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1. Introduction 

1.1  Background 

The governing equations of the theory of elasticity for 
three-dimensional (3D) problems in general consists of a 
system of fifteen equations in terms of fifteen unknowns 
which are: six Cauchy stress components, six strain 
components and three displacement components [1 – 2]. 

Mathematical or analytical solutions of the system of 
governing equations are difficult to obtain in closed form 
and this difficulty has motivated the development of 
modified ways of formulation and solutions of the problems 
of the theory of elasticity. There are three basic procedures 
of the formulation, namely: displacement-based 
formulation, stress-based formulation and hybrid/mixed 
formulation. In the displacement formulation, stresses and 
strains are eliminated from the governing field equations 
and the system of fifteen equations expressed in terms of 

the three Cartesian components of the displacement. This 
yields a system of three coupled partial differential 
equations in three unknowns. In the stress-based 
formulation, the system of field equations are re-expressed 
such that the strains and displacements are eliminated and 
the equations are expressed only in terms of the six Cauchy 
stress components. This yields a system of six coupled 
partial differential equations in six unknowns. In the mixed 
formulation, the system of governing equations are 
expressed in terms of some stress components and some 
displacement components as the primary unknowns. 

The general problem of elasticity is made simpler by 
further assumptions regarding the dimensional character of 
the problem. Such simplifications yield two-dimensional 
elasticity problems which can be further classified as plane 
stress or plane strain. 

The two-dimensional elasticity problems of rectangular 
plates subjected to non-uniformly distributed edge tensile 
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loads, which are the subject matter of this work, are 
frequently encountered in engineering applications. Such 
problems are encountered in the elastic analysis of aircraft 
panels, spacecraft panels and machine panels, where the 
panels are idealized as plates carrying in-plane forces. The 
accurate determination of the distribution of normal stresses 
and shear stresses in such structural panels modelled as 
plates is crucial in their elastic analysis and design. 

There is no mathematically exact solution so far for such 
problems of thin rectangular plates subjected to non-
uniformly distributed edge tensile loads due to the complex 
nature of such elasticity problems [3 – 5]. This has 
necessitated the development of approximate methods for 
solving such complex two-dimensional problems. 

Two-dimensional elasticity problems have been 
formulated and solved using stress functions in stress-based 
formulations. The stress function method/technique is based 
on the general concept of developing a mathematical 
representation for the normal and shear stress fields in the 
elastic body such that the differential equations of 
equilibrium are satisfied, and a single governing equation is 
obtained from the compatibility equation [4 – 8]. 

Stress potential functions are scalar or vector potential 
functions that are derived to satisfy all the differential 
equations of equilibrium and the compatibility equations; 
and from which the normal stresses and shear stress field 
could be derived. The normal stresses and shear stress fields 
are derivable from the stress functions in two-dimensional 
elastostatic problems by taking partial derivatives of the 
stress potential functions with respect to the space 
coordinate variables [9]. 

Airy stress potential functions are the most frequently 
encountered stress functions for two-dimensional elasticity 
problems of plane stress or plane strain. The merit of the 
Airy stress potential function use is that it simplifies the 
general formulation of 2D (plane) elasticity problem to a 
single governing stress compatibility equation expressed in 
terms of a single scalar function. This resulting governing 
equation can then be solved using the methods and 
procedures of applied mathematics to generate either 
analytical or numerical solutions. The two-dimensional 
elasticity problem then reduces to one of solving the fourth 
order biharmonic equation in terms of the Airy stress 
potential function and finding the normal stresses and shear 
stresses from the Airy stress function [10]. 

Yu-hua Yang and Xin-Wei Wang [3] obtained an 
approximate solution to the elastic stress analysis of thin 
rectangular plates under non-uniformly distributed edge 
loads by using the Ritz method. They used a stress-based 
formulation of the two-dimensional elasticity problem. 
They chose Chebyshev polynomials as the stress function 
which satisfy the boundary conditions, and then proceeded 
to apply the Ritz techniques in order to determine the 
unknown in-plane normal and shear stress fields in the 
rectangular plate. They studied the elastic stress distribution 
in plates under uniaxial and biaxial parabolically distributed 
edge loads with the aid of the mathematical computational 
software, Mathematica [3 – 5]. 

Their solutions for stress fields satisfy the normal 
stresses and shear stress boundary conditions on the four 
edges and agree with stress field solutions obtained using 

the numerical tools of finite element method and 
differential quadrature method [3 – 5]. 

Nwoji et al. [5] solved the two-dimensional elasticity 
problem of rectangular plates (2a 2b) subjected to 
parabolically distributed edge tensile loads applied 
uniaxially at the two faces x =  a. They adopted a stress-
based formulation of the elasticity problem and used the 
Airy stress potential function and energy principles to 
express the problem as a variational problem in terms of the 
unknown Airy stress function. The total potential energy 
functional was thus obtained in terms of the Airy stress 
potential function. Suitable Airy stress potential functions 
were chosen in terms of known coordinates shape functions 
that satisfied the boundary conditions and unknown 
parameters, and the total potential energy functional found 
for one-parameter and three-parameter Airy stress function. 
They then applied the variational Ritz method to obtain the 
minimized total potential energy functional with respect to 
the unknown parameters in the one- and three- parameter 
formulations. This yielded the unknown parameters, and 
hence the Airy stress potential functions for the one and 
three-parameter variational formulation. They obtained the 
corresponding normal and shear stress fields for the one-
parameter and three-parameter formulation from the 
corresponding Airy stress potential function. Their solutions 
also satisfied the stress boundary conditions at the four 
edges and agreed with the solutions from literature. 

Mama et al. [4] used the Bubnov – Galerkin method to 
solve the two-dimensional elasticity problem of rectangular 
plates (2a 2b) under uniaxial in-plane parabolically 
distributed edge loads at x =  a. They adopted the stress- 
based formulation, and used Airy stress potential function 
to express the 2D elasticity problem as a boundary value 
problem represented by the inhomogeneous biharmonic 
equation in terms of Airy stress function. They found Airy 
stress potential functions in terms of one and three unknown 
parameters and coordinate shape functions that satisfied 
both the domain equations and the boundary conditions 
along the edges. They then formulated and solved the 
Bubnov–Galerkin variational integral statements for both 
the one-parameter and the three-parameter Airy stress 
potential function. They thus determined the unknown 
parameters of the Airy stress functions and hence the Airy 
stress functions for the one and three-parameters cases 
studied. They further determined the normal stresses and 
shear stress fields for the two cases of one-parameter, and 
three-parameter Airy stress function considered. Their 
stress field solutions agreed with the results from previous 
studies. 

Considerable research work has been done on the theme 
of elasticity of plates, shells and beams. Some of them are 
reported by: Nejad and Hadi [11 – 12], Nejad et al [13 – 
16], Doneshmehr et al [17], Hadi et al [18 – 19], 
Dahsharihri, et al [20], Barati et al [21], Noroozi et al [22] 
and Zarezadeh, et al [23]. 

The novelty of the present work is the use of the least 
squares weighted residual methodology in a systematic and 
first principles manner to present and solve the elasticity 
problem of finding the stresses in a rectangular plate due to 
parabolic variations of loads on the two opposite edges. 

In this work, the least squares weighted residual method 
is used to solve the two-dimensional elasticity problem of 
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rectangular plates (2a   2b) subjected to in-plane uniaxial 
parabolically distributed edge loads applied at the edges x = 
 a, while the other edges y =  b are free of loads. 

1.2 Research aim and objectives 

The general aim of this work is to use the least squares 
weighted residual method to solve the two-dimensional 
elasticity problem of a rectangular plate (2a 2b) subjected 
to in-plane loads distributed parabolically on the two faces x 
=  a of the plate. The specific objectives are: 

(i) to formulate the problem in terms of stresses using the 
Beltrami – Michell stress compatibility equation. 

(ii) to apply Airy stress potential function to the Beltrami – 
Michell stress compatibility equation, and hence 
express the problem as a boundary value problem 
(BVP) in terms of Airy stress potential function. 

(iii) to formulate the least squares weighted residual 
integral statements for the governing boundary value 
problem. 

(iv) to solve the least squares weighted residual integral 
statements obtained for the cases of a one-parameter, 
and for a three-parameter method. 

(v) to obtain the normal stresses and shear stress fields 
from the Airy stress potential function found for the 
cases of one-parameter and three-parameter least 
squares weighted residual formulations. 

2. Theoretical background/framework 

2.1 Stress formulation of plane-stress elasticity problems 

The governing field equations for plane-stress elasticity 

problems are obtained from the stress-strain equations, the 

differential equations of equilibrium and the compatibility 

equation. The stress-strain relations for homogeneous, 

isotropic materials are given as: 

1
( )xx xx yy

E
        (1) 

1
( )yy yy xx

E
        (2) 

2(1 )xy xy
xy

G E

   
       (3) 

where xx, yy are normal stresses as xy is the shear 

stress, xx, yy are normal strains, xy is the shear strain. G is 
the shear modulus which is related to the Young’s modulus 

of elasticity denoted by E, and the Poisson’s ratio denoted 

by  as: 

2(1 )

E
G 

 
     (4) 

The differential equations of static equilibrium are given 

by: 

0
xyxx

xf
x y


  

 
    (5) 

0
xy yy

yf
x y

 
  

 
    (6) 

0zf        (7) 

where fx, fy and fz are the body force components in the x, 

y and z coordinate directions respectively. 

The compatibility equation expressed in terms of strain is 

2 22

2 2

yy xyxx

x yy x

    
 

  
    (8) 

The stress compatibility equation is obtained by 

substitution of the stress-strain relations in the strain 
compatibility equation to obtain: 

2 ( ) (1 )
yx

xx yy

ff

x y

 
         

  
  (9) 

2.2 Beltrami – Michell stress compatibility equation 

The Beltrami – Michell stress compatibility equation for 

two-dimensional (2D) problems of elasticity is given by the 

partial differential equation: 

2
1( )

yx
xx yy

ff

x y

 
       

  
   (10) 

where fx and fy are body force components in the x and y 

coordinate directions respectively, and 1 can be given, for 
plane stress, by: 

1 1         (11) 

 is the Poisson’s ratio. 

2 is the two-dimensional Laplacian for 2D problems in the 
xy coordinate plane. 

The research problem considered is given by the 2D 

elasticity problem of a rectangular plate of dimensions 

2 2a b shown in Figure 1. The plate occupies the domain  

;a x a   b y b    on the xy plane. The origin of the 

2D Cartesian coordinate system is at the centre of the plate 

and uniaxial tensile load is distributed on the two faces 

x a   according to the parabolic function: 

2

2
( , ) 1xx

y
x a y q

b

 
     

 
   (12) 

where ( , 0)xx x a y q        (13) 

( , ) 0xx x a y b          (14) 
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Figure 1. Rectangular plate of dimensions 2a 2b subject to in-plane 

parabolic distribution of edge loads at x =  a 

In the absence of the body force components, 

0,xf  0yf  and the partial differential equation 

governing the stress compatibility equation simplifies to 

become: 

2 ( ) 0xx yy         (15) 

2.3 Airy stress potential function formulation 

The Airy stress potential function formulation of 2D 

elasticity problems are given by the following equations: 

2

2
( , )xx x y

y

 
 


     (16) 

2

2
( , )yy x y

x

 
 


     (17) 

2

( , )xy x y
x y

 
  

 
    (18) 

where ( , )x y  is the Airy stress potential 

function, ( , )xx x y  and ( , )yy x y  are normal stress fields, 

and ( , )xy x y  is the shear stress field. 

The governing equations of Beltrami–Michell stress 

compatibility equation becomes in terms of the Airy stress 

potential function ( , ) :x y  

2 2 2 2 2 2

2 2 2 2 2 2x y y x y x

          
                 

 

 
2 2 2

2 2 2
1 0

y
q

x y b

    
          

  (19) 

Simplifying, 

or, 
2 2 4

2 2

2 2
( , ) 0

q q
x y

b b
           (20) 

where 4 is the biharmonic partial differential operator: 

2 2 2 2
4

2 2 2 2x y x y

     
            

  

 
4 4 4

2 2

4 2 2 4
2

x x y y

   
           

 (21) 

3.  Methodology 

3.1  The least squares weighted residual method 

The weighted residual method seeks to obtain 

approximate solutions to partial or ordinary differential 
equations of the general form: 

( , ) ( , ) 0L x y f x y       (22) 

in the domain D, where ( , )x y is the unknown dependent 

variable and f(x,y) is the known function, L represents a 
linear differential operator involving spatial derivatives of 

, which describes the exact form of the differential 
equation. 

An approximate solution to  is assumed as ( , )x y  such 

that ( , )x y satisfies the boundary conditions imposed on 

the solution. The least squares weighted residual method 

seeks to obtain a solution to the boundary value problem 

such that the integral 

2( ( , ) ( , ))

D

I L x y f x y dxdy      (23) 

is minimized on the domain D with respect to the unknown 

parameters (ai) of the trial function. 

This yields the least squares weighted residual integral 

given for  

1

( , ) ( , )
n

i i

i

x y a x y


       (24) 

as: 

2

1

( , ) ( , ) 0
n

i i
i iD

L a x y f x y dxdy
a 

 
      

   (25) 

3.2 Application of the Least Squares Weighted Residual 

Method to A Rectangular Plate under Uniaxial 

Parabolic In-Plane Load 

For the general 2D elasticity problem of a rectangular 

plate under uniaxial parabolic in-plane load shown in 

Figure 1, if the approximate solution for the Airy stress 

potential function is denoted by ( , )x y  the least squares 

weighted residual function F to be minimized is given by: 

2
4

2

2
( , )

xyD

q
F x y dxdy

b

 
    

 
    (26) 

where Dxy is the plate domain on the xy coordinate plane. 

Let the approximate solution ( , )x y  be expressed in 

terms of a linear combination of basis (shape) functions that 

are chosen to apriori satisfy all the boundary conditions of 

the plate, and in terms of n number of unknown generalized 
parameters ci, where i = 1, 2, 3, …, n as follows: 

0

1

( , ) ( , ) ( , )
n

i i

i

x y x y c x y


        (27) 

The least squares weighted residual integral statements 

become the system of n equations: 

2
4

2
1

2
( , ) 0

xyD

q
x y dxdy

c b

  
    

  
   (28) 

2
4

2
2

2
( , ) 0

xyD

q
x y dxdy

c b

  
    

  
   (29) 
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2
4

2

2
( , ) 0

xy
n D

q
x y dxdy

c b

  
    

  
   (30) 

Simplifying, we have: 

 4
1 1 1 2 2 2

2
( ... ) 0

xy

n n

D

q
c c c dxdy

b

 
          

 


             …(31) 

 4
2 1 1 2 2 2

2
( ... ) 0

xy

n n

D

q
c c c dxdy

b

 
          

 


             …(32) 

 4
1 1 2 2 2

2
( ... ) 0

xy

n n n

D

q
c c c dxdy

b

 
          

 


            …(33) 

Expanding, we obtain: 

4 4
1 1 1 2 1 2 . . .

xy xyD D

c dxdy c dxdy           

 4
1 12

2

xy xy

n n

D D

q
c dxdy dxdy

b
       (34) 

4 4
1 2 1 2 2 2 . . .

xy xyD D

c dxdy c dxdy         

 4
2 22

2

xy xy

n n

D D

q
c dxdy dxdy

b
       (35) 

4 4
1 1 2 2 . . .

xy xy

n n

D D

c dxdy c dxdy           

 4

2

2

xy xy

n n n n

D D

q
c dxdy dxdy

b
       (36) 

The equations are expressed as: 

1 11 2 12 1 1... n nc k c k c k F     

1 21 2 22 2 2... n nc k c k c k F       (37) 

 

1 1 2 2 ...n n n nn nc k c k c k F      

where 

4
1( , ) ( , )

xy

ij j

D

k x y x y dxdy       (38) 

and 
4

11 1 1

xyD

k dxdy       (39) 

4
1 1

xy

n n

D

k dxdy        (40) 

1 12

2
( , )

xyD

q
F x y dxdy

b
  12

2

xyD

q
dxdy

b
    (41) 

2 22

2
( , )

xyD

q
F x y dxdy

b
  22

2

xyD

q
dxdy

b
    (42) 

2

2
( , )

xy

n n

D

q
F x y dxdy

b
  2

2
( , )

xy

n

D

q
x y dxdy

b
   (43) 

4.  Results 

4.1 Shape functions 

The Beltrami – Michell stress compatibility equation in 

terms of Airy’s stress potential function for the 2D elasticity 

problem of a rectangular plate (2 2 )a b  subject to uniaxial 

in-plane parabolic distribution of tensile load in the xx 
direction, given by Equation (12) is written as Equation 

(20) on the two-dimensional domain Dxy expressed as 

,x a y b (or ,a x a   ).b y b    

The boundary conditions are: 

( , ) 0xy x a y      

( , ) 0xy x y b         

2

2
( , ) 1xx

y
x a y q

b

 
     

 
   (44) 

( , ) 0yy x y b       

( , ) 0xx x y b         

( , ) 0yy x a y      

Using the Airy’s stress potential functions the boundary 

conditions can be expressed as: 

2

( , )

0

x a y
x y



 


 
  

on x a  for any y. 

2

( , )

0

x y b
x y



 


 
    (45) 

on y b  for any x. 

2

2
( , )

0

x y b
y



 



  

on y b   for any x. 

2

2
( , )

0
x a yx 

 



  

on x a  for any y. 

Shape functions that are biharmonic functions and thus 

qualify as suitable Airy stress potential functions, and also 

satisfy the boundary conditions equations are given for 

rectangular plates 2 2a b   as follows: 
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2 2 2 2 2 2
1( , ) ( ) ( )x y x a y b       

2 2 2 2 2 2 2 2
2 1( , ) ( ) ( ) ( , )x y x x a y b x x y       

2 2 2 2 2 2 2 2
3 1( , ) ( ) ( ) ( , )x y y y b x a y x y       (46) 

4 2 2 2 2 2 2 4
4 1( , ) ( ) ( ) ( , )x y x x a y b x x y       

4 2 2 2 2 2 2 4
5 1( , ) ( ) ( ) ( , )x y y y b x a y x y       

4.2 Results for one parameter least squares weighted 
residual method 

For a one-parameter least squares weighted residual 

method, the unknown Airy stress function approximated 

assuming one unknown parameter is given by: 

0 1 1( , ) ( , ) ( , )x y x y c x y       

2 2 2 2 2 2
0 1( , ) ( ) ( )x y c x a y b       (47) 

2 2 2 2 2 2
1( , ) ( ) ( )x y x a y b     

The least squares weighted residual integral statement 

becomes: 

2 2 2 2 2 2 4 2 2 2 2 2
1 ( ) ( ) ( )( )

b a

b a

c x a y b x a y b dxdy

 

      

 2 2 2 2 2 2

2

2
( ) ( )

b a

b a

q
x a y b dxdy

b 

     (48) 

4
1 1 1( , ) ( ( , ))

b a

b a

c x y x y dxdy

 

     12

2
( , )

b a

b a

q
x y dxdy

b 

 

     …(49) 

Hence, 

2 2 2 2 2 2 2
1 24( ) 32(3 )(3 )

b a

b a

c y b x a y b

 

     
   

 
2 2 2 2 2 2 2 2 224( ) ( ) ( )x a y b x a dxdy  



 2 2 2 2 2 2

2

2
( ) ( )

b a

b a

q
x a y b dxdy

b  

     (50) 

Hence, 

2 2 4 2 2 2
1 24( ) ( )

b a

b a

c y b x a

 

      

2 2 2 2 2 2 2 2 2 232(3 )( ) (3 )( )x a x a y b y b      

 2 2 4 2 2 224( ) ( )x a y b dxdy    

 2 2 2 2 2 2

2

2
( ) ( )

b a

b a

q
x a y b dxdy

b  

     (51) 

9 5 7 7
1 11 1

256 16
24 11.8886167

315 15
c k c b a a b

  
    

 
 

 9 5256 16
24

315 15
a b

 
 

  

5 5
12

2 16 16

15 15

q
a b F

b
   (52) 

Solving, 

5 3

1
9 5 9 5 7 7

512

225

98304
( ) 11.8886167

4725

qa b

c

b a a b a b


 

  
 

1

11

F

k


     …(53) 

Simplifying, 

6 2

1
4 264 256

(1 )
7 49

qa
c

 


   

   (54) 

where 
b

a
       (55) 

 is the plate aspect ratio 

6
1 1( )c F qa      (56) 

1
4 2 2

1

64 256
( ) (1 )

7 49
F


 

       
 

  (57) 

Then the solution for  is: 

0 1( , ) ( , ) ( , )x y x y x y      

where 0 ( , )x y  is the Airy stress potential function 

calculated to satisfy the boundary conditions on 

( , )xx x a y     and 1( , )x y  is the Airy stress potential 

function that is made to satisfy the domain governing partial 

differential equation. Thus, for a one parameter solution, 

4
1 2

2
( , ) 0

q
x y

b
      

Hence, 

22
0

2 2
( , ) 1xx

y
x a y q

b y

   
      

 
  (58) 

Integrating with respect to y, 

2 4

0 2
( , )

2 12

y y
x y q

b

 
   

 
 

2 2

2
1

2 6

qy y

b

 
  

 
  (59) 

Hence, 

2 2

2
( , ) 1

2 6

qy y
x y

b

 
    

 

6
1 1( ) ( , )F qa x y   (60) 

2 2

2
( , ) 1

2 6

qy y
x y

b

 
    

 

6 2 2 2 2 2 2
1( ) ( ) ( )F qa x a y b  

                …(61) 
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The Airy’s stress potential function for a one-parameter 

solution by the least squares weighted residual method is 

thus given by Equation (61). 

4.3 One-parameter least squares weighted residual solution 
for normal stresses and shear stress fields 

The normal stresses ( , ),xx x y ( , )yy x y    and shear 

stress ( , )xy x y  fields are found for a one-parameter least 

squares weighted residual method from the Airy’s stress 

potential function as follows: 

 
2 2

6 2 2 2 2 2 2
12 2
( ) ( ) ( )yy F qa x a y b

x x

  
     

 
2

6 2 2 2 2 2 2
1 2
( ) ( ) ( )

d
F qa y b x a

dx

      (62) 

6 2 2 2 2 2
1( ) ( ) (12 4 )yy F qa y b x a       (63) 

242 2

1 2 2

3
4 ( ) 1 1yy

x b y
F q

aa b

    
        

    
  (64) 

2 42

1 2
( 0, ) 4 ( ) 1yy

y b
x y F q

ab

   
       

  
 

 

2
2

4
1 2

4 ( ) 1
y

F q
b

 
     

 
   (65) 

42

1 2

3
( , 0) 4 ( ) 1yy

x b
x y F q

aa

   
       

  
 

 
2

4
1 2

3
4 ( ) 1

x
F q

a

 
     

 
   (66) 

4
1( 0, 0) 4 ( )yy x y F q          (67) 

2 2 2 2

2 2 2
( , ) 1

2 6
xx

qy y
x y

y y b

     
         

 

6 2 2 2 2 2 2
1( ) ( ) ( )F qa x a y b 
   


  (68) 

2

2
1xx

y
q

b

 
    

 

2 2 2 2
6 2 2 2

1 2

( )
( ) ( )

d y b
F qa x a

dy

 
 

             …(69) 

2

2
1xx

y
q

b

 
    

 

6 2 2 2 2 2
14 ( ) ( ) (3 )F qa x a y b   

            …(70) 

2

2
( 0, ) 1xx

y
x y q

b

 
     

 

6 4 2 2
14 ( ) ( )(3 )F qa a y b 

           …(71) 

6 2 2 2 2
1( , 0) 4 ( ) ( )xx x q F qa b x a       (72) 

2
1(0, 0) 4 ( )xx q F q        (73) 

2 2 2 2

2
1

2 6
xy

qy y

x y x y b

    
        
     

 6 2 2 2 2 2 2
1( ) ( ) ( )F qa x a y b 
   


 (74) 

6 3 2 3 2
116 ( ) ( )( )xy F qa x a x y b y        (75) 

( 0, 0) 0xy x y       

( 0, ) 0xy x y     

( , 0) 0xy x y     

( , ) 0xy x a y        (76) 

( , ) 0xy x a y      

( , ) 0xy x y b      

( , ) 0xy x y b     

For square plates, the one-parameter least squares 

weighted residual solutions for the stress fields become: 

since 1,  ,a b  

1
2 6

1

64 256
(1 1) (1)

7 49
c qa


  

    
 

649

1152
qa  (77) 

1 1

49
( ) ( 1)

1152
F F         (78) 

2

2
1xx

y
q

a

 
    

 

6 2 2 2 2 249
( ) (3 )

288
qa x a y a    (79) 

2

2
1xx

y
q

a

 
    

 

2
2 2

2 2

49 3
1 1

288

x y
q

a a

   
    

   
 (80) 

2

2
( 0, ) 1xx

y
x y q

a

 
     

 

2

2

49 3
1

288

y
q

a

 
 

 
 (81) 

2
2

2

49
( , 0) 1

288
xx

x
x y q q

a

 
     

 
  (82) 

2

2
( , ) 1xx

y
x a y q

a

 
    

 
   (83) 

2

2
( , ) 1xx

y
x a y q

a

 
     

 
   (84) 

2
2

2

49
( , ) (1 1) 1 ( 2)

288
xx

x
x y a q q

a

 
       

 
 

  

2
2

2

49
0 1

144

x
q

a

 
   

 
  (85) 

2
2

2

49
( , ) 1

144
xx

x
x y a q

a

 
     

 
   (86) 
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2
2 2

4
1 2 2

3
( , ) 4 ( ) 1 1yy

x y
x y F q

a a

   
         

   
 (87) 

2
2 2

2 2

49 3
( , ) 1 1

288
yy

x y
x y q

a a

  
      

  
  (88) 

49
( 0, 0)

288
yy x y q     0.17013889q   (89) 

2
2

2

49
( 0, ) 1

288
yy

q y
x y

a

 
     

 
   (90) 

2

2

49 3
( , 0) 1

288
yy

q x
x y

a

 
     

 
   (91) 

2
2

2

49
( , 0) 1

288
yy

y
x a y q

a

 
      

 
  (92) 

49
( , 0) 0.34028

144
yy x a y q q        (93) 

6 2 2 2 2
1( , ) 16 ( ) ( )( )xy x y F qa xy x a y a     

6 2 2 2 249
16 ( )( )

1152
xyqa xy x a y a 

    
 

  (94) 

2 2
2

2 2

49
( , ) 1 1

72
xy

x y
x y xyqa

a a


  

     
  

  (95) 

( 0, 0) 0xy x y      

( 0, ) 0xy x y    

( , ) 0xy x a y        (96) 

( , ) 0xy x y a     

4.4 Results for three-parameter least squares weighted 

residual method 

The approximate solution for the Airy stress function in 

a three-parameter least squares weighted residual method is 

given by: 

2 2 2 2 2 2 2 2 2 2 2 2 2
3 1 2( , ) ( ) ( ) ( ) ( )x y c x a y b c x x a y b       

  2 2 2 2 2 2 2
3 ( ) ( )c y y b x a    (97) 

or, 3 1 1( , ) ( , )x y c x y    2 2 3 3( , ) ( , )c x y c x y    (98) 

where 1, 2 and 3 are given in Equation (46) and 

1( , ),x y 2( , )x y  and 3( , )x y  are the shape functions of 

the three parameter least squares weighted residual method. 

The least squares weighted residual statements are 

obtained as the system of three equations in three 

unknowns: 

2

4
3 2

2
( , ) 0

b a

i b a

q
x y dxdy

c b 

  
    

  
    (99) 

1, 2, 3i   

Thus, 

2
4

3 2
1

2
( , ) 0

b a

b a

q
x y dxdy

c b 

  
    

  
    (100) 

2
4

3 2
2

2
( , ) 0

b a

b a

q
x y dxdy

c b 

  
    

  
    (101) 

2
4

3 2
3

2
( , ) 0

b a

b a

q
x y dxdy

c b 

  
    

  
    (102) 

Hence, 

 4
1 1 1 2 2 3 3( )

b a

b a

c c c

 

         2

2
0

q
dxdy

b





 (103) 

 4
2 1 1 2 2 3 3( )

b a

b a

c c c

 

         2

2
0

q
dxdy

b





 (104) 

 4
3 1 1 2 2 3 3( )

b a

b a

c c c

 

         2

2
0

q
dxdy

b





 (105) 

Alternatively, 

4 4
1 1 1 2 1 2

b a b a

b a b a

c dxdy c dxdy

   

            

 4
3 1 3 12

2
b a b a

b a b a

q
c dxdy dxdy

b   

         (106) 

4 4
1 2 1 2 2 2

b a b a

b a b a

c dxdy c dxdy

   

             

 4
3 2 3 22

2
b a b a

b a b a

q
c dxdy dxdy

b   

         (107) 

4 4
1 3 1 2 3 2

b a b a

b a b a

c dxdy c dxdy

   

            

 4
3 3 3 32

2
b a b a

b a b a

q
c dxdy dxdy

b   

         (108) 

In matrix form, 

11 12 13 1 1

21 22 23 2 2

31 32 33 33 3

k k k c F

k k k c F

k k k c F

    
    

    
    
    

   (109) 

where 4
b a

mn m n

b a

k dxdy

 

        (110) 

Evaluation of the integrals and simplification yields the 

system of three equations: 
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2 4 4
2

1 22 4 4

64 256 64 64 64

7 49 7 77 49

b b b
c c a

a a a

   
       

   
 

 
2 6

2
3 2 6 4 2

64 64

49 77

b b q
c a

a a a b

 
  

 
  (111) 

4 2 4
2

1 24 2 4

64 64 192 256 192

11 7 143 77 7

b b b
c c a

a a a

   
       

   
 

 
2 6

2
3 2 6 4 2

64 64

77 77

b b q
c a

a a a b

 
  

 
  (112) 

4 4
2

1 24 4

64 64 64 64

7 7711 77

b b
c c a

a a

   
      

   
  

 
2 4 6

2
3 2 4 6 4 2

192 256 192

7 77 146

b b b q
c a

a a a a b

 
   

 
 (113) 

Let 
b

a
   

Then the system of equations becomes: 

4
4 2 2

1 2

64 256 64 1
(1 )

7 49 7 11 7
c c a

  
        

  
 

 
2 6

2
3 4 2

64

7 7 11

q
c a

a b

  
  

 
  (114) 

4
2 2 4

1 2

1 192 256 192
64

11 7 143 77 7
c c a

   
         

   
 

 
2 2 6

3 4 2

64
( )

77

q
c a

a b
      (115) 

4
2 4

1 2

1 64
64 (1 )

7 11 77
c c a

 
     

 
 

 
2 2 4 6

3 4 2

192 256 192

7 77 143

q
c a

a b

 
      

 
 (116) 

For square plates, a = b and  = 1, and we obtain: 

2 2
1 2 323.5102 2.1373 2.1373c c a c a 

6

q

a
  (117) 

2 2
1 2 314.9610 32.0959 1.6623c c a c a 

6

q

a
  (118) 

2 2
1 2 314.9610 1.6623 32.0505c c a c a 

6

q

a
  (119) 

In matrix form, 

2 2

1
2 2

2

2 2
3

23.5102 2.1373 2.1373

14.9610 32.0959 1.6623

14.9610 1.6623 32.0505

a a c

a a c

ca a

 
  
  
      

6

6

6

qa

qa

qa







 
 
 
 
 
 

              …(120) 

This is solved by Cramer’s rule to obtain: 

1
1

0

c





     (121) 

2
2

0

c





     (122) 

3
3

0

c





     (123) 

where, 

6 2 2

6 2 2
1

6 2 2

2.1373 2.1373

32.0959 1.6623

1.6623 32.0505

qa a a

qa a a

qa a a







    (124) 

6 2

6 2
2

6 2

23.5102 2.1373

14.9610 1.6623

14.9610 32.0505

qa a

qa a

qa a







    (125) 

2 6

2 6
3

2 6

23.5102 2.1373

14.9610 32.0959

14.9610 1.6623

a qa

a qa

a qa







    (126) 

2 2

2 2
0

2 2

23.5102 2.1373 2.1373

14.9610 32.0959 1.6623

14.9610 1.6623 32.0959

a a

a a

a a

    (127) 

Then, 

6
1 0.04040c qa     (128) 

8
2 3 0.01174c c qa      (129) 

The Airy stress potential function for three-parameter 

least squares weighted residual solution for a square plate 

under the given parabolic in-plane load distribution is given 

by: 

2 2
6 2 2 2 2 2 2

2
( , ) 1 0.04040 ( ) ( )

2 6

qy y
x y qa x a y b

b


 

       
 

         8 20.01174 (qa x  2 2 2 2 2 2 2)( ) ( )y x a y b     (130) 

4.5 Three-Parameter Least Squares Weighted Residual 
Solution for Normal Stresses and Shear Stress Fields 

The normal stresses and shear stress fields for a three- 

parameter least squares weighted residual method are 

obtained by substitution of Equation (130) for the Airy 

stress potential function into Equations (16) – (18) to 

obtain: 

2 2 2 2
6 2

2 2 2
0.04040 (1

2 6
xx

qy y
qa x

y y b

     
      

    

 

 
2 2 2 2 2 8 2) ( ) 0.01174 (a y b qa x    
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 2 2 2 2 2 2 2)( ) ( )y x a y b    (131) 

2 2 2

2 2
1

2 6
xx

qy y

y b

  
      

   
  

  
2

6 2 2 2 2 2 2

2
0.04040 ( ) ( )

d
qa x a y b

dy

     

  
2

8 2 2 2 2 2 2 2 2

2
0.01174 ( ) ( )( )

d
qa x a x y y b

dy

     (132) 

2
6 2

2
1 0.1616 (xx

y
q qa x

b


 

     
 

 

2 2 2 2 8 2 2 2 2) (3 ) 0.01174 ( ) (2a y b qa x a x     

2 2 4 2 2 44 30 24 2 )b x y b y b      (133) 

2
2 2 2

2
( 0, ) 1 0.1616 (3 )xx

y
x y q qa y b

b


 

       
 

 

 4 4 2 2 40.01174 (30 24 2 )qa y b y b      (134) 

2 2 2
2 2

2 2

3
1 0.1616xx

y y b
q qa b

b b


   

       
     

 

4 2 2 4
4 4

4

30 24 2
0.01174

y b y b
qa b

b


  
 
 

 (135) 

2 2
2

2 2

3
1 0.1616 1xx

y y
q q

b b

   
         

   
  

 
4 2

4

4 2
0.01174 30 24 2

y y
q

b b

 
   

 
  (136) 

4 2(0, 0) (1 0.02348 0.1616 )xx q        (137) 

2 2 2 2

2 2 2
1

2 6
yy

qy y

x x b

     
      

    

 

6 2 2 2 2 2 20.04040 ( ) ( )qa x a y b      

8 2 2 2 2 2 2 2 20.01174 ( )( ) ( )qa x y x a y b     (138) 

2
6 2 2 2 2 2 2

2
0.04040 ( ) ( )yy

d
qa y b x a

dx

    
 

  
2

8 2 2 2 2 2 2 2 2

2
0.01174 ( ) ( )( )

d
qa y b x y x a

dx

     (139)  

6 2 2 2 2 20.04040 ( ) (12 4 )yy qa y b x a      

 
8 2 2 2 40.01174 ( ) (30qa y b x    

 
2 2 2 2 4 2 212 24 2 4 )x y a x a a y     (140)  

4 2 2 2(0, ) 0.13812 ( )yy y qa y b      (141) 

4 4(0, 0) 0.13812yy qa b    

4
40.13812 0.13812

b
q q

a

 
     

 
  (142) 

2 2 2 2

2
1

2 6
xy

qy y

x y x y b

    
             

 

6 2 2 2 2 2 20.04040 ( ) ( )qa x a y b     

8 2 2 2 2 2 2 2 20.01174 ( )( ) ( )qa x y x a y b     (143) 

6 3 2 3 20.04040 (4 4 )(4 4 )xy qa x a x y b y       

8 5 2 3 4 3 20.01174 (6 8 2 )(4 4 )qa x a x a x y b y      

5 2 3 4 3 2(6 8 2 )(4 4 )y b y b y x a x     (144) 

( 0, ) 0xy x y      

( , 0) 0xy x y        (145) 

(0, 0) 0xy    

The results obtained for the stress fields for one- 

parameter and three-parameter least squares weighted 
residual methods for square and rectangular plates for the x 

= 0 plane and at the centre (x = 0, y = 0) are given in tabular 

form in Tables 1, 2, 3, 4 and 5. 

5. Discussion 

The least squares weighted residual method has been 

successfully used in this work to solve the two-dimensional 

elasticity problem of a rectangular plate of in-plane 

dimensions 2 2a b  subjected to a parabolic distribution of 

tensile loads on the two edges x a   where the origin of 

the Cartesian coordinates is the plate centre. The parabolic 

load distribution on the edges x a   was given as 

Equation (12) while the other edges were considered free of 

normal and shear stresses as given by the stress boundary 

conditions represented by Equations (44). Two-dimensional 

theory of elasticity was used to express the stress – strain 

relations, differential equations of equilibrium and the strain 

compatibility equation in terms of stresses as the primary 

unknowns and obtain the stress compatibility equations for 
plane stress and for plane strain conditions given as 

Equation (9). Airy stress potential functions were then used 

to obtain the governing stress compatibility equation in 

terms of the Airy stress function as a non-homogeneous 

biharmonic partial differential equation given as Equation 

(20). The stress boundary conditions on the four edges 

x a  , x b   were expressed in terms of Airy stress 

potential functions as Equation (45). Shape functions for the 

unknown Airy stress function in the inhomogeneous 

biharmonic partial differential equation were chosen as 

Equation (46) to be the biharmonic functions of the two 

dimensional space variables x and y and to satisfy the 

boundary conditions. The Airy stress potential functions 

were constructed as linear combinations of the shape 
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functions in a one-parameter and a three-parameter 

technique as Equations (47) and (97). For a one-parameter 

Airy stress potential function, the least squares weighted 

residual integral statement was formulated as Equation (48). 

The unknown parameter of the Airy stress function was 

obtained as Equation (54), hence the Airy stress function 

for a one-parameter solution was obtained as Equation (61). 

The resulting normal stresses and shear stress fields were 

obtained from the one-parameter Airy stress function given 

in Equation (61) and Equations (16 – 18) to obtain the 

normal stress fields as Equations (64) and (70) and the 
shear stress field as Equation (75). The variation of the 

normal stress yy on the cross-section x = 0, was obtained as 

Equation (65). The value of the normal stress yy at the 
plate centre (0,0) was obtained as Equation (67). The 

variation of the normal stress xx on the cross-section x =0 

was obtained as Equation (71) while the variation of xx on 
the y = 0 plane (y = 0) was obtained as Equation (72). The 

magnitude of xx at the plate centre was obtained as 
Equation (73). The shear stresses were found to vanish at 

the centre and at all the edges of the plate as given in 

Equations (75) and (76). The shear stresses were similarly 

found to vanish at the x = 0 and y = 0 planes of the plates. 

The normal stresses and shear stress fields were found for 

square plates as Equations (80), (88) and (95). The normal 

stress xx at the x = 0 plane was found as Equation (81) and 

xx at y = 0 plane was found as Equation (82). 

The normal stress xx at x a   was obtained as 

Equations (83) and (84); and this agrees with the 

loading/boundary condition of the problem solved using the 

least squares weighted residual method. The normal stress 

yy was obtained as Equation (88) and it was found to be 
given at the plate centre by Equation (89). The normal 

stress yy at the x = 0 plane was obtained as Equation (90) 

and on the y = 0 plane yy was obtained as Equation (88). 
The shear stresses for a square plate at the centre and the 

edges are found to vanish. 

The 2D elasticity problem was similarly solved using a 

three-parameter Airy stress potential function given by 

Equation (97). The least squares weighted residual integral 

statements were formulated as the system of three equations 

given by Equations (100 – 102) or alternatively by 
Equations (106 – 108). Evaluation of the multiple integrals 

yielded the three-parameter least squares residual integral 

statements as the system of algebraic equations given by 

Equations (111 – 113) or in simplified form by Equations 

(114 – 116). For square plates, the system of algebraic 

equations simplified to Equations (117 – 119) which was 

presented in matrix form as Equation (120). Equation (120) 

was solved by Cramer’s rule to obtain the three unknown 

parameters, as Equations (128) and (129), and hence the 

three-parameter Airy stress potential function as Equation 

(130). The corresponding normal stresses were found from 

Equations (16 – 18) and (120) as Equations (133), (140) and 

the shear stress as Equation (144). The normal stress xx 
was found at the plate centre as Equation (137). 

The normal stress yy was found at the x = 0 plane as 
Equation (141) and at the centre of the plate as Equation 

(142). The shear stress was found to vanish at the x = 0, and 

y = 0 planes, and at the plate centre. The shear stress was 

found to also vanish at all the plate edges. 

The solutions obtained for the stress fields for the one- 

parameter and the three-parameter Airy stress potential 

functions are presented in tables. Table 1 shows the one- 

parameter least squares weighted residual solution for the 

variation of xx on the x = 0 plane. Table 2 shows the three-
parameter least squares weighted residual solution of the 

same problem for the variation of xx on the x = 0 plane of 
the rectangular plate under parabolically varying edge load 

on .x a   The three-parameter least squares weighted 

residual solution for xxat x = 0 for the case of a rectangular 
plate with a/b = 2 is presented in Table 3. The table shows 

that as the plate aspect ratio increases the normal stress 

distribution xx on the x = 0 plane becomes more uniform. 

Table 3 shows an average value of xx at x = 0 to be about 

(2/3) .q  Table 4 shows the three-parameter least squares 

weighted residual solution for yy at the plate centre for 

various values of the plate aspect ratio / .b a   Table 5 

shows the three-parameter least squares weighted residual 

solution for xx at the plate centre for various values of the 
plate aspect ratio. 

Table 1. One-parameter least squares weighted residual solution 

for the variation of normal stress xx on the x = 0 plane for square 

plates under parabolic load 

2

2
1xx

y
q

b

 
   

 
  on x a   for 

different values of y/a 

y/a 
2 2

2 2

49 3
( 0, ) 1 1

288
xx

y q y
x y q

a a

   
        

   
 ( 0, )/xx x y q   

–1.0 0.3404q 0.3404 
–0.8 0. 5166q 0.5166 
–0.6 0.6536q 0.6536 
–0.4 0.7515q 0.7515 
–0.2 0.8102q 0.8102 

0 0.8298q 0.8298 
0.2 0.8102q 0.8102 
0.4 0.7515q 0.7515 

0.6 0.6536q 0.6536 
0.8 0. 5166q 0.5166 
1.0 0.3404q 0.3404 

 
Table 2. Three-parameter least squares weighted residual solution 

for normal stress xx distribution on the x = 0 plane for square 

plates under parabolic load 

2

2
1xx

y
q

b

 
   

 
  on x a   for 

different values of y/a 

y/a ( 0, )xx x y   ( 0, )/xx x y q   

–1.0 0.4172q 0.4172 

–0.8 0. 4961q 0.4961 

–0.6 0.6206q 0.6206 

–0.4 0.7434q 0.7434 

–0.2 0.8306q 0.8306 
0 0.8619q 0.8619 

0.2 0.8306q 0.8306 

0.4 0.7434q 0.7434 

0.6 0.6206q 0.6206 

0.8 0. 4961q 0.4961 

1.0 0.4172q 0.4172 
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Table 3. Three-parameter least squares weighted residual solution 

for normal stress xx distribution on the x = 0 plane for a 

rectangular plate a/b = 2 for the parabolic load 

2

2
1xx

y
q

b

 
   

 
  

on x a    for different values of y/b 

y/b ( 0, )xx x y   ( 0, )/xx x y q   

–1.0 0.675q 0.675 

–0.8 0. 649q 0. 649 

–0.6 0.653q 0.653 

–0.4 0.669q 0.669 

–0.2 0.684q 0.684 

0 0.690q 0.690 

0.2 0.684q 0.684 

0.4 0.669q 0.669 

0.6 0.653q 0.653 

0.8 0. 649q 0. 649 

1.0 0.675q 0.675 

 
 

 
Table 4. Three-parameter least squares weighted residual solution 

for normal stress (0, 0)yy   for rectangular plates under parabolic 

load 

2

2
1xx

y
q

b

 
   

 
  on x a   for different values of the 

plate aspect ratio b/a 

/b a   (0, 0)yy  (0, 0)/yy q  

0.25 -5.395  10-4q -5.395  10-4 

0.50 -8.6325  10-3q -8.6325  10-3 
0.75 -0.0437q -0.0437 

1.0 -0.13812q -0.13812 

1.25 -0.3372q -0.3372 

1.50 -0.6992q -0.6992 

1.75 -1.2954q -1.2954 

2 -2.20992q -2.20992 
3 -11.18772q -11.18772 

 

 
Table 5. Three-parameter least squares weighted residual solution 

for xx at the centre of a rectangular plate under parabolic load 

2

2
1xx

y
q

b

 
   

 
 on x a   for different values of the plate 

aspect ratio b/a 

/b a   (0, 0)xx  (0, 0)/xx q  

0.25 0.98999q 0.98999 

0.50 0.9610675q 0.9610675 
1.0 0.86188q 0.86188 

1.50 0.7552675q 0.7552675 

2 0.72928q 0.72928 

3 1.44748q 1.44748 

5 11.635q 11.635 

A graphical comparison of the one-parameter and three-

parameter least squares weighted residual solutions for the 

variation of non-dimensional normal stress (xx/q) on the x 

= 0 plane for a square plate 2 2a b  which is subjected to a 

parabolic load variation given by:  

2

2
( , ) 1xx

y
x a y q

b

 
     

 
   on the two opposite edges 

x a   is shown in Figure 2. 

 
Continuous line - One parameter least squares weighted 

residual solution for σxx(0, y) 

Dotted lines - Three parameter least squares weighted 

residual solution for σxx(0, y) 

Figure 2. Distribution of non-dimensional  normal stress in the x 

direction (xx/q) on the x = 0 plane of a rectangular plate under 

edge load 

2

2
( , ) 1xx

y
x a y q

b

 
     

 
  for one-parameter and 

three-parameter least squares weighted residual solutions 

 

Figure 2 is a graphical illustration of Equation (71) 

for one-parameter solution and Equation (134) for three-

parameter solution. It also represents Tables 1 and 2 

graphically. The figure shows that the two results show 

quadratic variation of xx on the x = 0 axis. 

Figure 3 presents a graphical illustration of the 

distribution of dimensionless normal stress (xx/q) on the x 
= 0 plane for a rectangular plate of aspect ratio a/b = 2 

subject to parabolic load 
2

2
( , ) 1xx

y
x a y q

b

 
     

 
 or the 

two opposite edges x = a . 

 
Figure 3. Distribution of normal stress xx on the x =0 plane for 

rectangular plate (with aspect ratio a/b = 2) subject to parabolic 

variation of edge load at x = a , where 

2

2
( , ) 1xx

y
x a y q

b

 
     

 
 

Figure 3 illustrates an approximately by uniform 

variation of normal stress xx on the x = 0 plane for the case 
of rectangular plates under parabolic edge loads for the case 

of aspect ratio a/b = 2. 
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Figure 4 presents a graphical illustration of the 

variation with aspect ratio of yy(0,0) – normal stress in the 
y direction at the plate centre. 

 

 

 
Figure 4. Variation of yy(0,0) at the plate centre with plate aspect 

ratio 

 

The variation of normal stress in the x direction at the centre 

xx(0,0) with various values of plate aspect ratio  is shown 
graphically displayed on Figure 5. 

 

 
 

Figure 5. Variation of normal stress yy(0,0) at the plate centre 

with plate aspect ratio  for three-term least squares weighted 

residual solution 

 

Figure 5 illustrates that yy(0,0) shows approximately little 
variation for values of plate aspect ratio lying between 0.25 

and 2 but increases significantly as the plate aspect ratio 

exceeds 2. 

 

 

 

 

6. Conclusion 

The following conclusion can be made from this study: 

(i) The two-dimensional elasticity problem of rectangular 

plates (2 2 )a b  subject to uniaxial parabolically 

distributed edge loads applied at x a   (where the 

origin is considered at the plate centre) is represented 

mathematically by a non-homogeneous biharmonic 

fourth order partial differential equation in terms of 

the Airy stress potential function in a Beltrami– 

Michell stress-based formulation. 

(ii) The least squares weighted residual method is an 

effective mathematical analysis tool for the 

approximate/numerical solution of the Airy stress 

potential function and consequently, the normal 

stresses and shear stress fields in rectangular plates 

subjected to a parabolic distribution of edge tensile 

loads at the two faces .x a   

(iii) The least squares weighted residual method simplifies 

the 2D elasticity problem from a boundary value 

problem represented by an inhomogeneous 

biharmonic partial differential equation to an algebraic 
problem involving a system of algebraic equations 

whose unknowns are the undetermined parameters of 

the Airy stress potential function. 

(iv) A one-parameter approximation of the Airy stress 

potential function in the least squares weighted 

residual integral statement simplified to a simple 

algebraic equation with one unknown variable and 

yielded sufficiently accurate results for practical 

purposes. 

(v) A three-parameter approximation of the Airy stress 

potential function in the least squares weighted 

residual method/formulation simplified to an algebraic 
problem given by a system of three equations in three 

unknown parameters, and the resulting three 

parameter least squares weighted residual solutions for 

the stress fields yielded more accurate results. 

(vi) As the plate aspect ratio increases and the plate 

becomes very long in one coordinate direction relative 

to the other, the normal stress xx distribution over the 
x = 0 cross sectional plane becomes uniform, a result 
that is consistent with logical reasoning. 

(vii) The one-parameter and three-parameter least squares 

weighted residual solutions obtained for normal 

stresses and shear stresses satisfies both the domain 

governing equations at all points in the domain 

,a x a   ,b y b    and the stress boundary 

conditions at the four edges ,x a  .y b   

(viii) The normal stress fields obtained for both the one 

parameter and three parameter least squares weighted 

residual formulations satisfy the loading conditions of 

the 2D elasticity problem of the plate at the loaded 

edges .x a   

 

Nomenclature/Notation 

x,y,z   Cartesian coordinates 

xx, yy normal stresses 

xy   shear stress 

xx, yy normal strains 

xy   shear strain 
G   shear modulus 

E   Young’s modulus of elasticity 

   Poisson’s ratio 
fx, fy, fz body force components in the x, y and z coordinate 

 directions respectively 

1   parameter defined in terms of Poisson’s ratio 

2a  2b in-plane dimensions of the rectangular plate 
q   intensity of parabolic tensile load distribution at (x 

 = a, y = 0) 
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(x, y) Airy stress potential function 
D   Domain of plate 

Dxy   plate domain on the xy coordinate plane 

(x, y) unknown dependent variable 
f(x, y) known function of x and y 

ai   unknown parameters of a trial function 

F   Least squares weighted residual function to be 
 minimized 

n   number of unknown generalized parameters 

ci   unknown generalized parameters of the trial Airy 

 stress potential function 

( , )x y  approximate (trial) Airy stress potential function 

kij   stiffness coefficients or coefficient of stiffness 

 matrix 

Fi   element of force matrix 

( , )i x y  shape function of the Airy stress potential function 

   plate aspect ratio 

i   determinant of a matrix 

0   determinant of coefficient matrix 

x




    partial derivative with respect to x 

2   Laplace operator (two-dimensional Laplace 
 operator) 

4   biharmonic operator 
L   linear differential operator 

   summation 

   integral 

   double integral 

      determinant 
2D   two-dimensional 

3D   three-dimensional 
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