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1 Introduction

Point-in-polygon is a basic operation in geographical information systems (GIS), and
has applications in areas that deal with geometrical data, such as computer graphics,
computer vision, and motion planning [7, 9]. This problem is defined as: given a polygon
P and a query point ¢, determine whether point ¢ is inside P or not. For instance,
we can imagine whenever we click with a mouse on a shape in the screen, a point-in-
polygon test is solved [13]. This operation is also called point-inclusion test, and used
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in several tasks such as ray tracing and point location. If the number of points is too
high or the given polygon is constant, a preprocessing is done to increase the efficiency
and speed of the test. In ray tracing and other applications, initial polygons are in 3D.
It is good to project polygon and query point into 2D for simplifying the computation
by ignoring one component. The best component for ignoring usually is the component
when it ignores a polygon with larger area is obtained [4]. This can be done by taking
absolute of the polygon plane normal components, and finding the largest one. Doing
this work for a polygon may be taken more memory but it increases the intersection test
speed. However, when we do not have any guarantee that the vertices of the polygon are
on a plane, the projection may be useful [4, 19].

A method for reducing the query time is to use a bounding rectangle of the polygon. If
point ¢ is outside of this bounding rectangle, ¢ can not be in P and the problem will be
solved. By assuming that the probability of the point ¢ be in P is %, the expected running
time can be reduced to the half. Since the defining coordinates of the bounding rectangle
of a polygon is a common item that is stored in a vector-based GIS systems, this operation
does not use more than four boolean operations and it can be done before each point-
in-polygon algorithm. Although, point-in-polygon problem does not seem such hard, but
when the polygon is concave and has many vertices, an efficient and reliable algorithm
is necessary [7, 9]. Several algorithms are proposed for point-in-polygon problem, but,
some of them have disadvantages in implementation or running time. The efficiently of
an algorithm can be evaluated by: the required query time to respond the answer of a
query, required storage for the data structure, and the preprocessing time which is used
to arrange the data for searching.

1.1 Backgrounds

In this subsection, we will present surveys on point-in-polygon algorithms and their com-
plexity. In the following, we assume that the polygon is simple polygon, namely, the
edges of the polygon only have intersection in its vertices. There are some algorithms
for this problem in simple polygons, but two of them are very popular. One is counting
ray crossing and the other is winding number, which we will explain them below. One of
the earliest algorithm for point-in-polygon problem is the ray crossings test or even-odd
rule. Using this method, we can determine in O(n) time without preprocessing, whether
a point is inside a simple polygon. The earliest presentation of this algorithm is relevant
to Shimrat [16], though it has a bug in it, corrected by Hacker [6]. Draw a line from
query point to the infinity (usually, a ray parallel to the axes, say +x, is used), and count
the number of intersections of this ray with the edges of the polygon. If this number is
odd, query point is inside. In spite of this idea seems simple; its implementation is not
easy. Ray may be hit on a vertex, or the query point ¢ may be located on the boundary
of P. In these cases, we want result ¢ is in P, because P is closed. This algorithm is
workable for both convex and concave polygons and vector-based images. Another algo-
rithm is the winding number or sum of angles method. Assume, we stay in point ¢ and
look at the point p that moves through the boundary of P. If ¢ be inside P, then, sum
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of the angles is 27, otherwise it is 0. This means that we use sum of angles between ¢
and each two adjacent vertices of P. The angles may be positive, negative or zero. This
algorithm is workable for both convex and concave polygons. Although, sum of angles is
a pleasing algorithm but its dependency to floating point and trigonometric computation
make it very slow [8, 13, 18]. There are other methods such as swath method [15], grid
cell method [1, 20], and triangle fans methods (based on decomposition to triangles) for
convex [2] and general polygons [3, 5]. All of these algorithms have also O(n) running
time. For more details on complexity of these algorithms the reader is referred to [7, 9, §].
Since in this paper, we focus on the algorithm for convex polygons. In the following, we
review the algorithms available for inclusion in convex polygons. Sum of area method is
an algorithm that is used only for convex polygons. This algorithm connects a line from
query point ¢ to vertices of the polygon and splits it to the triangles. If the sum of areas
of triangles be equal to the area of the polygon, then ¢ is inside. Clearly, this method
needs O(n) time. Sign of the offset method [17] assumes that the vertices of the polygon
P are listed in counterclockwise (CCW) order. If the distance between query point g and
the edge V;V;;1 has the same sign as the distance between V;,, and edge V;V;,; for all
edge of P, then point ¢ is inside. This means that the point ¢ is at the same side of any
two consecutive edges of P. This algorithm is only valid for convex polygons. Orientation
method [12] is another strategy which tests the point against each edge in turn. It uses
an approach same as sign of offset method and only applies for convex polygons. If the
point g be on the left of all edge of the polygon, then ¢ is inside. Left-on test takes O(1)
time, so, the algorithm needs O(n) time in overall. This method is better than the sum
of area method, because it needs fewer memory and computation. This algorithm uses
less additional storage in comparison with other methods, and it can be coded easily [7].
Preparata and Shamos [14] discussed a method which is called wedge method. The
polygon is preprocessed by adding a central point c¢. For point ¢ in the convex polygon,
n wedge is formed with the lines that passed through ¢ and the vertices of the polygon.
Similar to the swath method, wedge which includes the point ¢ is found in O(logn) time
with a binary search tree structure. Given the wedge, we need only compare ¢ to the
unique edge of P that cuts it, and we will find whether ¢ is internal to P. See Figure 1.
However, this algorithm has various limitations and tends to bog down when actually
coded due to expensive operations. It is slow for polygons with few edges, because the
initial cost is high, but the binary search makes it fast when the number of edges is
high [7]. It can be seen, this is an algorithm that found in O(logn) query time, whether
a point ¢ is inside a convex polygon or not. But it uses O(n) preprocessing time to
create the wedges. So, it is an O(n)-time algorithm in general. Finally, O’'Rourk [13]
showed that using a modified version of binary search one can find the extreme points
of a convex polygon in O(logn) time. In fact, he showed how the intersection of a line
with a convex polygon can be solved by applying the extreme finding algorithm. Now,
suppose we draw a horizontal line passing through query point ¢. In this case, by finding
two intersection points of the horizontal line passing through query point ¢ with a convex
polygon sides, it is possible to determine whether point ¢ is inside or outside the convex
polygon. Thus, this algorithm that we call as stabbing method, can solve the problem
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Figure 1: Division into wedges. By binary search we find the wedge that ¢ lies in it. By
comparing ¢ against edge pps, we find that it is external.

Table 1: A summary on the complexity of point-in-polygon algorithms in convex polygons,
where n is the number of the polygon vertices.

Algorithm Preprocess time  Query time Storage Polygon type

Sum of area o) O(n) O(n) convex
Sign of offset O(1) O(n) O(n) convex
Orientation O(1) O(n) O(n) convex
Wedge O(n) O(logn) O(n) convex
Stabbing O(logn) O(logn) O(n) convex
Ours o) O(logn) O(n) convex

of point-inclusion test in a convex polygon in O(logn) time by considering an O(logn)
preprocessing time to find the extreme points. Table 1 shows a summary of the complexity
of point-in-polygon algorithms. The last row indicates on our proposed algorithm. In the
next section, we present a new algorithm for the point-inclusion test problem in a convex
polygon. The main advantages of the new algorithm over the previous algorithms are
that it does not need to be preprocessed and can easily be expanded to higher dimensions
and polyhedrons.

2 The proposed algorithm

In this section, we propose an O(logn)-time algorithm for convex polygon inclusion test
without any preprocessing time. Let P be a convex polygon with n vertices Vg, Vi, ..., V,, =
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(a) w

Figure 2: (a) Query point ¢ is in the right side of the vector V4V, /2 (b) The proposed
algorithm after two iterations detects that ¢ is in triangle AVyV,, sV},/4 and so, it is in P.

Vo in counterclockwise (CCW) order that are stored in an array. Note that, storing the
vertices of a polygon in CCW order is a common way in most graphical library softwares.
Let QR denotes the query range, and the initial QR be [V, V1, ..., V,,_1,V},]. First, we
assume that a =V and b =V}, 2, and compute a vector:

fT: a7): Vn/g —‘/0- (1)

The line containing this vector splits vertices of the convex polygon into two sets. More-
over, this line partitions the plane into left half-plane (LHP) and right half-plane (RHP).
We can determine in O(1) time, whether the query point ¢ is in the right or left half-plane.

Then, we make a triangle by two vertices V, V,,/2 and another middle vertex between

these two vertices. At the first iteration, if ¢ be in right half-plane, the index of the middle
vertex is [(0 +n/2)/2] = n/4, and else, it is [(n/2 +n)/2] = 3n/4. If the query point ¢
be in this formed triangle, we stop the algorithm and else we update QR and vector A
and follow this recursive process until we find the query point ¢ in a triangle or finish the
search, since it satisfies the stop conditions. Figure 2 illustrates an example.
A special case may be occur when the point ¢ lies on the line that contains vector A. But
this problem has a simple solution, we should only check whether ¢ is in segment ab or
not. This can be done easily in O(1) time. Now, we can present this algorithm in more
details as follows:

Algorithm 1: Point in Convex Polygon (P, q)
Input: A convex polygon P defined by its vertices Vg, Vi,...,V,, and V) = V,, in CCW
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order and a query point q.
Output: YES, if ¢ be inside P, and NO otherwise.

1: F + False;

2: a <+ 0

3 b+ n/2;

4: c+n;

5: A Vi — Vs

6: while (1F)

T if ¢ € Line(A) AND q € Segment(ab) then
8: F < True; break;

9: if ¢ € Line(A) AND ¢ ¢ Segment(ab) then
10: break;

11:  if ¢ € RHP(A) then

12: a+a,be [(a+b)/2],cb;

13: else

14: a+bb+ [(b+c)/2],c+c

15: if (a+b)/2=0a OR (b+¢)/2 =0 then// q is outside of P
16: break;

17: if ¢ € Aabc then

18: F +— True;

19: end while

20: if F = True then

21: output 'YES’;

22: else

23: output 'NO’;

In the following, we explain how the proposed algorithm solves the point-in-polygon prob-
lem in convex polygons in O(logn) time. Let the initial QR be [V, V4, ..., Vi1, V,,]. Con-
sider running the proposed algorithm on two convex polygons which are shown in Figure 3.
For the convex polygon in Figure 3 (a), after three time iterations of the while loop, in
line 15 of the algorithm, we reach in a situation that does not exist any triangle. This
means that, we have three vertices V,,V}, and V, that they do not form a triangle, and
they degenerate to a line. Hence, the algorithm has finished and reported that the point ¢
is outside of the polygon. Similarly, for the case query point ¢ be inside a convex polygon
(Figure 3 (b)), in the final iteration of the while loop, we reach to a triangle which in-
cludes the query point ¢, and the algorithm returns YES. So, in each iteration of the while
loop, this algorithm reduces QR to 1/2QR and follows the search in this new range. In
fact, this is a geometric paradigm of the binary search. Therefore, if T'(n) be the running
time of the algorithm, we have: T'(n) = T'(n/2) + O(1). This equation solves to O(logn).
Thus, the Algorithm 1 can report if a query point ¢ is inside a convex polygon or not, in
O(logn) time at the worst case. It can also report the output in O(1) comparison in the
best case, when the point ¢ is inside the first formed triangle. In addition, Algorithm 1
only uses O(n) storage for storing polygon vertices and O(1) additional variables in the
process of the algorithm.
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QR=]0,1,2,3,4,5,6,7,8,9] QR=[4,5,6,7,8,9]

q & AViViVy 4 q & AVaVshr
TN
= 6
o]
7
_ QR=16,7]
QR=[4,5,6,7] (b+¢)/2=b

right

QR=[0,1,2,3,4,5,6,7.8] U
q ¢ ALV,

QR=[2,3,4]
q € AWKV,

(b)

Figure 3: (a) Point ¢ is outside of P, because the last test shows that: (b+¢)/2 = b. This
means that, there is not any triangle which contains g. (b) After three iterations of the
while loop, Algorithm 1 finds that ¢ is in the triangle AV,V5V, and so, it is in P.
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x

Figure 4: (a) Query point ¢ is inside the cube P. (b) Project of the query point ¢ and
the polyhedron P on plane zy. (b) Project of the query point ¢ and the polyhedron P on
plane zz.(b) Project of the query point ¢ and the polyhedron P on plane yz.

2.1 Inclusion test in 3D polyhedrons

Determining whether a point is inside a polyhedron has many application such as collision
detection. This problem can be solved in a convex/ non-convex polyhedron similar to the
two-dimensional one by generalizing the two methods of winding number and counting
ray crossing [13], where they also need O(n) time.

In the following, we show that our proposed algorithm for convex polygons can also be
extended to an O(log n)-time algorithm with O(n) preprocessing time for convex polyhe-
drons. The main step of the algorithm is to first project the polyhedron P and the query
point g on three planes zy, xz and yz. In this case, if the point ¢ is inside the polyhedron
P, the projection of that point must be simultaneously in the projection of the polyhedron
P on three planes xy, xz and yz. See Figure 4. After these three projection, we can do
three point-inclusion test for the projection of the query point and the projection of the
polyhedron on three planes zy, zz and yz, by using the Algorithm 1. Details of the pro-
posed algorithm for point-inclusion test in a three dimensional polyhedron are presented
below.

Algorithm 2: Point in Convex Polyhedron (P, ¢q)
Input: A convex polyhedron P and a query point q.
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Output: YES, if ¢ be inside P, and NO otherwise.

[Pry, qzy| < Project of polyhedron P and query point ¢ on plane zy;

[Py, qz2] < Project of polyhedron P and query point ¢ on plane zz;

[Pyz,qyz] < Project of polyhedron P and query point ¢ on plane yz;

if ((gwy € Puy) = True) AND ((¢y» € Py.) = True) AND ((gy. € Py.) = True) then
output 'YES’;

else
output 'NO’;

Since projecting the query point and polyhedron can be done at a constant time, and
storing convex hull of the polygons which are projected on three planes in CW or CCW
order takes O(n) time according to the proposed algorithm due to Melkman [11]. There-
fore, we need O(n) preprocessing time, for projecting the polyhedron and storing three
new convex polygons. According to O(logn) time, we need to check the inclusion test for
projected query point and polygon on each plane by Algorithm 1. The total time of the
algorithm will be O(logn) with O(n) preprocessing time.

Note that the proposed algorithm is much more efficient than an O(n) time algorithm
for polyhedrons. Because, if the structure of a three-dimensional polyhedron in memory
is fixed, we only need one time to apply the O(n) preprocessing time for projecting
the polyhedron on three planes. After that, every time we need to answer a query on
that polyhedron, it only need O(logn) time, while in an algorithm with O(n) time, the
algorithm requires O(n) time for answering to each query.

3 Conclusion

In this paper, we have presented a simple algorithm for point-inclusion test problem in
convex polygons. The proposed algorithm is an O(logn)-time algorithm for convex poly-
gon inclusion test. The proposed algorithm does not use any preprocessing or complicated
data structure, and only needs O(n) storage space. We also extend our point-inclusion
test algorithm to an O(logn)-time algorithm with O(n) preprocessing time for convex
polyhedrons in three dimensional space.
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