐ௝, and the 
allotted supply of finished product for the rth client is 
denoted as  ݕ௥. 

An analytical scheduling model with an objective of 
maximizing profit and minimizing cost given an option 
of subcontracting revealed a significant reduction to the 
objective value when the subcontracting option was 
used [18]. In subcontracting, the firm should maintain 
and satisfy due dates, focus on the time constraint and 
technological feasibility, and take into consideration the 
minimum use of possible resources [19]. As such, a firm 
can decide whether to produce in-house or outsource, 
assess the robustness of the policy, and identify which 
option utilizes most of the resources [20]. 

In the formulation of any mathematical program, the 
decision variables must be properly defined, the 
objective is functionally constructed, and the constraints 
are appropriately expressed. In this study, there are three 
types of decision variables and these include the 
quantity (ݔ௝௞బ) to be produced at the jth stage using the m 
in-house machines or the quantity (̅ݔ௝௞భ) using the q 
subcontractor machines, the processing time (ݐ௝) at the 
jth stage, and the allotted supply of finished product (ݕ௥) 
to the rth client. Since the objective is to maximize the 
profit level, it is necessary to define its two components, 
namely the revenue (ݖଵ) and the cost (ݖଶ). If ܿ௥ is the 
price that client r is willing to pay for every finished 
product, and the allocated supply for client r is ݕ௥, 
for ݎ = 1, … , ݂, and if ݖଵ is the revenue function, then 
this revenue function can be expressed as 
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The total demand constraint considers the combined 
allotted quantity of finished products among clients, and 
this should be equal to the total available supply since 
there will be a limited supply of the finished products. 
Thus, the total demand constraint is expressed as 

 ∑ ௥௙௥ୀଵݕ = ܵ.                 (4) 
 
The processing capacity is the combined amount of 

products processed through the in-house and 
subcontractor machines per stage j. This will be 
equivalent to S, which is constant throughout all the 
stages. These products will be aggregated and then 
distributed to the succeeding in-house and subcontractor 
machines. The processing capacity constraint will take 
the form of 

 ∑ ௝௞బ௠௞బୀଵݔ + ∑ ௝௞భ௤௞భୀଵݔ̅ = = ௝ݏ ܵ, for ݆ = 1, … , ݊.       (5) 
 
Since there will be limited supply for the finished 

products, specific demands of the clients will be 
prioritized depending on their rate of return for these 
products, cases are either all or some of the demands of 
a specific client will be met. This allotted supply 
constraint can be expressed as 

௥ݕ  ≤ ݀௥, for ݎ = 1, … , ݂.               (6) 
 
Moreover, the mathematical formulation will 

consider processing time for both in-house and 
subcontractor machines. The rate constraint is defined 
as the sum of the total amount produced by each of the 
machines divided by their respective processing time 
multiplied to the allotted time in the completion of a 
process in a particular stage. This rate constraint is 
expressed as 

௝ݐ  ൬∑ ௫ೕೖబ௣ೕೖబ௠௞బୀଵ  + ∑ ௫̅ೕೖభ௣̅ೕೖభ௤௞భୀଵ  ൰ ≤ ௝ݏ = ܵ, for ݆ = 1, … , ݊.      (7) 
 
The sum of the allotted time in all the stages of 

production is less than or equal to the total allotted time 
for the entire production process, and since the problem 
seeks to determine the allotted time (ݐ௝) for each stage j, 
the aggregate of the allotted time among the n stages 
will be less than or equal to the total allotted time (T), 
and this time constraint is represented by 

 ∑ ௝௡௝ୀଵݐ ≤ ܶ.                             (8) 
 
The processing time and allotted time at stage j are 

greater than zero since any in-house or subcontractor 
machine requires non-zero unit of time in the 

completion of the job at any stage. These variables are 
not necessarily integers, and these restrictions are 
expressed as 

,௝௞బ݌  ,௝௞భ̅݌ ௝ݐ > 0.                      (9) 
 
In this paper, all the remaining decision variables 

assume non-negative real values since these are the 
quantities allotted and to be distributed to the respective 
clients. Further, the allocated supply for client r can 
possibly take a value of zero. These non-negativity 
restrictions can be expressed as 

,௝௞బݔ  ,௝௞భݔ̅ ௥ݕ ≥ 0.                              (10) 
 
Hence, the final mathematical model formulation for 

this problem is 
Minimize 
ଶݖ  − ଵݖ =∑ ∑ ݃௝௞బ௠௞బୀଵ ௝௞బ ௡௝ୀଵݔ + ∑ ∑ ݃̅௝௞భ௤௞భୀଵ ௝௞భ ௡௝ୀଵݔ̅ − ∑ ܿ௥ݕ௥௙௥ୀଵ                                                                    (11) 
 
subject to constraints defined as Equations 4-10. 
 
Given this mathematical model formulation, several 

optimization methods can be utilized in the search of the 
optimal solution. In this paper, sequential quadratic 
programming was employed. 

 
Sequential Quadratic Programming Algorithm 

Sequential quadratic programming (SQP) methods 
belong to the most powerful nonlinear programming 
algorithms used in solving differentiable nonlinear 
programming problems [21]. The basic idea behind the 
SQP algorithm is to formulate and solve a quadratic 
programming sub-problem in each iteration, which is 
obtained by linearizing the constraints and quadratically 
approximating the Lagrangian function [22]. The 
advantage of using SQP, compared to the traditional 
Newton method, is that it allows for a systematic and 
natural way of selecting the active set of constraints and 
in addition, through the use of the merit function, the 
convergence process may be controlled [23]. 

In order to determine the optimal solution of the 
proposed mathematical formulation in this paper, we 
generated MATLAB codes to obtain the solution. In 
particular, we made use of the FMINCON function 
found in the optimization toolbox of MATLAB, to 
represent the specified mathematical model shown in 
Equation 11. 
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Initial Value Specification 
An estimated initial starting value for the decision 

variables is required in an iterative procedure. In fact, 
starting value specification is one of the most difficult 
problems encountered in estimating parameters of 
nonlinear models [21], and the problem of indicating 
initial values of the decision variables can be solved 
with the proper understanding of the definition of the 
parameters in the context of the phenomenon being 
modeled. Wrong starting values result in longer 
iteration, greater execution time, non-convergence of 
the iteration, and possible convergence to an unwanted 
local minimum sum of squares residuals [24]. One of 
the frequently employed methods in specifying initial 
values in search of an optimal solution is to find these 
initial values in the basin of attraction of a global 
minimum. 

 
A basin of attraction is the set of points in the space 

of system variables such that initial conditions chosen in 
this set dynamically evolve to a particular attractor [25]. 
It refers to the collection of initial conditions leading to 
long-time behavior that approaches the attractor(s) of a 
dynamical system [26]. Also, an attractor is a set of 
states, invariant under the dynamics, towards which 
neighboring states in a given basin of attraction 
asymptotically approach in the course of dynamic 
evolution. It is defined as the smallest unit which cannot 
be itself decomposed into two or more attractors with 
distinct basins of attraction [25]. 

In this paper, since the optimal solution is expected 
to be in the basin of attraction, the global minimum is 
one of the possible initial values set in an attempt to 
approach the optimal solution [26], and was the option 
considered in specifying the initial values. 

 

Results and Discussion 
As an application of the proposed mathematical 

formulation in this paper, several cases were 
constructed. In the formulation of the corresponding 
mathematical program for a particular case, the user is 
required to provide specific information including the 
number (m) of in-house machines and number (q) of 
subcontractor machines involved per stage or process, 
number (n) of stages or processes, the total number (f) 
of clients, total amount (S) of products to be produced in 
a given total allotted time (T). 

The augmented matrix representation (X) of the 
decision variables ݔ௝௞బ and ̅ݔ௝௞భ is 

 ܺ = ௝௞భ൧ݔ௝௞బห̅ݔൣ =

ێێۏ
ଵଵݔۍ ଵଶݔ ⋯ | ଵ௠ݔ ଵଵݔ̅ ଵଶݔ̅ ⋯ ଶଵݔଵ௤ݔ̅ ଶଶݔ ⋯ ଶ௠ݔ | ଶଵݔ̅ ଶଶݔ̅ ⋯ ⋮ଶ௤ݔ̅ ⋮ ⋱ ⋮ | ⋮ ⋮ ⋱ ௡ଵݔ⋮ ௡ଶݔ ⋯ ௡௠ݔ | ௡ଵݔ̅ ௡ଶݔ̅ ⋯ ۑۑے௡௤ݔ̅

ې
. 

 
The vector notation of the decision variable ݐ௝ 

is ሾݐଵ, ,ଶݐ … ,  ௥ݕ ௡ሿ, while the decision variableݐ
is ൣݕଵ, ,ଶݕ … ,  ௙൧. Hence, the cardinality of all theݕ
decision variables involved in the formulation 
is ݊ x ሺ݉ + ݍ + 1ሻ + ݂. 

The user is also required to provide values of the 
following matrices: P, G, D, and C. The processing time 
 of in-house machines augmented with the (௝௞బ݌)
processing time (̅݌௝௞భ) of subcontractor machines will 
be denoted as matrix P. The production cost (݃௝௞బ) of 
in-house machines augmented with the production cost 
(݃̅௝௞భ) of subcontractor machines will define matrix G. 
The quantities demanded by and the returns of the 
clients are denoted as matrices D and C, respectively. 
These matrices P, G, D, and C are illustrated as follows: 

 ܲ = ௝௞భ൧̅݌௝௞బห݌ൣ
= ێێۏ

ଵଵ݌ۍ ଵଶ݌ ⋯ | ଵ௠݌ ଵଵ̅݌ ଵଶ̅݌ ⋯ ଶଵ݌ଵ௤̅݌ ଶଶ݌ ⋯ ଶ௠݌ | ଶଵ̅݌ ଶଶ̅݌ ⋯ ⋮ଶ௤̅݌ ⋮ ⋱ ⋮ | ⋮ ⋮ ⋱ ௡ଵ݌⋮ ௡ଶ݌ ⋯ ௡௠݌ | ௡ଵ̅݌ ௡ଶ̅݌ ⋯ ۑۑے௡௤̅݌
ې
 

ܩ  = ൣ݃௝௞బห݃̅௝௞భ൧
= ێێۏ

ۍ ଵ݃ଵ ଵ݃ଶ ⋯ ݃ଵ௠ | ݃̅ଵଵ ݃̅ଵଶ ⋯ ݃̅ଵ௤݃ଶଵ ݃ଶଶ ⋯ ݃ଶ௠ | ݃̅ଶଵ ݃̅ଶଶ ⋯ ݃̅ଶ௤⋮ ⋮ ⋱ ⋮ | ⋮ ⋮ ⋱ ⋮݃௡ଵ ݃௡ଶ ⋯ ݃௡௠ | ݃̅௡ଵ ݃̅௡ଶ ⋯ ݃̅௡௤ۑۑے
ې
 

ܦ  =  ሾ݀ଵ, ݀ଶ, ⋯ , ݀௙ሿ 
ܥ  =  ሾܿଵ, ܿଶ, ⋯ , ௙ܿሿ 
 
 

Illustration A 
A total amount of 15000 is needed to be produced in 

500 days. A manufacturing firm has two in-house and 
three subcontractor machines. Each product has to 
undergo four stages before it is distributed to the six 
clients. The processing time (P), production cost (G), 
demand (D), and return (C) matrices are given as 

 

ܲ = ൦75 75 | 80 75 9080 75 | 60 65 7085 90 | 100 120 11070 80 | 85 85 70 ൪ 
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ܩ =  ൦160 150 | 400 450 350200 170 | 600 400 300180 170 | 400 350 250200 130 | 320 320 225൪ 

ܦ  =  ሾ3000 2800 3500 3000 3300 2000ሿ 
ܥ  =  ሾ1250 1100 1300 1000 1050 1000ሿ 
 
The schematic representation of this problem is 

illustrated in Figure 2A. Given S = 15000 and T = 500, 
the mathematical programming formulation of this 
problem is 

 
Minimize 
 ሺzଶ − zଵሻ = ଵݕ1250− − ଶݕ1100 − ଷݕ1300 + −ସݕ1000 ହݕ1050 − ଺ݕ1000 + +ଵଵݔ160 ଵଶݔ150 + ଵଵݔ400̅  + +ଵଶݔ450̅ ଵଷݔ350̅ + ଶଵݔ200  + +ଶଶݔ170 ଶଵݔ600̅ + ଶଶݔ400̅ + +ଶଷݔ300̅ ଷଵݔ180  + ଷଶݔ170 + +ଷଵݔ400̅  ଷଶݔ350̅ + ଷଷݔ250̅ + +ସଵݔ 200  ସଶݔ130 + ସଵݔ320̅  + +ସଶݔ320̅  ସଷݔ225̅
subject to ݔଵଵ+ݔଵଶ ଵଵݔ̅ + + ଵଶݔ̅ + ଵଷݔ̅ = ଶଵݔ 15000 + ଶଶݔ + ଶଵݔ̅ + ଶଶݔ̅ + ଶଷݔ̅ = ଷଵݔ 15000 + ଷଶݔ ଷଵݔ̅ + + ଷଶݔ̅ + ଷଷݔ̅ = ସଵݔ 15000 + ସଶݔ ସଵݔ̅ + + ସଶݔ̅ + ସଷݔ̅ = ଵݐ 15000 + ଶݐ + ଷݐ + ସݐ ≤ ଵݕ 500 + ଶݕ + ଷݕ + ସݕ + ହݕ + ଺ݕ = ଵݕ 15000 ≤ ଶݕ 3000 ≤ ଷݕ 2800 ≤ ସݕ 3500 ≤ ହݕ 3000 ≤ ଺ݕ 3300 ≤ ଵݐ 2000 ൬ ݔଵଵ75 + ଵଶ75ݔ + ଵଵ80ݔ̅  + ଵଶ75ݔ̅ + ଵଷ90ݔ̅ ൰ = ଶݐ 15000 ൬ ݔଶଵ80 + ଶଶ75ݔ + ଶଵ60ݔ̅  + ଶଶ65ݔ̅ + ଶଷ70ݔ̅ ൰ = ଷݐ 15000 ൬ ݔଷଵ85 + ଷଶ90ݔ + ଷଵ100ݔ̅  + ଷଶ120ݔ̅ + ଷଷ110൰ݔ̅ = ସݐ 15000 ൬ ݔସଵ70 + ସଶ80ݔ + ସଵ85ݔ̅  + ସଶ85ݔ̅ + ସଷ70ݔ̅ ൰ = ,௝௞బݔ 15000 ,௝௞భݔ̅  ௥ݕ ≥ ௝ݐ 0 > 0 ݇଴ = 1,2; ݇ଵ = 1,2,3;  ݆ = 1,2,3,4; ݎ  = 1,2,3,4,5,6 
 
A maximum profit of 7945000 was obtained in this 

case, and the optimal solution showed that the total 
amount of 15000 should be processed by the second in-

house machines in the four stages. Further, a total of 75 
days should be allotted in each of the first and second 
stages of the production, while a total of 90 and 80 days 
for the third and fourth stages, respectively. The optimal 
solution revealed the amount to be supplied for the first, 
second, third, fourth, fifth, and sixth clients are 3000, 
2800, 3500, 1437, 3300, and 963 units, respectively. 

 
Illustration B 

A certain product has to undergo three stages in its 
production processes. A firm has a total of three in-
house machines and one subcontractor machine and can 
produce a total amount of 100 to be distributed to its 
three clients five days from now. The matrices for 
processing time (P), production cost (G), demand (D), 
and return (C) are given as 

 ܲ = ൥1.5 1.5 1 | 12.5 2.5 1.5 | 21.5 1.5 0.5 | 0.5൩ 

ܩ  = ൥60 55 62 | 5055 70 65 | 6060 50 55 | 40൩ 

ܦ  =  ሾ45 45 40ሿ 
ܥ  =  ሾ260 210 230ሿ 
 
The diagram describing the representation of this 

problem is shown in Figure 2B. Given a capacity of an 
amount of 100 and five days completion time, the 
problem can be mathematically formulated as 

 
Minimize 
 ሺݖଶ − ଵሻݖ = ଵݕ260− − ଶݕ210 − ଷݕ230 + +ଵଵݔ60 ଵଶݔ55 + ଵଷݔ62 + ଵଵݔ50̅  + +ଶଵݔ55 ଶଶݔ70 + ଶଷݔ65 + +ଷଵݔଶଵ+ 60ݔ60̅  ଷଶݔ50 + ଷଷݔ55 +  ଷଵݔ40̅ 
 
subject to ݔଵଵ + ଵଶݔ + ଵଷݔ + ଵଵݔ̅ = ଶଵݔ 100 + ଶଶݔ + ଶଷݔ + ଶଵݔ̅ = ଷଵݔ 100 + ଷଶݔ + ଷଷݔ + ଷଵݔ̅ = ଵݐ 100 + ଶݐ + ଷݐ ≤ ଵݕ 5 + ଶݕ + ଷݕ = ଵݕ 100 ≤ ଶݕ 45 ≤ ଷݕ 45 ≤ ଵݐ 40 ቀݔଵଵ1.5 + ଵଶ1.5ݔ + ଵଷݔ + ଵଵቁݔ̅ = 100 
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