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1. Introduction 

A system whose behavior depends on finite or infinite 

connections between discrete and continuance dynamical systems 

is called a hybrid dynamical system. The gear shift control, 

computer control systems, room temperature control by 
thermostat, social networks, multi-agent systems, vehicular 

networks, traffic control, etc. are examples of hybrid dynamical 

systems [1-8]. Switched systems are an important class of hybrid 

dynamical systems consisting of a set of subsystems and a rule 

specifying the switching action between them [9-11]. 

In recent decades, a large amount of research works is carried 
out on stability analysis and control design of switched systems. 

These researches can be categorized from several aspects of view: 

stabilization analysis [12-14], control and tracking problems [15-

16], optimal performance control [17-18], stability analysis under 

time delay [19-20], switched stochastic systems [22], etc. Two 

general approaches are employed for stability analysis of switched 
systems. 1) Common Lyapunov function (CQLF) for arbitrary 

switching [5,6,23] and 2) multiple Lyapunov function (MLF) for 

constrained switching [16,24]. 

A switched system under arbitrary switching is globally 

asymptotically stable (GAS) if all subsystems share a CQLF [9, 
13, 27]. A switched system under constrained switching is GAS if 

all subsystems are GAS and the switching actions are slow such 

that the switching periods are larger than the dwell time [9, 25].  

 

The stability analysis and control design of switched nonlinear 
systems includes more complexity relative to the switched linear 

systems. Therefore, fewer results are provided about switched 

nonlinear systems in the literature. Most of the proposed 

researches are carried out on stabilization, control, time delay, 

optimal performance and other analyses on switched linear 

systems [8, 28-30]. 

The so called simultaneous domination limitation (SDL) at first 

was presented in [31] to stability analysis of switched nonlinear 

systems in cascade form. According to this limitation, if all 

subsystems of a switched cascade nonlinear system are 

simultaneously dominatable, a CQLF can be constructed by 

employing the back-stepping method [13, 16, 32]. 

In back-stepping control method, the virtual control law 

associated with the k-th step stabilizes the all previous k states 

[33]. For a switched cascade system, the virtual control law of the 

k-th step should stabilize the previous k states for all subsystems 

[13, 31]. A switched nonlinear cascade system is called 

simultaneously dominatable if at each step of back-stepping 
control design there exists a virtual control law that makes all 
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subsystems stable [13, 31, 34]. If the structure of a nonlinear 

cascade system be complicated, finding a virtual control law 
satisfying SDL is very difficult or even impossible. Although, a 

great deal of researchers have used the SDL idea in previous 

researches, but they did not present any procedure to find virtual 

control laws satisfying the SDL [13, 16, 31, 32, 35, 36]. On the 

other hand, in the case of satisfying SDL, only the stabilization 

problem can be solved and all approaches based on SDL cannot 
solve the tracking problem [13, 16, 31, 32, 34, 35]. Whereas the 

SDL idea is broadly employed to solve different problems arisen 

of switched nonlinear cascade systems, but its fundamental 

restrictions for complicated switched systems have not been 

discussed. 

    Since sustaining SDL in complicated switched nonlinear 
cascade systems is very difficult or impossible, in this study, a new 

method is presented to eliminate the limitations of this approach. 
Afterwards, the new method is generalized to the tracking 

problem. The most contributions of this paper is presenting a new 
approach to solve the stability analysis and tracking control of 

complicated switched nonlinear cascade systems without the 
limitations of SDL-based approaches. At first, the limitations of 

SDL idea are discussed by presented some examples. Afterwards, 
the new idea is introduced and is generalized to both stabilization 

and tracking problems. 

    The rest of this paper is structured as follows. In section 2, the 

general form of switched nonlinear cascade systems is presented 
and the SDL idea is introduced. Afterwards, the limitation of this 

idea are discussed by presenting an example. In section 3, a new 
method based on state conversion is introduced to eliminate the 

shortcomings of SDL idea and solve both stabilization and 
tracking control problems. In section 4, several numerical and 

experimental studies are provided to show the effectiveness of the 
proposed approach. Finally, this paper is concluded in section 5. 

2. Preliminaries and problem description 

    Consider the following switched nonlinear system  

( ) ( )( ) ( ) , ( ) {1,2,...,m}T

t t t    x g x h x u                        (1) 

where ( ) ( )tg x and ( ) ( )th x are switching functions, x is the state 

vector of system, u is the vector of inputs, ( )t  is the switching 

signal and m is the number of subsystems. The smooth scalar 

positive definite function ( )V x , is called a CQLF for (1) if for all 

( )t , the following inequality is satisfied [9] 

 ( ) ( )( ) ( ) 0T
t t

V
 


 


g x h x u

x
                                              (2) 

Theorem 1. If there exists a CQLF satisfying (2), the system (1) 

is GAS under arbitrary switching [9,13]. 

1 1 2( , ,..., )nx f x x x

2 1 2( , ,..., )nx f x x x

1 2( , ,..., )m nx f x x x
 

Figure 1. General structure of a switching system. 

Fig. 1 depicts the general structure of a switching system with m
subsystems. At each instant, the supervisor block based on output 

of system generates the switching signal ( ).t  According to this 

signal, the signal analyzer activates the related subsystem. 

Consider the following general form of switched nonlinear 
cascade systems [31] 

1 2 1, ( ) 1

1 i, ( ) 1

( ) ( )

( )

( ) ;

( ) ( )

t

i i t i

T

n t n t n

x x x

x x y x

x g





 





  




  


  

x

x h x u

                                 (3)  

where , 1,2,...,ix i n and y  are states and output of system, 

respectively. , ( ) ( ), ( )i t tg  x  and 

( ) 1, ( ) 2, ( ) , ( )(.) (.), (.),..., (.)t t t r th h h   
   h  are smooth switching 

functions,  1 2, ,..., ru u uu is the vector of r control inputs 

1 2, ,..., ru u u and 
1 2[ , ,..., ]i ix x xx . It is assumed that the origin 

is an equilibrium point of (3) therefore, 

i, ( ) ( ) 0, 1,2,..., 1t i n   0 and ( ) ( ) 0.tg 0 Moreover, we 

assume that , ( ) ( ) , 1,...,i th i r  0 0 . For simplicity, the 

switching signal ( )t is shown by   in the rest of this paper.  

    To show the major drawback of SDL idea, the back-stepping 

approach is considered for the switched nonlinear cascade system 
(3). At the first step, consider the first equation of (3) 

1 2 1, 1( )x x x                                                                           (4) 

At this step, the CQLF and its time derivative is in the following 

form 

2

1 1 1 1 2 1, 1

1
, ( )

2
V x V x x x                                           (5) 

As discussed in [13,16,31], if there exists a virtual control law 

2 1x  satisfying 
1 0V   for all {1,...,m}  , all of the first-

order subsystems (4) are simultaneously dominatable. According 

to SDL idea, at the i-th step of back-stepping method it is essential 
to find a virtual control law assuring the simultaneous domination 

limitation. 
    This back-stepping approach which is based on SDL idea 

contains two major drawbacks. 1- For complicated switched 
nonlinear systems, finding a proper virtual control law making all 

subsystems simultaneously dominatable is hard or even 
impossible. 2- If there exists a virtual control law assuring SDL, 

this approach only can stabilize the switched nonlinear cascade 

systems and cannot be employed to solve the tracking problem 
[13,31,34].  

For more explanation, two different switched nonlinear cascade 
systems are presented as follow. For the first example, consider 

the following switched system with three subsystems.

                                                              

1 2 1

2

( )
; {1,2,3}

x x x

x u




 



                                          (6) 

where
5 5 5

1 1 2 1 3 13 , , 6 .x x x       These subsystems have 

very similar structural nonlinearities. Therefore by choosing the 

virtual control law 
5

2 11 7x x   all subsystems are 

simultaneously dominatable. 

 

 

 

5 6

1 1 2 1 1

5 5 6

1 1 1 2 1 1

5 6

1 1 1

2

1 2

1

1: 3 11 0

2 : 6 0

3 : 6 0

7x x

V x x x x

x V x x x

V x x x x







      



      


     

  



                           

(7) 



Journal of Computational Applied Mechanics, Vol. 51, No. 1, June 2020 

 

131 

 

Therefore, all subsystems are simultaneously dominatable and the 

virtual control law 1  stabilizes 
1x for all subsystems. But as 

mentioned previously, this approach only solves the stabilization 
problem and cannot be applied on tracking problem.  

For the second system, consider the following switched cascade 
system with complicated nonlinearities. 

1 2 1

2

( )
; {1,2,3}

x x x

x u




 



                                        (8) 

where

  3

1 1 1 2 1 1 3 1 13 1 , sin( 0.6), 2sin( ).x x x x x x           

Since finding an explicit virtual control law satisfying following 

inequalities is impossible, SDL cannot be achieved for switched 

nonlinear system (8). 

 

 

 

?
2

1 1 1 1 1

?
3

2 1 1 1 1 1 1

?

1 1 1 1 1

1: 3 3 0

2 : sin( 0.6) 0

3 : 2sin( ) 0

V x x x

x V x x x

V x x x

 

  

 


    


      


     


          (9) 

    The above examples show that the SDL can be satisfied only for 

switched nonlinear systems with very simple nonlinearities. 
Moreover, by this method only the stabilization problem may be 

solved. Since SDL cannot be achieved for switched nonlinear 
systems with complicated nonlinearities, it is not possible to 

tracking control or even stabilize these systems by back-stepping 
approach. 

Motivated by the mentioned drawbacks, in the next section a 
new method based on state conversion is presented which 

eliminate these shortcomings. 

3. State conversion approach 

      In this section, a new method based on state conversion and 
back-stepping method is introduced to construct a CQLF for 

switched nonlinear cascade system (3). Then it will be shown that 
the proposed system under arbitrary switching is GAS without 

limitation.  
    Consider the following state conversion. 

 

1 1

2 1 2 1,

1,

3 1 3 2, 2 1,

1

( 1)

1 ( )n

n

p x

p x x

p x x x
x

p x F





 






 






  
 

    





  x

                                       (10) 

where ( )F x is a complicated switched function. System (3) in the 

new coordinate  1 2, ,..., np p p is represented in the following 

form 

1 2

2 3

1

n

;

( ) ( )T

n n

p p

p p
y p

p g 








   x h x u

                                      (11) 

which n( )g x  is a complicated switched nonlinear function of 

nx , i, ( )i x and ( )g x . The following subsections present the 

stabilization and tracking problems based on the new state 

conversion. 

3.1. Stabilization of switched nonlinear cascade systems based 
on the state conversion 

      In this section, by following the back-stepping control design 

[37], the stabilization problem of switched nonlinear cascade 
systems is investigated.   

Step 1. For switched nonlinear cascade system (11) define that

1 1z p . Therefore, we will have
1 2z p . At the first step, the 

CQLF  
1V and its time derivative is in the following form  

2

1 1 1 1 2

1

2
V z V z p                                                              (12) 

By choosing the first virtual control law 
1 2 1 1p c z    we will 

have 
2

1 1 1 .V c z  Where 
1c is a positive constant. 

Step 2. By defining
2 2 1z p   , the first two equations of (11) 

can be written in the following form 

1 2 1

1

2 3 2

1

z z

z p p
p





 



  

                                                                  (13)   

For the second step, the CQLF 
2V  and its time derivative along 

(13) are in the following form 

2 2 2

2 1 2 1 2

1

2 1 2 1 2 3 2

1

1 1 1

2 2 2

( )

V V z z z

V z z z p p
p




    

 
    

 

                                    (14) 

The following second intermediate control law is defined.

   1

3 2 2 2 2 1

1

p c z p z
p





    


                 

                                          

(15)

 
 where 

2c is a positive value. Therefore, we have 

2 2

2 1 1 2 2V c z c z   . 

Step r  3,..., 1r n  . At this step, by defining 
1r r rz p    , 

the first r equations of (11) are represented in terms of new 

variables 
1 2, ,..., rz z z as shown in the following form. 

1 2 1

1

2 3 2 2

1

1
1

1 1

1

r
r

r r i

i i

z z

z z p
p

z p p
p









 



 



   
 


 

 




                                                      (16) 

For this step, the CQLF and its time derivative are in the following 

form 

2

1

1 1
2 1

1 1 1

1 1

1

2

r

r i

i

r r
r

r i i r r r i

i i i

V z

V c z z z p p
p





 


  

 

 

 
     

 



 
            (17) 

For this step we consider that 
1

1

1 1 1

1

r
r

r r r r r i

i i

p c z z p
p







  




    


                              (18) 

where rc is a positive value. Therefore, 
2

1

r

r i i

i

V c z


  . 

Step n. At the final step, by defining that 1n n nz p   
 
the 

system (11) is represented in the following form 
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1 2 1

1
1

1 1

1

1
1

n 1

1

( ) ( )

r
r

r r i

i i

n
T n

n n i

i i

z z

z p p
p

z g p
p

 










 













 




 






   



x h x u

                             (19) 

The CQLF for switched system (19) and its time derivative will be 
in the following form 

2

1

1 1
2 1

1 n 1

1 1

1

2

( ) ( )

n

i

i

n n
T n

n i i n n n i

i i i

V z

V c z z z g p
p

 





 


 

 

 

 
      

 



 x h x u

     

                     (20) 

Defining the following control law 

1
1

1 1

1

( )
c z ( )

( ) ( )

T n
n

n n i nT
i i

g p z
p




 




 



 
     

 


h x
u x

h x h x
    (21) 

yields 
2

1

n

i i

i

V c z


  where 
nc is a positive value. 

Theorem 1. Under the control input (21) the switched nonlinear 

cascade system (3) is GAS under arbitrary switching. 
Proof. Time derivative of the CQLF (20)

 

along (19) and 

applying (21) will result to 
2

1

n

i i

i

V c z


  which is a negative 

definite function. Therefore, all subsystems of (19) are GAS. On 

the other hand, V is a CQLF. So that, the stability of switched 

nonlinear cascade system (19) in switching instants is assured. To 

prove the asymptotic stability in x-domain, consider that since 1z

( 1 1z p ) is asymptotically stable, from the first equation of (10) 

we conclude that 
1x  is also asymptotically stable  1lim ( ) 0 .

t
x t




On the other hand, since 1, ( ) (0) 0t  from the first equation of (3) 

 1 2 1, ( ) 1( )tx x x  we conclude that 
2x is asymptotically stable. 

By following this logic for 2,...,i n , it is inferred that under the 

control input (21) the switched nonlinear cascade system (3) is 

GAS under arbitrary switching without the limitations of the SDL-
based approaches [13,16,31,32,34,35]. 

3.2. Tracking problem of switched nonlinear cascade systems 
based on the state conversion 

      In this subsection, the tracking problem is studied for switched 

system (3). It is assumed that the output signal 1x tracks the desired 

smooth signal dx . 

Step 1. Define that 1 1 dz p x  . The first equation of (11) is 

represented as 1 2 dz p x  . The CQLF and the virtual control law 

are in the following form for this step. 

2

1 1 1 1 2 2 1 1 1

1
( )

2
d dV z V z p x p c z x                   (22) 

Step r  2,..., 1r n  . By considering 1r r rz p    , which 

1r   is the virtual control law of previous step. The first r

equations of (11) in terms of iz can be written as follows. 

1 2 1

1

2 3 2 2

1

1
( )1

1 1

1

d

d

r
rr

r r i d

i i

z z x

z z p x
p

z p p x
p









 



  


    
 


 

  




                                                       (23) 

 
For this step, the CQLF and its time derivative along (23) are in 

the following form  

2

1

1 1
2 ( )1

1 1 1

1 1

1

2

r

r i

i

r r
rr

r i i r r r i d

i i i

V z

V c z z z p p x
p





 


  

 

 

 
      

 



 
  (24) 

The virtual control law of this step is in the following form 
1

( )1

1 1 1

1

r
rr

r r r r r i d

i i

p c z z p x
p







  




     


                     (25) 

Therefore, we will have 
2

1

.
r

r i i

i

V c z


   

Step n. By defining
1n n nz p    , the switched system (11) is 

converted to 

 

1 2 1

1
( )1

1 1

1

1
(n)1

1

1

( ) ( )

d

r
rr

r r r i d

i i

n
T n

n i d

i i

z z x

z z p x
p

z g p x
p

 











 













  




   






    



x h x u

      

                 

(26) 

Finally, the CQLF and its time derivative along (26) will be in the 
following form 
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        (27) 
 

Choosing the following control law 

1
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p
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h x
u x
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(28) 

yields 
2

1

.
n

i i

i

V c z


   The results are presented in the next theorem. 

Theorem 2: The output of switched nonlinear cascade system (3) 

tracks the desired signal dx asymptotically under the control input 

(28) and arbitrary switching. 

Proof. Replacing (28) in (27) yields 
2

1

.
n

i i

i

V c z


   Therefore, 

the individual tracking error of each subsystem of (3) converges to 

zero asymptotically. On the other hand, since V is a CQLF, the 

convergence of tracking error in switching instants is assured. 
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4. Verification studies 

     In this section, numerical and experimental studies are 

provided to verify the effectiveness of the proposed approaches 

presented in theorems 1 and 2. The numerical and experimental 

studies investigate the results of theorems 1 and 2, respectively. 

 
4.1. Simulation study (stabilization problem) 

     For simulation study, the following switched nonlinear cascade 

system with three subsystems is considered 

 

1 2 1, 1

2 3 2, 2

3 ( )

( )

( ) ; {1, 2,3}

( ) ( )t

x x x

x x

x g h u
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

 

  


  


 

x

x x

                

             

  (29) 

where 
3 2 2

1,1 1 1,2 1 1,3 1 2,1 2 2,2 1 2 2,3 1 2
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1 1 2 1 3 3 3 2 1 1 2 3 2
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x x x x x x x x

g x g x x g x x h x h h x

          

        
     

                              (30)                                 
It is obvious that the subsystems of (29) are not simultaneously 

dominatable. Therefore, the idea of SDL cannot be employed to 
control design and stability analysis of this system. According to 

(21), the control input is as follows 
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x x  

A high frequency signal is applied to system (29) according to Fig. 

2. The behavior of states 1 2,x x  and 3x  are depicted in Fig. 3. As 

this figure indicates, all states are GAS under the control input (31) 
and arbitrary switching. Fig. 4 shows the control input of switched 

nonlinear system (29). 

 

Figure 2. Switching signal: stabilization problem. 

 
Figure 3. State responses: stabilization problem. 

 
Figure 4. Control input: stabilization problem. 

 

4.2. Experimental study (tracking problem) 

     To evaluate practically the results of theorem 2, an 
experimental setup of shape memory alloy actuators is designed as 

shown in Fig. 5. This setup consists of a rotational disk and two 

shape memory alloy wires connecting differentially. A 5K  

rotational potentiometer is employed in the center of the disk to 

measure the angular displacement. At the end of both wires, two 
load cells are used to measure each SMA wire forces. Each load 

cell contains a 0.9K  Weston bridge resistance in unloading 

situation. Two identical indicator clocks are employed to show the 

rotational displacement of the disk. Fig. 6 depicts a schematic 
structure of this setup. As shown in this figure, an electrical diode 

is used in path of each wire rectifying the electric current. 
 

 
Figure 5. Experimental setup of differential shape memory alloy wires. 
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Figure 6. The closed-loop system of SMA mechanism. 

The STM-32 microcontroller used in this setup belongs to Cortex 

M3 family which generates the appropriate commands to control 
the angular position of mechanism. The maximum processing 

clock-rate and the flash memory of this microcontroller are 53 
MHz and 256 Kbytes, respectively. 

    The equation of motion of the rotating disk is as follows 

, {1,2,3}k k kh u g d k                                            (32) 

where ,  and are angular position, velocity and acceleration of 

the disk, 2u i , i  is the current of SMA wire, k is the number of 

active subsystem and 
kd  is the disturbance signal. For switched 

nonlinear system (32), the switching functions are in the following 
form               
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More details of the above parameters can be found in [38]. The 
characteristics of SMA wires used in this paper, are same as [38]. 

In [38] a robust control is presented to control the antagonistic pair 
of SMA actuators. As a new approach, we present a new switched 

robust adaptive back-stepping control method to solve the tracking 

problem of the switched nonlinear system (32).   

By defining that 1 2,x x   and 3x  , and the new state 

variables 1 1 dz x x  , 2 2 1z x   and 3 3 2z x   ,               

the state space form of the governing equation (32) is presented as 
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where 
1 1 1 dc z x     and 1 1

2 1 2 2 2

1

.z c z x
z t

 


 
    

 
  Since 

the disturbance signals kd  is a function of natural and geometrical 

characteristics of wires, they are bounded. Therefore, we have 

k kd D where kD are the upper bounds of disturbance signals. 

The time variation of switched functions kh  and kg  are very 

slowly in each subsystems. Therefore, they can be considered as 

adaptive parameters. By employing the adaptive back-stepping 
control design presented in the previous works of authors [13,33] 

the CQLF associate with the switched nonlinear system (32) will 
be constructed as follows 

2 2 2 2 2
1 2 3

1 2

1 1 1 1 1

2 2 2 2 2
V z z z h g

 
    

                          
(37) 

where ˆ
kh h h  and ˆ.kg g g  ĥ and ĝ are the estimations 

of h and g , respectively. Moreover,
1 and

2 are positive values. 

Taking time derivative of (37) along the switched system (36) and 
performing some algebraic manipulations lead to the following 

control and adaptation rules. 
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1 3 2 3 2
ˆ ˆ,k kh z u g z x                                                  (39) 

      To study the tracking problem, the desired signal 

20cos 20sin
8 8 4

dx t t
     

     
   

 is considered. Fig. 7 shows 

the tracking problem for switched nonlinear system(32). 

According to this figure, the system output tracks the desired 
signal asymptotically. Figs. 8 and 9 show the switching signal and 

control input of the proposed switched nonlinear system. 

 

 
Figure 7. Tracking problem for SMA mechanism. 
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Figure 8. Switching signal: tracking problem. 

 
Figure 9. Control input: tracking problem. 

5. Conclusion 

In this paper, a highly usage approach based on simultaneous 
domination limitation to construct a CQLF for switched nonlinear 

cascade systems was reviewed. By presenting an example, it was 

shown that the simultaneous domination limitation cannot be 

satisfied in switched nonlinear cascade systems with complicated 

structure. To overcome this restriction, a new backstepping 

approach based on state conversion was introduced. It was shown 
that this new approach solves both problems of stabilization and 

tracking of switched nonlinear cascade systems without any 

limitation. Numerical and experimental studies were provided to 

show the effectiveness of the proposed method. The results 

confirm the effectiveness of the proposed approach compared with 

the previous method. 
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