
JCAMECH 
Vol. 51, No. 1, June 2020, pp 137-143 

DOI: 10.22059/jcamech.2019.282042.399 

 

  

 

A new technique for bearing fault detection in the time-frequency 
domain 

Behrooz Attaran, Afshin Ghanbarzadeh * and Shapour Moradi 

Mechanical Engineering Department, Shahid Chamran University of Ahvaz, Ahvaz, Iran 

 

1. Introduction 

The desire and need for precision detection capabilities and 

precautionary predictions have long been equivalent to human use 

of complex and expensive machines. Efforts to develop and 

implement varying degrees of detection and anticipation 
capabilities have a long history. Exploiting rotary machines is one 

of the major challenges in maintenance and repair. Intelligent 

maintenance and repair, as well as diagnosis and prediction of 

deficiencies, are essential for the oil, gas, refinery, petrochemical, 

transportation, aerospace, military and commercial vessels, 

automation and other industries. Diagnosing and anticipating 
defects is one of the challenging issues of the health management 

system and the anticipation of modern defects. Reduces the cost of 

support and operation, as well as the total cost of ownership over 

the life cycle, and improves the level of safety of many types of 

machinery and complex systems. The evolution of fault diagnostic 

monitoring systems for rotating equipment and other complex 
systems helps to realize that it is possible to identify predictive 

defects desirable and technically possible. The most important 

challenge is addressing the signal of roller bearing defects. Bearing 

defects are produced in the form of blows caused by passing roll 

elements on the surface of the failure. Identifying and monitoring 

these flaws is difficult, especially in the early stages of the defect, 
which is a very small failure and is easily covered with other 

components. Undoubtedly, all defect prediction techniques need 

to be further developed to better adapt to the characteristics of 

nonlinear systems so that they can be used in real-world 

conditions. Yang et al. [1] used a new time-frequency domain 

called base track that was recently created. In fact, they used the 
application of this new method to extract the characteristics of the 

faulty roller bearing signals with internal and external cannon 

failures. In the following, the results of this method were compared 

with the results of the discrete Wavelet packet analysis method and 

the follow-up matching technique and showed that the failure 
characteristics of the base tracking technique create a better 

resolution in the time-frequency domain. Therefore, the analysis 

and interpretation of the results will be simplified. It also improves 

the ratio of noise to the signal. 

In [2], Liang and Bochalooi proposed an energy operator 

method for frequency and domain division and showed that the 
Tiger energy operator is suitable for extracting the frequency 

modulation and the amplitude of the vibrational signals of 

mechanical systems. Due to the continuity of frequency 

modulation information in this method, there is no need for 

multiple steps to remove unwanted components. So that the range 

of diamonds inherently in the energy operator can determine the 
failure frequency from the energy spectrum of the energy 

conversion. Another advantage of this method is the lack of choice 

of parameters. Suu et al. [3] presented a new compound-based 

Morellet wavelet filtering method that improves self-dependency. 

Initially, in order to eliminate the frequency of interference 

vibrations, the vibration signal is filtered by the midpoint filter 
specified by the Morellet wavelet. Also, the parameters associated 

with the Morellet wavelet, including the central frequency and 

bandwidth, are optimized by the genetic algorithm, whose target 

function is the minimization criterion for Shannon entropy. In 

order to further reduce the residual noise in the band and to 

highlight intermittent traits, the self-correlation amplification 
algorithm is used for signal filtering. Doo et al. In [4], a new 

intelligent method for diagnosing rotary machines based on 

intrinsic mode decomposition, dimensional parameters, 

decomposition table, law inference algorithm called second 
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editing tutorial for modified modules examples and modified 

strategy for implementing the presentation law have given. The 

EMD method for preprocessing vibrating signals is used to 
accurately derive the characteristics of the failure. Then, the non-

dimensional parameters extracted from the decomposed signals in 

the time domain and the Enolop spectrum in the frequency domain 

are obtained for the decomposition table. The MLEM2 algorithm 

is then executed on the fail decision table for producing decision 

rules. Finally, the IRMS method is classified. 

Lee et al. [5] presented a new classifier based on the lattice 

framework for the classification of the friction grid for the problem 

of detecting bearing defects. This method does not need to 

determine any parameters and converges at a high speed with a 

small number of inference law. To illustrate the results, they used 

five datasets, and ultimately demonstrated their efficiency and 
accuracy compared to the same method of fuzzy network 

argumentation and other neural networks. 

Wang et al. [6] presented the advanced Kurtogram method for 

detecting roller bearing defects. The decoder is based on the 

elongation of the time signals that are filtered by the Fourier 

transform. Also, the transformation of the wavelet packet is also 
used as a substitute for the Fourier transform of the short time to 

analyze the signal in this method. However, the elongation of time 

signals is useful in some cases but is poorly performed when the 

signal-to-noise ratio is low or non-Gaussian noise. Therefore, they 

proposed a high-performance encoder based on the amplitude 

power of the signals extracted from the wavelet packet. This 
method helps in determining the location of frequency 

amplification bands for further modulation. Finally, the frequency 

characteristics of the ANOLOP signal are used to determine the 

type of bearing failure . 

In [7], Zhou and Chen provided an intelligent diagnostic 

method for rolled bearings based on the least squares of the back 
propagation machine optimized by the modified particle 

optimization method. In this method, first, the initial vibration 

signals are decomposed into several intrinsic mode functions, 

which is done by the EMD method and the energy attribute values 

extracted based on the energy-entropy of the IMF. Finally, the 

energy indicators extracted as breakdown property vectors, the 
IPSO-LSSVM classifier inputs, are used to identify the different 

failure patterns. 

In [8], Albuagbi and Trondaphilova presented a method for 

identifying roller bearing defects. Their method consists of two 

main steps. Pretreatment of signals, based on several signal 

analysis algorithms and defect detection, which uses the pattern 
recognition process. The first step is, in fact, linear time constant 

based on automated modeling of regression. In the pre-purification 

step, the spectral analysis method is used to remove noise from the 

signal. They used three different sets of labs to validate the 

proposed method to detect various types of roller bearings. 

In [9], Baraldi and colleagues presented a method to identify 
the beginning of a failure, to detect defective bearings in the 

system, to classify the type of failure, and to determine the severity 

of the failure. Their fault diagnosis is based on the hierarchical 

structure associated with the classification of the nearest neighbor 

K. Feature Selection The vibration signals for the input of the fault 

diagnostic system are based on the packaging method based on the 
multi-objective optimization integrated with the binary differential 

algorithm and the KNN classifier. 

In [10], Vakharia et al. Presented an algorithm for detecting 

various bearing defects of measured vibrational signals. 

Characteristics such as elongation, squaring, mean, root mean 

squares, or more complex features such as Shannon entropy from 

the time domain, frequency domain, and discrete wavelet 

transform are calculated. This feature takes on all bearings, 
including bearings, defective interior faults, defective balls, and 

faulty external censuses. Feature rating methods such as Qi square 

and Assist-F method are used to select the best feature. Their 

results showed that this method would reduce the feature vector 

collection used for the classifier. 

In [11], Singh et al. presented an algorithm based on a flexible, 
logically complementary wavelet transform. Their method in 

frequency segmentation is flexible to produce a number of filters 

with a variety of bandwidths. The optimal filter selection, which is 

completely overlapping with bearing defects in the excited region, 

is performed based on the maximum amount of shock detection 

provided by the "self-bonding elongation of the intermediate 
energy" function. The offered index was robust and consistent in 

evaluating impulsive failure signals in the presence of interference 

vibrations such as heavy background noise or sporadic shock. 

Their methods are also sensitive to breakdown severity. 

Yaylı [12] conveniently computed an accurate buckling 

parameter for microbeams using both classical and non-classical 
boundary conditions restrained by translational and rotational 

springs. 

The main objective of [13] was to present a general analytical 

approach for the dynamical analysis of nanorods (carbon 

nanotubes) with arbitrary boundary conditions (restrained or 

rigid). 

In [14] The buckling characteristics of elastically restrained 

embedded microbeams were investigated in some numerical 

examples. There were very good agreements between this study 

and the previous results indicating the validity of the presented 

method. 

In [15], torsional dynamics of nanotubes embedded in an elastic 
medium with arbitrary elastic boundary conditions was studied. 

The proposed mathematical model developed based on the 

nonlocal elasticity theory gives us opportunity to include small-

scale parameter. Two springs in torsional direction were attached 

to a nanotube at both boundaries. 

In [16], torsional vibration analysis of carbon nano tubes with 
general elastic boundary conditions was presented via modified 

couple stress theory. The model developed based on modified 

couple stress theory gives us opportunity to interpret small size 

effect. Two torsional springs were attached to a single-walled 

carbon nanotube at both ends. The idea of the proposed work was 

to obtain a coefficient matrix for eigen-value analysis involving 
the torsional spring coefficients. 

In [17], the vibration analysis of composite natural gas pipeline 

in the thermal and humidity environment was studied. The effect 

of the non-uniform magnetic field was investigated. The equation 

of motion was derived by applying the Hamilton's principle for the 

pipe with the effects of both linear and nonlinear stress 
temperature cases. 

In [18], The updating process used an evolutionary 

optimization algorithm, namely bees algorithm which applied 

instinctive behavior of honeybees for finding food sources. To 

determine the uncertain updated parameters such as geometry and 

material properties of the structure, local and global sensitivity 
analyses had been performed. The sum of the squared errors 

between the natural frequencies obtained from operational modal 

analysis and the finite element method was used to define the 

objective function. 
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In [19], the free vibration behavior of nanoscale FG rectangular 

plates was studied within the framework of the refined plate theory 

(RPT) and small-scale effects were taken into account. Using the 

nonlocal elasticity theory, the governing equations were derived 

for single-layered FG nanoplate. The Navier’s method was 

employed to obtain closedform solutions for rectangular 
nanoplates assuming that all edges were simply supported. 

In [20], wave propagation approach was used to analysis the 

free vibration and buckling analysis of the thick rectangular plates 

based on higher order shear deformation plate theory. From wave 

viewpoint, vibrations can be considered as travelling waves along 

structures. 

In [21], the wave propagation method was combined with 

nonlocal elasticity theory to analyze the buckling and free 

vibration of rectangular Reddy nanoplate. Wave propagation was 

one of the powerful methods for analyzing the vibration and 

buckling of structures. It was assumed that the plate has two 

opposite edges simply supported while the other two edges may be 
simply supported or clamped. 

In [22], a mathematical model to investigate the behaviour of 

adaptable shock absorber dynamics for the six-degree-of-freedom 

aircraft model in the taxiing phase was developed. The purpose of 

this research was to design a proportional-integral-derivative 

technique for control of an active vibration absorber system using 
a hydraulic nonlinear actuator based on the bees algorithm. 

In [23], the coefficients of controller, the parameters of 

hydraulic nonlinear actuator added to the traditional shock 

absorber system, and the vibration absorber were optimized 

simultaneously by the bee intelligent multi-objective algorithm. 

As well as, for proving adaptability of this algorithm, this paper 
presented the sensitivity analysis of three point landing due to the 

additional payload and the touchdown speed and the robustness 

analysis of one and two point landings due to the wind conditions 

as emergency situation on the runway as an innovated work. 

The proposed method of this research is based on kurtogram. 

The novelty of the present work in comparison with previous 
published articles in the literature is that against of using kurtosis 

feature in kurtogram method, it utilizes new statistical features. 

Then, instead of diagnosis based on kurtogram output analytically, 

fault diagnostics is performed according to the patterns of each 

failure. The fault identification accuracy may be increased by this 

approach. 

In this research, first an introduction is described in chapter 1. 

Then in chapter 2, kurtogram method is explained. Chapter 3 

describes an experimental setup for validation of this work. 

Chapter 4 represents the proposed approach of this paper in details, 

and chapter 5 covers conclusion and the future work.  

2. Kurtogram 

Despite the benefits of wavelet transformation, challenges 

include choosing the right mother-wavelet from a variety of 

examples, as well as high computational costs, especially for 
smaller scale levels. These challenges have suggested different 

ways to improve the wavelet transform or different ways to select 

the appropriate wavelet. Some of these improvements are 

mentioned in previous studies. On the other hand, these challenges 

in the transformation of the wavelet have led to the emergence of 

other methods, such as the spectral kurtosis and Kurtogram. 

The Kurtogram method is based on the Spectral Kurtosis, 

which is a high-order statistical method. In 1983, the first use of 

the frequency spectrum was carried out by Dewey. In the 

following years, this method quickly progressed and improved for 

a variety of applications. Then, Anthony proposed in 2004 the 

elongation based on the Vold-Cramer decomposition, which 

described each non-terminal signal as the output of a variable-time 

linear system. 

In [24], ensemble machine learning techniques were 
demonstrated for the detection of different AFB faults. Initially, 

statistical features were extracted from temporal vibration signals 

and were collected using experimental test rig for different input 

parameters like load, speed and bearing conditions. [25] proposed 

a reduct construction method based on discernibility matrix 

simplification. The method worked with the genetic algorithm. To 
identify potential problems and prevent complete failure of 

bearings, a new method based on rule-based classifier ensemble 

was presented. 

Li et al. [26] focused on the problem of accurate Fault 

Characteristic Frequency (FCF) estimation of the rolling bearing. 

Teager-Kaiser Energy Operator (TKEO) demodulation has been 
applied widely to rolling bearing fault detection. FCF could be 

extracted from vibration signals, which was pre-treatment by 

TKEO demodulation method. 

In the further development of the Kurtogram in 2018 [27], 

Musharrafzadeh and Fassana showed that, despite the capabilities 

of the QuickTech method, however, when the signal-to-noise ratio 
is very low or the presence of non-voiced noise, the performance 

of the choreographer's method drops significantly; therefore, the 

autogram method is introduced. Which is largely similar to the 

same method, with the difference that the calculation of the 

elongation based on the self-correlation of the signal obtained from 

the Enolop square in the frequency bands, which partially 
succeeded in increasing the accuracy of the failure detection and 

lowering the computational cost [28],[29]. 

So according to the above, new methods such as Spectral 

Kurtosis, Fast Kurtogram, Autogram have been developed to 

replace the wavelet. All of these methods are based on the statistic 

feature of the kurtosis. In this study, a new time-frequency domain 
was introduced, and other commonly statistical features are used 

instead of the Kurtosis feature. The proposed process is as follows: 

1. Design of low pass and high pass filters for binary 

decomposition, as well as the design of low pass, band-pass and 

high pass filters for ternary of signal analysis 

2. The signal once decomposed into binary and ternary, then 
each section of the binary decomposition is again degraded the 

again binary and ternary, and the same trend continues for higher 

decomposition levels. 

3. Calculate common features for each section obtained from 

the previous step for comparison 

4. Choosing the proper features 

For this purpose, the feature should be chosen so that the time-

frequency domain derives from the following conditions : 

Firstly, the time-frequency domain must be robust and 

repeatable for failure with specified type and severity. That is, 

different measured signals for a failure type provide the same time-

frequency domain . 

Secondly, the time-frequency domain for each fault mode must 

be resilient and repeatable to changes in conditions such as load 

change. That is, with different loads, the same time-frequency 

domain is achieved . 
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Third, the time-frequency domain for each failure is robust and 

repeatable against of the growth failure. In other words, in the case 

of breakdowns with different depths, but of the same type, the 
time-frequency domain presents a relatively similar behavior . 

Fourth, the ability to detect and differentiate the time-frequency 

domain of each feature is appropriate for various failures. 

Below are the statistical features that are being studied in this 

study: 

Data samples can have thousands (even millions) of values. 
Descriptive statistics can summarize these data into a few numbers 

that contain most of the relevant information. The Following 

statistical parameters are used to detect incipient bearing damage: 

root mean square, interquartile range, skewness, mean, Geometric 

mean, harmonic mean, mean excluding outliers, largest element, 

smallest element, most frequent value, standard deviation, 
variance, median, range, sum, trapezpidal integration, mean 

absolute deviation, moment and percentiles. 

where Xi (i=1, …, N) is the amplitude at sampling point i and N 

is the number of sampling points. µ is the mean of X, σ is the 

standard deviation of X, and E(.) represents the mathematical 

expectation. 

3. Experimental setup 

The vibration data used in this study were obtained from the 
dataset of the rolling element bearings under different operating 

loads and bearing conditions according to Table 1. The ball 
bearings are installed in a motor-driven mechanical system. A 2-

hp, the three-phase induction motor is connected to a 
dynamometer and a torque sensor by a self-aligning coupling. The 

dynamometer is controlled so that the desired torque load levels 
can be achieved. An accelerometer, with a frequency range of 20-

20 kHz is mounted on the motor housing at the drive end of the 
motor to acquire the vibration signals from the bearing. The data 

collection system consists of a high-bandwidth amplifier 

particularly designed for the vibration signals and a data recorder 
with a sampling frequency of 12 kHz per channel. The bearings 

used in this study are deep groove ball bearings manufactured by 
SKF. The faults were introduced into the drive-end bearing of the 

motor using the electro-discharge machining method. The defect 
size (diameter, depth) of the three faults was the same, 0.007”, 

0.014”, 0.021” and 0.028”. Each bearing was tested under four 
different loads, (e.g. 0, 1, 2, and 3 hp corresponding to 0, 0.736, 

1.491, and 2.237 kW). The motor speed during the experimental 
tests was 1720-1797 r/min. The bearing dataset was obtained from 

the experimental system under the four different operating 
conditions: (1) normal condition; (2) Inner race fault; (3) Ball 

fault; and (4) Outer race fault [4]. 
 

In order to develop a robust fault diagnosis model that is able to 
identify the existence of different faults under varying load 

conditions, and to evaluate the proposed methods, this fault 
diagnosis problem is set as a four-class classification problem [4]. 

 

4. Results discussion 

4.1. First stage 

First, the resistance of the time-frequency domain of each figure 
must be checked for any specific failure. For this purpose, ten raw 

signals are considered for each mode, then using one of the 
introduced features, the time-frequency domain is calculated and 

the resulting matrix is normalized. Finally, the standard deviation 
of ten time-frequency domains is calculated relative to each other. 

The lower standard deviation leads to be more robust and 
repeatable of the time-frequency domain. 

In Table 2, anyone whose total rank is less than that, the time-
frequency domain resulting from it is more resistant and more 

repeatable. As you can see, the feature of kurtosis in this 
comparison is not good. 

 

 

Table 1. Bearing dataset of Case Western Reserve University 

Fault 

Diameter 

Motor 

Load 

(HP) 

Motor 

Speed 

(rpm) 

Normal 
Inner 

Race 
Ball 

Outer 

Race 

Normal 

0 1797 

Class1 

* * * 

1 1772 * * * 

2 1750 * * * 

3 1730 * * * 

0.007" 

0 1797 * 

Class2 Class3 

Class4 

1 1772 * 

2 1750 * 

3 1730 * 

0.014" 

0 1797 * 

1 1772 * 

2 1750 * 

3 1730 * 

0.021" 

0 1797 * 

1 1772 * 

2 1750 * 

3 1730 * 

0.028" 

0 1797 * * 

1 1772 * * 

2 1750 * * 

3 1730 * * 

 
 

Table 2. The stability of each feature for each fault mode 

No Feature 

Inner 

race 

(std) 

Rank1 

Ball 

fault 

(std) 

Rank2 

Outer 

race 

(std) 

Rank 

3 

1 Kurtosis 1.039 18 2.242 19 0.722 16 

2 Rms 0.134 8 0.103 3 0.074 4 

3 IQR 0.299 13 0.289 11 0.398 12 

4 Skewness 1.401 20 2.382 20 0.911 19 

5 Mean 0.194 11 0.109 5 0.141 10 

6 Geomean 0.350 15 0.253 10 0.768 17 

7 Harmmean 0.993 17 0.922 16 0.524 13 

8 Trimmean 0.257 12 0.136 6 0.620 14 

9 Max 0.134 9 0.465 14 0.118 8 

10 Min 0.641 16 0.937 17 0.896 18 

11 Mode 1.363 19 1.295 18 1.128 20 

12 Std 0.090 5 0.187 9 0.090 5 

13 Var 0.049 3 0.105 4 0.036 3 

14 Median 0.315 14 0.357 12 0.637 15 

15 Range 0.144 10 0.467 15 0.114 7 

16 Sum 0.005 1 0.008 1 0.006 1 

17 Trapz 0.005 2 0.008 2 0.006 2 

18 Mad 0.096 6 0.172 8 0.120 9 

19 Moment 0.084 4 0.162 7 0.101 6 

20 Prctile 0.131 7 0.381 13 0.146 11 

 
4.2. Second stage 

At this stage, the resistance of the time-frequency domain to the 

change in load must be checked. For this purpose, for each of the 
three types of failure, four magnitudes of the load are considered, 

and after using the time-frequency domain statistical features, the 

normalization process is performed and then, the standard 
deviation of the four time-frequency domains is calculated. 

Eventually, any feature whose total deviation is less than normal 
will naturally be more resistant to detecting the failure mode 

according to Table 3. 
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Table 3. Resistance of each feature to load change 

No Feature 

Inner 

race 

(std) 

rank1 

Ball 

fault 

(std) 

rank2 

Outer 

race 

(std) 

rank3 

1 Kurtosis 1.092 19 2.636 19 0.450 12 

2 Rms 0.342 9 0.218 9 0.144 6 

3 IQR 0.405 12 0.234 12 0.642 15 

4 skewness 0.762 18 2.653 20 0.515 13 

5 Mean 0.378 11 0.227 11 0.238 11 

6 Geomean 0.594 15 0.236 13 1.968 20 

7 harmmean 0.561 14 1.163 16 1.310 19 

8 trimmean 0.511 13 0.215 8 0.672 16 

9 Max 0.339 7 0.299 14 0.151 8 

10 Min 0.599 16 1.761 18 0.555 14 

11 Mode 1.193 20 1.509 17 0.918 17 

12 Std 0.279 5 0.171 5 0.103 4 

13 Var 0.223 4 0.102 3 0.060 3 

14 Median 0.636 17 0.203 7 0.956 18 

15 Range 0.342 10 0.301 15 0.173 9 

16 Sum 0.019 2 0.015 1 0.012 2 

17 Trapz 0.019 1 0.015 2 0.012 1 

18 Mad 0.341 8 0.178 6 0.187 10 

19 Moment 0.332 6 0.168 4 0.147 7 

20 Prctile 0.213 3 0.222 10 0.112 5 

 
4.3. Third stage 

In this section, it is necessary to select a feature that the time-
frequency domain resulting from it will not fail against the growth 

of the failure and is still resistant and will not fail with other types 
of failure. For this purpose, for each failure, four growth stages are 

considered and ultimately the standard deviation of the four time-
frequency domains obtained for each feature is calculated and the 

results are presented in Table 4. 

 

Table 4. Resistance of each feature to failure growth 

No Feature 

Inner 

race 

(std) 

rank1 

Ball 

fault 

(std) 

rank2 

Outer 

race 

(std) 

rank3 

1 Kurtosis 3.614 20 3.323 20 5.262 19 

2 Rms 0.625 10 0.398 8 0.464 5 

3 IQR 1.120 13 0.415 10 3.880 18 

4 Skewness 3.522 19 2.779 19 5.585 20 

5 Mean 0.798 11 0.607 12 0.564 6 

6 Geomean 1.451 16 1.068 15 3.591 16 

7 harmmean 1.249 15 1.147 17 3.230 15 

8 trimmean 1.020 12 0.834 13 2.216 14 

9 Max 0.387 4 0.317 4 0.256 3 

10 Min 1.156 14 1.444 18 0.569 7 

11 Mode 1.505 17 1.100 16 1.838 13 

12 Std 0.541 6 0.415 11 1.090 10 

13 Var 0.425 5 0.318 6 0.754 9 

14 Median 1.542 18 1.027 14 3.867 17 

15 Range 0.377 3 0.316 3 0.256 4 

16 Sum 0.067 2 0.052 2 0.076 2 

17 Trapz 0.067 1 0.052 1 0.076 1 

18 Mad 0.555 7 0.379 7 1.518 12 

19 Moment 0.576 8 0.400 9 1.374 11 

20 Prctile 0.582 9 0.317 5 0.722 8 

 
 

 

4.4. Fourth stage 

     In this phase, the decomposability of the failures is investigated 
using the time-frequency domain derived from different statistical 

features. For this purpose, for each failure, a time-frequency 
domain is already considered as a pattern, and then for each new 

signal, it receives the corresponding time-frequency domain and 
compares with the four previous patterns. Coherence has been 

used to calculate the similarity of each time-frequency domain 
with patterns. The coherence number is closer to one, the two are 

more similar, and it approaches zero, they are more different. 
 

   The Tables 5a,b has two parts; first, each breakdown is compared 

to its own pattern, the sum of which is the True column. Then, the 
similarity of each failure with the other failure patterns is 

compared, and their sum is also the False column. Now the feature 
is appropriate to have a greater True value and simultaneously the 

False value is low. For this review, the Tables 5a,b is presented in 

Figure 1. 
 

 
 

Table 5a. Comparison with a pattern and the coherence rate 

No Feature (1,1) (2,2) (3,3) (4,4) 
True 

(Sum) 
(1,2) (1,3) 

1 kurtosis 0.49 0.73 0.40 0.84 2.45 0.15 0.37 

2 Rms 1.00 1.00 0.98 1.00 3.98 0.23 0.27 

3 IQR 0.99 0.94 0.90 0.99 3.81 0.22 0.27 

4 skewness 0.44 0.56 0.41 0.54 1.95 0.28 0.35 

5 Mean 1.00 1.00 0.98 1.00 3.98 0.24 0.27 

6 geomean 1.00 0.99 0.97 0.99 3.95 0.24 0.26 

7 harmmean 0.98 0.92 0.90 0.94 3.74 0.23 0.23 

8 trimmean 1.00 0.99 0.98 1.00 3.97 0.24 0.26 

9 Max 0.98 0.98 0.95 1.00 3.91 0.30 0.29 

10 Min 0.85 0.64 0.46 0.69 2.64 0.43 0.32 

11 Mode 0.77 0.60 0.72 0.66 2.74 0.36 0.22 

12 Std 0.99 0.99 0.97 1.00 3.95 0.24 0.28 

13 Var 1.00 1.00 0.99 1.00 3.98 0.35 0.39 

14 median 1.00 0.98 0.98 0.97 3.92 0.23 0.27 

15 Range 0.98 0.98 0.95 0.99 3.90 0.30 0.29 

16 Sum 1.00 1.00 1.00 1.00 4.00 0.66 0.62 

17 Trapz 1.00 1.00 1.00 1.00 4.00 0.66 0.62 

18 Mad 0.99 0.98 0.97 1.00 3.94 0.23 0.28 

19 moment 0.99 0.99 0.97 1.00 3.95 0.23 0.29 

20 Prctile 0.99 0.98 0.96 1.00 3.93 0.26 0.28 

 

 

 

 

 

 

Table 5b. Comparison with a pattern and the coherence rate 

(1,4) (2,1) (2,3) (2,4) (3,1) (3,2) (3,4) (4,1) (4,2) (4,3) 
False 

(Sum) 

0.07 0.18 0.19 0.39 0.38 0.15 0.10 0.10 0.39 0.12 2.57 

0.27 0.23 0.51 0.60 0.26 0.54 0.83 0.27 0.62 0.80 5.44 

0.25 0.22 0.47 0.46 0.25 0.49 0.75 0.26 0.44 0.70 4.78 

0.29 0.26 0.30 0.26 0.33 0.30 0.26 0.23 0.30 0.28 3.44 

0.26 0.23 0.48 0.56 0.26 0.51 0.81 0.26 0.57 0.79 5.25 

0.25 0.23 0.44 0.50 0.26 0.47 0.72 0.24 0.52 0.69 4.81 

0.22 0.23 0.38 0.41 0.23 0.41 0.51 0.22 0.42 0.47 3.96 

0.25 0.23 0.45 0.52 0.26 0.48 0.79 0.25 0.52 0.77 5.02 

0.33 0.28 0.62 0.79 0.28 0.67 0.81 0.32 0.79 0.79 6.27 

0.32 0.45 0.36 0.44 0.33 0.37 0.35 0.39 0.56 0.34 4.66 

0.27 0.42 0.20 0.40 0.07 0.06 0.16 0.38 0.56 0.15 3.24 

0.29 0.23 0.55 0.64 0.27 0.59 0.78 0.29 0.67 0.76 5.59 

0.35 0.34 0.67 0.70 0.38 0.72 0.83 0.34 0.73 0.81 6.59 

0.24 0.23 0.43 0.46 0.25 0.45 0.67 0.23 0.48 0.69 4.64 

0.34 0.28 0.63 0.79 0.29 0.67 0.81 0.33 0.79 0.80 6.32 

0.59 0.67 0.96 0.93 0.62 0.96 0.98 0.60 0.94 0.98 9.50 

0.59 0.67 0.96 0.93 0.62 0.96 0.98 0.60 0.94 0.98 9.51 

0.28 0.23 0.52 0.59 0.26 0.56 0.78 0.28 0.61 0.76 5.38 

0.29 0.23 0.53 0.61 0.27 0.57 0.78 0.28 0.63 0.76 5.47 

0.31 0.24 0.56 0.72 0.27 0.61 0.78 0.30 0.75 0.76 5.83 
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Figure 1. Coherence rate of each feature 

     In Figure 1, the horizontal direction is reversed for a better look. 
Now the feature should be selected to have a more True value and 

less False value, or closer to the origin of Figure 1, so the two 
harmmean and median features are the most appropriate ones. 

Figure 2 is displayed based on kurtosis feature according to 
[30],[31]. As you see, the first and third class, as well as the second 

and fourth, are relatively similar. On the other hand, as shown in 
the first to third tables, this feature has less resistance and 

repeatability in contrast to the change in load and the growth of the 
failure and even in a certain fault. Figure 3 is derived using the 

harmmean feature. This figure shows that all four classes are 
different, and the time-frequency domains of each fault with its 

failure pattern match entirely. On the other hand, in the tables of 
the first stage to the third stage can be perceived as a good 

repeatability status against load change and deterioration.  

 
Figure 2. The Fast Kurtogram [19] using kurtosis feature 

 

 
Figure 3. The Fast Kurtogram using harmmean feature 

5. Conclusion 

In this paper, based on the technique of Fast Kurtogram, the 
novel technique was introduced on other types of statistical 

features instead of the Kurtosis for the first time. To this purpose, 

we examined the issue of four classes of Bearing Fault Detection 

by using 20 different statistical features. This study was conducted 

in four stages. At first, the stability of each feature was checked 

for each failure. Then resistance to load change and failure growth 
was studied. In the end, the resolution and fault detection for each 

feature was calculated. From the above results, the best feature, 

which was both resistant and repeatable to different variations, as 

well as accurate detection and resolution was selected, and it was 

found that the Kurtosis is not well-positioned in comparison with 

other statistical attributes such as harmmean and median. In this 
research that was done based on kurtogram method, in fact instead 

of using kurtosis feature, other statistical features were utilized. In 

future work, it can be implemented that instead of using time 

signal in the frequency bounds, at the first the signal processing 

methods will be applied, then kurtosis feature will be calculated 

from signal processing, and the result will be compared with the 
kurtogram method. 

References 

[1] H. Yang, J. Mathew, L. Ma, Fault diagnosis of rolling 
element bearings using basis pursuit, Mechanical Systems 
and Signal Processing, Vol. 19, No. 2, pp. 341-356, 
2005/03/01/, 2005.  

[2] M. Liang, I. Soltani Bozchalooi, An energy operator 
approach to joint application of amplitude and frequency-

demodulations for bearing fault detection, Mechanical 
Systems and Signal Processing, Vol. 24, No. 5, pp. 1473-
1494, 2010/07/01/, 2010.  



Journal of Computational Applied Mechanics, Vol. 51, No. 1, June 2020 

 

143 

 

[3] W. Su, F. Wang, H. Zhu, Z. Zhang, Z. Guo, Rolling element 

bearing faults diagnosis based on optimal Morlet wavelet 
filter and autocorrelation enhancement, Mechanical Systems 
and Signal Processing, Vol. 24, No. 5, pp. 1458-1472, 
2010/07/01/, 2010.  

[4] D. Dou, J. Yang, J. Liu, Y. Zhao, A rule-based intelligent 
method for fault diagnosis of rotating machinery, 
Knowledge-Based Systems, Vol. 36, pp. 1-8, 2012/12/01/, 
2012.  

[5] B. Li, P.-y. Liu, R.-x. Hu, S.-s. Mi, J.-p. Fu, Fuzzy lattice 

classifier and its application to bearing fault diagnosis, 
Applied Soft Computing, Vol. 12, No. 6, pp. 1708-1719, 
2012/06/01/, 2012.  

[6] D. Wang, P. W. Tse, K. L. Tsui, An enhanced Kurtogram 
method for fault diagnosis of rolling element bearings, 
Mechanical Systems and Signal Processing, Vol. 35, No. 1, 
pp. 176-199, 2013/02/01/, 2013.  

[7] H. Xu, G. Chen, An intelligent fault identification method 

of rolling bearings based on LSSVM optimized by 
improved PSO, Mechanical Systems and Signal Processing, 
Vol. 35, No. 1, pp. 167-175, 2013/02/01/, 2013.  

[8] H. Al-Bugharbee, I. Trendafilova, A fault diagnosis 
methodology for rolling element bearings based on 
advanced signal pretreatment and autoregressive modelling, 
Journal of Sound and Vibration, Vol. 369, pp. 246-265, 
2016/05/12/, 2016.  

[9] P. Baraldi, F. Cannarile, F. Di Maio, E. Zio, Hierarchical k-
nearest neighbours classification and binary differential 
evolution for fault diagnostics of automotive bearings 
operating under variable conditions, Engineering 
Applications of Artificial Intelligence, Vol. 56, pp. 1-13, 
2016/11/01/, 2016.  

[10] V. Vakharia, V. K. Gupta, P. K. Kankar, Bearing Fault 
Diagnosis Using Feature Ranking Methods and Fault 

Identification Algorithms, Procedia Engineering, Vol. 144, 
pp. 343-350, 2016/01/01/, 2016.  

[11] J. Singh, A. K. Darpe, S. P. Singh, Rolling element bearing 
fault diagnosis based on Over-Complete rational dilation 
wavelet transform and auto-correlation of analytic energy 
operator, Mechanical Systems and Signal Processing, Vol. 
100, pp. 662-693, 2018/02/01/, 2018.  

[12] M. Ö. Yaylı, Stability analysis of gradient elastic 

microbeams with arbitrary boundary conditions, Journal of 
Mechanical Science and Technology, Vol. 29, No. 8, pp. 
3373-3380, 2015/08/01, 2015.  

[13] M. Özgür Yayli, An efficient solution method for the 
longitudinal vibration of nanorods with arbitrary boundary 
conditions via a hardening nonlocal approach, Journal of 
Vibration and Control, Vol. 24, No. 11, pp. 2230-2246, 
2018/06/01, 2016.  

[14] M. Ö. Yayli, Buckling analysis of a microbeam embedded 

in an elastic medium with deformable boundary conditions, 
Micro & Nano Letters, Vol. 11, No. 11, pp. 741-745, 2016.  

[15] M. Ö. Yayli, On the torsional vibrations of restrained 
nanotubes embedded in an elastic medium, Journal of the 
Brazilian Society of Mechanical Sciences and Engineering, 
Vol. 40, No. 9, pp. 419, 2018/08/14, 2018.  

[16] M. Ö. Yayli, Torsional vibrations of restrained nanotubes 
using modified couple stress theory, Microsystem 

Technologies, Vol. 24, No. 8, pp. 3425-3435, 2018/08/01, 
2018.  

[17] A. Moradi, H. Makvandi, I. B. Salehpoor, Multi objective 
optimization of the vibration analysis of composite natural 
gas pipelines in nonlinear thermal and humidity 
environment under non-uniform magnetic field, JOURNAL 
OF COMPUTATIONAL APPLIED MECHANICS, Vol. 48, 
No. 1, pp. 53-64, 2017.  

[18] P. Alimouri, S. Moradi, R. Chinipardaz, UPDATING 
FINITE ELEMENT MODEL USING FREQUENCY 

DOMAIN DECOMPOSITION METHOD AND BEES 

ALGORITHM, THE JOURNAL OF COMPUTATIONAL 
APPLIED MECHANICS, Vol. 48, No. 1, pp. 75-88, 2017. 
English 

[19] M. Goodarzi, M. N. Bahrami, V. Tavaf, Refined plate 
theory for free vibration analysis of FG nanoplates using the 
nonlocal continuum plate model, Journal of Computational 
Applied Mechanics, Vol. 48, No. 1, pp. 123-136, 2017.  

[20] A. Zargaripoor, A. Bahrami, M. Nikkhah bahrami, Free 
vibration and buckling analysis of third-order shear 

deformation plate theory using exact wave propagation 
approach, Journal of Computational Applied Mechanics, 
Vol. 49, No. 1, pp. 102-124, 06/01, 2018. en 

[21] A. Zargaripoor, M. Nikkhah bahrami, A wave-based 
computational method for free vibration and buckling 
analysis of rectangular Reddy nanoplates, Journal of 
Computational Applied Mechanics, 05/23, 2018. en 

[22] M. Zarchi, B. Attaran, Performance improvement of an 

active vibration absorber subsystem for an aircraft model 
using a bees algorithm based on multi-objective intelligent 
optimization, Engineering Optimization, Vol. 49, No. 11, 
pp. 1905-1921, 2017/11/02, 2017.  

[23] M. Zarchi, B. Attaran, Improved design of an active landing 
gear for a passenger aircraft using multi-objective 
optimization technique, Structural and Multidisciplinary 
Optimization, Vol. 59, No. 5, pp. 1813-1833, 2019/05/01, 

2019.  
[24] S. Patil, V. Phalle, Fault Detection of Anti-friction Bearing 

using Ensemble Machine Learning Methods, International 
Journal of Engineering, Vol. 31, No. 11, pp. 1972-1981, 
2018. En 

[25] M. Heidari, Fault Detection of Bearings Using a Rule-based 
Classifier Ensemble and Genetic Algorithm, International 
Journal of Engineering, Transactions A: Basics, Vol. 30, 

pp. 604-609, 04/01, 2017.  
[26] X. Li, L. Han, H. Xu, Y. Yang, H. Xiao, Rolling bearing 

fault analysis by interpolating windowed DFT algorithm, 
International Journal of Engineering, Transactions A: 
Basics, Vol. 32, pp. 121-126, 01/01, 2019.  

[27] A. Moshrefzadeh, A. Fasana, The Autogram: An effective 
approach for selecting the optimal demodulation band in 
rolling element bearings diagnosis, Mechanical Systems and 

Signal Processing, Vol. 105, pp. 294-318, 2018/05/15/, 
2018.  

[28] J. Antoni, The spectral kurtosis of nonstationary signals: 
Formalisation, some properties, and application, in 
Proceeding of, 1167-1170.  

[29] Diagnostic Techniques, Vibration‐based Condition 

Monitoring, pp. 167-227, 2010/12/19, 2010.  
[30] J. Antoni, R. B. Randall, The spectral kurtosis: application 

to the vibratory surveillance and diagnostics of rotating 
machines, Mechanical Systems and Signal Processing, Vol. 

20, No. 2, pp. 308-331, 2006/02/01/, 2006.  
[31] J. Antoni, Fast computation of the kurtogram for the 

detection of transient faults, Mechanical Systems and Signal 
Processing, Vol. 21, No. 1, pp. 108-124, 2007/01/01/, 2007.  

 


