Development Optimization Model of a Zero-Defect Single Sampling plan

Nakhaeinejad, Mahdi*a, Fallahnezhad, Mohammad Saberb, Yazdi, Soroushb, Borabadi, Fatemehc

a: Department of Industrial Engineering, Yazd University, Yazd, Iran.
b: Department of Industrial Engineering, Science and Art University, Yazd, Iran.
c: Department of Industrial Engineering, University of Bojnord, Bojnord, Iran.

Abstract

One way to check the products quality is to inspection the lot inputs. The focus of this paper is on a model of non-linear integer programming for determining an optimal single sampling plan for inspecting different parts so that the total quality control cost is minimized and we try to improve the quality of inputs to the assembly line by applying a rectifying inspection policy. The optimization model includes the inspection cost, the cost of non-conforming items entering the assembly line and the cost of rejecting the items. In this research, it is assumed that the inspection is perfect and zero acceptance number policy is employed for inspection. If a non-conforming item is found in the sample, the total lot is rejected. Each part is different in the risk of non-conforming items, the cost of non-conforming items, the size of the lot and the inspection cost. In the practical example, it can be seen that the rate of items that is defective, followed by the defective items cost and the cost of lot rejection, have been greatly reduced following the proposed methods and minimized the cost of quality control.

Keywords

Acceptance sampling; Non-linear integer programming; Incoming inspection; rectifying inspection.

1. Introduction

The complexity of the products that are being produced today has increased dramatically, and consequently quality control of the products is more difficult, and the customer demands a durable product, as a result, quality is an important aspect in product development and is a key factor in achieving target markets and gaining competitive advantages. In order to assure the quality of product, there are various tools; one of these tools is to apply sampling for acceptance, so that after collecting a random sample from the lot, the selected quality characteristic is inspected, then according to the information obtained from this inspection, decision is made on the acceptance or rejection of the lot. Accepted lots in the production line are used, and rejected lots are reworked or returned to the supplier [1].

Recently, using zero-acceptance sampling has been growing. In this method, a lot is accepted if there are not any non-conforming items in the sample; this means that the number of non-conforming items should be equal to zero. Sampling method with zero acceptance number

1 Corresponding author: m.nakhaeinejad@yazd.ac.ir

Received: 27 June 2020, Revised: 05 July 2020, Accepted: 19 July 2020
emphasizes on the lack of non-conforming items and it is easier to use for manufacturers and consumers. In this method, since the acceptance number is zero, and the lot quality has a reciprocal relationship with sample size, thus its optimization is of great importance.

Determining the sample size is significant because of its effect on the sampling costs. If the lot does not inspect, then the non-conforming items cost will be incurred and if the inspection is 100%, the inspection cost will increase significantly, so the choice of the optimal sample size should be made balance between these two costs.

In order to determine the sample size, there are different methods that one of these methods is to design the economic model that determines all related qualitative costs and aims to minimize the total cost of the capability to optimize the sample size.

2. Literature Review

To have products with high quality, the product components and the relationships between them should fall within the tolerances for the quality characteristics. Therefore, the manufacturer must inspect the components before the assembling, to ensure that they are well assembled in the product. According to the standards if the faulty items enter the assembly line, the system or product will not function properly, and this will lead to the additional cost for the company. In order to minimize production costs, sampling plans are a method to prevent the usage of non-conforming components into the final product. 100% inspection is expensive and time consuming and does not guarantee acceptance without inspection of mismatched items in finished product quality; so, a research has been done to optimize sampling plans to reduce costs. We will continue to study the research performed in this field.

Most of the activities carried out in the field of sampling have been analytical; Wetherill and Chiu [2] have also specifically referred to this issue. Several articles have been written in the field of sampling that most of them are based on the articles written by Hald [3]. One of the main reasons for applying the approach of acceptance sampling is to consider the cost of the inspection methods. For the first time, Lieberman and Resnickov [4] proposed a statistical sampling approach for the inspection of incoming lot, but the economic design for acceptance sampling was presented by Bennett et al [5]. Schmidt et al [6] also introduced another model for variable sampling plan, in which a step-by-step model was developed to calculate the cost of quality. In the proposed model, as long as quality characteristic is within the acceptance region, the cost is considered to be zero, and when the quality characteristic is outside of the acceptance region, fixed costs will be incurred also. With the introduction of Taguchi’s [7] loss function, there was a revolution in the vision towards quality costs.

There are several procedures to design an acceptance sampling plan. One of the important approaches in this area is to consider the risk of accepting or rejecting the lot and economic factors. In this approach, an optimal sampling plan is obtained by taking into account the cost of rejection or acceptance.

Humzic et al [8], presented an economic model based on a zero-acceptance single sampling plan. In this paper, two models have been investigated. The first model was designed, regardless of labor costs and the second model is based on labor costs for inspection. The proposed model provides an optimal solution for the problem. Qin et al [9] also provided a non-linear integer programming
model in 2015 to determine a zero-acceptance single sampling plan for inspection of the items entering to the assembly line. This model determined the optimal sample size for different parts. In this research, a three-step solution algorithm is proposed that significantly reduces the problem-solving time.

Willemain et al [10]. Presented an economic model for the 100% inspection problem and single sampling plan with and without of inspection errors so that they used the Taguchi model to analyze the difference between the quality characteristic value and its target value. The proposed scheme is a new design due to the use of a continuous loss function for comparison study and analyzing the inspection errors effect and the greater clarity of the model in treating with the effect of the error and also the possibility of using the model in designing control charts.

Ferrell and Choker [11] proposed an economic method for determining the optimal sampling plan by taking into account consumer and producer loss functions. In their study, they designed a single acceptance sampling plan for obtaining sample sizes and optimal acceptance numbers. The Taguchi continuous loss function has been used to determine the amount of deviation from the target level in their study. They also considered the inspection error in their model.

Niaki and Fallahnezhad [12] used Bayesian inference and dynamic planning for designing a sampling plan. The proposed model has considered cost and risk function in the objective function to obtain an optimal policy. Niaki and Fallahnezhad initially modeled the problem as a dynamic planning and then minimized the cost / (1-risk) ratio to identify the optimal decision. Ultimately, they designed and defined control thresholds to make decisions easier.

Fallahnezhad and Hosseini Nasab [13] introduced a new control procedure for acceptance sampling schemes. Decisions are made on the basis of the number of faulty items in the inspected sample. The purpose of this model is to find a constant control level that minimizes total costs, including the rejection cost, inspection cost, and the non-conforming item cost. Optimization is carried out using negative binomial distribution and Poisson distribution.

Hsu and Hsu [14] provided an economic plan for determining an optimal sampling scheme in a two-stage supply chain based on the quality cost and internal failure by taking into account consumer and producer risks. They concluded that the proposed design was very sensitive to the quality of the manufacturer product.

Fallahnezhad and Niaki [15] developed an optimization model to distinguish the optimal values of the control thresholds, so that they satisfy the constraints on the probabilities of a type 1 and type 2 errors. They have used Markov model to extract the total cost of the acceptance sampling plan, including the cost of acceptance and inspection.

Fallahnezhad and Aslam [16] provided a new sampling plan for decision-making according to the cost-objective function. They used Bayesian inference to update the probability distribution function of non-conforming proportion. In addition, Bayesian inference, along with a recursive induction, has been used to estimate the expected cost of different decisions.

Li and et al [17] reviewed the military standard MIL-STD-1916. This standard is in the form of zero acceptance number. This means that if the non-conforming items are not detected then the lot will be accepted and if any non-conforming items are found, the total lot will be rejected. In this research, the author states that if there are no non-conforming items in the sample, it does not mean that the entire lot is in accordance with the specification. Military standards also need a large number
of human resources to inspect the sample with large sizes that are not feasible in practice. Champernowne's research [18] focuses on the economic outcomes of the problem using sampling plan as quality tool in the process. Champernowne has considered three states in his problem:

1. Average lot quality for testing and testing and the change between qualitative lots of average.
2. The inspection cost and its dependence on the quantity of inspection.
3. Costs associated with making a mistake to accept or making mistakes to reject any lot and dependence of this cost to the cost of quality in each lot.

Champernowne (1953) developed an economic model to distinguish whether a lot be accepted or rejected. He focused on the economic aspects of the problem. This means that when the results are within the economic range, the lot is accepted even if there were non-conforming items in the sample. Bernard [19] believes that Champernowne's assumptions are not available in practice. Bernard proposed that considering a probability distribution for the number of non-conforming items is required in order to solve the problem.

Hamaker [20] has provided three different sampling methods:

1- Sampling tables. 2- Data collection. 3- Design of sampling plans. He also presented an economic and concluded that it would be ineffective to inspect all items in the lot if there is little chance to detect non-conforming items in the lot.

Calvin, [21] state similar concerns with regard to non-conforming items. The author believes that most of the managers only look for accessing the non-conforming zero, and they do not pay attention to staying at the non-conforming level of zero. The author believes that there are various statistical methods, including control charts and acceptance sampling schemes that managers could apply for their products to remain at a non-conforming level of zero.

If lot is rejected then production may decrease, or may be stopped due to lack of parts. Salameh and Jaber [22] proposed the optimal inventory level of items that may include non-conforming items. They shown that the number of items in each order increases if the number of non-conforming item increases. On the other hand, Maddah and Jaber [23] observed that ordering a large number of items with poor quality is not always very profitable, so a reasonable balance between transportation costs and inventory costs is needed in order to achieve more profit.

Taghipour and Benjewik [24] and Taghipour and et al [25] considered the economic aspect of the sampling plan. They considered two different kinds of failures in the system: a hard failure that breaks a system and a soft failure that does not break the system but reduces the system's effectiveness. Therefore, if the failures are not soft, the system will not be efficiently implemented and will increase the system cost.

Shi and Zhou [26] provided a brief overview of different methods to improve the quality control for the processes with multiple stages. Some of the important methods are the physical method, the data-driven model and statistical process control. Physical methods need past data of the process. The data-driven model requires adequate knowledge in mathematics and statistics as well as a database for proper estimation. Data-driven models are more attractive because do not need past information to use in the process. Statistical process control has a probability of wrong alarm and based on the findings of Shi and Zhou; there is no ability to discriminate between changes in different stages.
Starbird [27] has shown that if a manufacturer uses a zero-acceptance number for the inspection of incoming items then it exacerbates the supplier to deliver the lots with zero non-conforming items. In addition, when manufacturers use, the method of 100% inspection or zero acceptance number for inspection is appropriate for inspection in manufacturer.

Fernandez [29] has presented a nonlinear integer programming problem for acceptance sampling plan for defective items per unit by considering producer and consumer risks that minimizes expected surplus costs. An algorithm to set the optimal number of units for inspection is also presented. In addition, Fernandez [30] has proposed a nonlinear integer programming problem to determine a binomial sampling scheme to investigate large lot with consumer and producer risks.

Lu Cui et al. [31] have presented a new review to redesign sample size as a time-adapted sequence sampling design to determine sample size. The new approach results in optimizing the design over a wide range of design parameters.

Sommer, And Steland [32] have proposed a new sampling method as a multi-stage framework in which the accumulation is monitored at several time points and is accepted only if it goes through all stages.

Ahmadi et al. [33] have provided a Bayesian problem of forecasting future observations with an exponential distribution according to an observed sample, taking into account both the experiment total cost and the mean square error of prediction in order to distinguish the sample size.

Determining the sample size is important when a zero-acceptance number method is used. The sample size for inspection is determined by different methods, including:

1. Using standard sampling inspection tables like Dodge and Romig [28].
2. The use of acceptance criteria, like the acceptance quality level (AQL) and the lot tolerance proportion defective (LTPD) based on producer and consumer risks.
3. Developing an economic model to take all the costs associated with quality.

Among these methods, the economic model provides a better ability to optimize the sample size [9]. Sample size determination is of great importance due to its cost impact, and by obtaining the optimal sample size we can reduce the quality control costs. The proposed model provided an optimal and economical sample size considering all costs, which minimizes the quality control cost.

3. The problem formulation

When the acceptance number in the sampling plan is zero, random samples are selected from each section lot by the inspectors. If there were no non-conforming items in the sample, the lot is accepted, otherwise the total lot is rejected and rectifying inspection will be done. Inspections in different sections can be formulated as an optimization problem, which aims to reduce total costs by selecting the optimal sample size for each section. By increasing the sample size in each section, the non-conforming item inputs to the assembly line decreases and reduces the expected cost of non-conforming items. Also increasing the sample size increases the inspection time. Therefore, we must choose the optimal sample size by determining the right strategy.
In determining the sample size in each section, the inspection time must be specified. Also, the values of input variables to the assembly line are different in each segment. This problem modeled in the form of nonlinear integer programming problem as follows:

Index:

\[I : \{ i \mid 1, 2, \ldots, M \} \]

Variables:

\(n_i \) : sample size

\(d_i \) : The number of non-conforming items in each lot from section \(i \), which varies from zero to \(N_i \).

\(d_i \) : \{0, 1, 2, \ldots, N_i \}

Parameters:

\(N_i \) : Lot size.

\(T \) : Available time of inspection.

\(C_i \) : The cost of non-conforming item in the section \(i \) if accepted.

\(C'_i \) : The cost of a non-conforming item in the section \(i \) if rejected.

\(L \) : Labor cost per time unit.

\(r_i \) : The rate of non-conforming items in the section \(i \).

\(t_i \) : Average time of inspection of one item in the section \(i \).

\(\alpha \) : Producer risk (probability of rejecting a good lot).

\(\beta \) : Consumer risk (probability of accepting a bad lot).

\(AQL \) : Acceptable quality level.

\(LQL \) : Limiting quality level.

\(b(d_i|N_i, r_i) \) : The probability that section \(i \) has \(d_i \) non-conforming items so that the lot size is \(N_i \) and the rate of non-conforming items is \(r_i \).

\(h(0|N_i, d_i, n_i) \) : The probability of finding a non-conforming item in the section \(i \) such that the lot size is \(N_i \) and the number of non-conforming items is \(d_i \) and the size of the sample size is \(n_i \).
The goal of the problem is to distinguish the optimal sample size for each section so that the total cost includes the inspection cost, the cost of non-conforming items and the rejecting cost of the lot would be minimum. The equation for total cost can be elaborated as following:

\[
(Cost \ of \ non\-conforming \ items \ conditioned \ on \ accepting \ the \ lot + \ inspection \ cost) \times \ (probability \ of \ acceptance) + (lot \ rejection \ probability) \times (lot \ rejection \ cost + lot \ total \ inspection \ cost)
\]

The constraint (2) shows the maximum inspection time for inspecting the M parts. For each lot in each part, there are two decisions (acceptance, rejection) and the probability of \(d\), non-conforming items in the lot of part \(i\) follows the binomial distribution as displayed in equation (3). The number of non-conforming items in the sample will be allowed to be zero for accepting the lot and since the inspection is done without replacement of non-conforming items, as a result of the hypergeometric distribution is employed in Equation (4). For evaluating the probability of accepting the lot, constraint (5) denotes the producer risk that evaluates the probability of accepting a good lot. The constraint (6) is the consumer risk and shows the probability of accepting a bad lot. The constraint (7) shows the sample size range from zero to \(N_i\), and the constraint (8) indicates that the sample size values are integer. If the sample size is zero, the inspection will not be done and the risk of accepting a lot with \(d\), non-conforming items will be high. If the size of the sample is \(N_i\), the inspection is done 100% and the acceptance risk for a lot with \(d\), non-conforming items is zero, but the inspection cost will be high. By increasing the sample size, the probability of accepting lot with \(d\), non-conforming items decreases. Therefore, the larger sample size is expected cost to have a less defectives input to the assembly line.

Since we are using zero acceptance number, thus the sample is inspected and if non-conforming items are not found, lot is accepted, hence the acceptance cost includes the inspection cost and cost
of non-conforming items entering the assembly line, so that the cost of a defective input to the assembly line is C_i, thus the cost of accepting non-conforming items entering the assembly line is as following:

\[C_i E(d_i) = C_i E(d_i) \text{ all items are conform in the sample} = \left(\frac{C_i b(d_i, |N_i, r_i|) d_i h(0|N_i, d_i, n_i)}{b(d_i, |N_i, r_i|) h(0|N_i, d_i, n_i)} \right) \]

Now, in order to obtain the expected total cost for a given part, taking into account all possible values of d_i, the equation is calculated as following:

\[
\left(C_i \sum_{d_i} b(d_i, |N_i, r_i|) d_i h(0|N_i, d_i, n_i) \right) \left(\sum_{d_i} b(d_i, |N_i, r_i|) h(0|N_i, d_i, n_i) \right)
\]

If a non-conforming item is found in the sample, then the lot is rejected. In this case, the costs will include the inspecting cost of all items in the lot and the cost of replacing or repairing non-conforming items with the conforming items and it will be calculated as following:

\[
(N_i t, L + N_i r, C'_{i})
\]

Finally, to find the expected total cost for section M, the values are aggregated and calculated as Equation (1).

It should be noted that the model presented in the reference does not consider the cost of lot rejection, but in the model of this study, in addition to the cost of defective items entering the assembly line and inspection costs, the cost of lot rejection means the replacement cost and defective items replacement and Rectifying inspection is included in the model.

4. Results and analysis:

In this study, we plan to obtain optimal sample size values for 20 different parts ($M = 20$). Inspection time is 8 hours and 10 inspectors are in the process, so the total inspection time is 80 hours ($T = 4800$ min), each inspector’s wage rate is $0.05 per minute; as a result, the inspection cost is $240.

Input values are t_i: Inspecting average time for one item. C_i: The cost of non-conforming items entering the assembly line. C'_{i}: Replacing or repairing cost of one non-conforming item. N_i: Lot size. r_i: Rates of non-conforming items.

Because of the added cost of lot rejection and lot Rectifying Inspection, the entire lot will be inspected if a defective item is found and by considering other base article input values, each lot input rate and inspection time are less than the base article values.

4.1. Solution Method

The proposed model is programmed in the MATLAB environment. First the values $d_i = \{0, 1, 2, \ldots, N_i\}$ are substituted in the objective function for different parts and the value of cost objective
Function is calculated, then the optimal sample size will be determined by determining the minimum value of objective function. When the sample size is obtained, the percentage of non-conforming items after the inspection is calculated for different parts. Now, with a non-conforming item price, the inspection cost and the cost of rejecting the lot after the inspection can be calculated. For example, the calculations performed for the first part will be as follows:

\[AOQ = \frac{(P_a \times r)(N - n)}{N} \]

In the above relation \(P_a \) is the lot accepting probability, and for \(N = 168 \) and \(n = 28 \), the AOQ value is 0.0071. The cost of non-conforming items and the lot rejection cost after the inspection can now be obtained as follows:

Cost of non-conforming items after inspection = \((N - n) \times C_i \times AOQ = 140 \times 86 \times 0.00713 = 85.8\)

Cost of rejecting the lot after inspection = \((N - n) \times C_i' \times AOQ = 140 \times 77 \times 0.00713 = 76.8\)
Table 4-1 shows the optimal sample size values and the cost of different decisions and reduction percentages in the non-conforming proportion.

Table 1. Answer the problem

<table>
<thead>
<tr>
<th>Parts</th>
<th>Inspection Time per item (min)</th>
<th>NC cost per item (A, C)</th>
<th>Cost of rejection (B, C)</th>
<th>NC rate before inspection</th>
<th>NC rate after inspection</th>
<th>Cost of rejection before inspection</th>
<th>Cost of rejection after inspection</th>
<th>Cost change in NC Cost</th>
<th>Cost change in Cost of rejection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>86</td>
<td>77.4</td>
<td>188</td>
<td>0.08</td>
<td>29</td>
<td>17</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>123</td>
<td>115.1</td>
<td>15.5</td>
<td>0.03</td>
<td>43</td>
<td>41</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>121</td>
<td>109.3</td>
<td>145</td>
<td>0.07</td>
<td>27</td>
<td>15</td>
<td>0.07</td>
<td>0.03</td>
</tr>
<tr>
<td>4</td>
<td>0.3</td>
<td>192</td>
<td>163.6</td>
<td>165</td>
<td>0.1</td>
<td>25</td>
<td>16</td>
<td>0.1</td>
<td>0.06</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>60</td>
<td>54</td>
<td>129</td>
<td>0.08</td>
<td>22</td>
<td>17</td>
<td>0.08</td>
<td>0.01</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>61</td>
<td>54.9</td>
<td>180</td>
<td>0.02</td>
<td>23</td>
<td>15</td>
<td>0.1</td>
<td>0.03</td>
</tr>
<tr>
<td>7</td>
<td>1.8</td>
<td>40</td>
<td>36</td>
<td>180</td>
<td>0.02</td>
<td>47</td>
<td>23</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>8</td>
<td>0.3</td>
<td>76</td>
<td>56.4</td>
<td>100</td>
<td>0.07</td>
<td>15</td>
<td>15</td>
<td>0.07</td>
<td>0.01</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>111</td>
<td>99.9</td>
<td>70</td>
<td>0.01</td>
<td>51</td>
<td>45</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>10</td>
<td>1.6</td>
<td>74</td>
<td>66.6</td>
<td>123</td>
<td>0.03</td>
<td>21</td>
<td>17</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>11</td>
<td>1.9</td>
<td>192</td>
<td>163.6</td>
<td>154</td>
<td>0.04</td>
<td>35</td>
<td>27</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>12</td>
<td>2.3</td>
<td>193</td>
<td>170.1</td>
<td>170</td>
<td>0.05</td>
<td>35</td>
<td>21</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>28</td>
<td>25.2</td>
<td>128</td>
<td>0.07</td>
<td>21</td>
<td>16</td>
<td>0.07</td>
<td>0.01</td>
</tr>
<tr>
<td>14</td>
<td>0.3</td>
<td>69</td>
<td>62.1</td>
<td>188</td>
<td>0.04</td>
<td>40</td>
<td>25</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>15</td>
<td>1.7</td>
<td>67</td>
<td>60.3</td>
<td>170</td>
<td>0.05</td>
<td>33</td>
<td>19</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>16</td>
<td>0.8</td>
<td>104</td>
<td>53.6</td>
<td>160</td>
<td>0.04</td>
<td>38</td>
<td>25</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>85</td>
<td>40.5</td>
<td>130</td>
<td>0.06</td>
<td>23</td>
<td>15</td>
<td>0.06</td>
<td>0.01</td>
</tr>
<tr>
<td>18</td>
<td>0.3</td>
<td>125</td>
<td>116.1</td>
<td>128</td>
<td>0.09</td>
<td>33</td>
<td>21</td>
<td>0.06</td>
<td>0.01</td>
</tr>
<tr>
<td>19</td>
<td>0.2</td>
<td>82</td>
<td>73.8</td>
<td>155</td>
<td>0.1</td>
<td>24</td>
<td>15</td>
<td>0.1</td>
<td>0.03</td>
</tr>
<tr>
<td>20</td>
<td>1.7</td>
<td>49</td>
<td>44.1</td>
<td>150</td>
<td>0.03</td>
<td>40</td>
<td>27</td>
<td>0.03</td>
<td>0.01</td>
</tr>
</tbody>
</table>

As shown in Table 1, the first part is the input values that are different for each part, the second part is the results and the problem that shows the optimal sample size, and the third section shows the rate of defective items, the defective items cost, and the lot rejection cost before and after the inspection.

By comparing the model results presented in this article and the base article, the percentage of inspection (N / n) in all sections improved compared to the baseline results. This improvement is also shown in the effectiveness section. The average efficiency of the rate of defective items after inspection in this article is 83.6%, while in the base article it is 46.5%.
Table 2. Total benefits

<table>
<thead>
<tr>
<th></th>
<th>Before inspection</th>
<th>After inspection</th>
<th>Change</th>
<th>Change %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspection cost</td>
<td>-</td>
<td>240</td>
<td>240</td>
<td>0</td>
</tr>
<tr>
<td>Cost of rejection</td>
<td>14877</td>
<td>1462</td>
<td>13415</td>
<td>90.173</td>
</tr>
<tr>
<td>NC cost</td>
<td>16530</td>
<td>1624</td>
<td>14906</td>
<td>90.175</td>
</tr>
<tr>
<td>total cost</td>
<td>31407</td>
<td>3326</td>
<td>28561</td>
<td>90.938</td>
</tr>
</tbody>
</table>

As can be seen in Table 2, the quality control costs have dropped significantly after the inspection. Expected total cost is 3326$, which includes 240$ for inspection costs, 1462$ for lot rejection costs and 1624$ for non-conforming items entering the assembly line.

The following graphs can be used to estimate the number of defective items and the rejection cost and non-conforming items before and after the inspection.

![Fig.1](https://via.placeholder.com/150)

Fig.1. Non-conforming item rates before and after inspection

Fig.1 shows the rate of defective items before and after the inspection as the graph is visible, the rate of defective items decreased significantly after the inspection, indicating that the consideration the cost of lot rejection, i.e. the cost of rejecting and replacing the defective items and rectifying inspection in the model, significantly reduced the inputs to the assembly line. And the quality of the product comes out. Fig.2 and 3 also show defective items cost and the lot rejection cost and show the reduction in costs after inspection.
By comparing the model presented in this paper and the model presented in Reference [9] and the results of these models, it can be concluded that the cost of lot rejection means the rejection cost and replacing defective items with healthy items and rectifying inspection has greatly reduced costs.

In general, there are three different stats for the objective function of the inspection plan in the system:

First state: The objective function for section i is extremely increasing, meaning that the inspecting cost is more than the expected cost of non-conforming items, so inspecting the items is not optimal.

Second state: The objective function is extremely decreasing. It means that the inspecting cost of all items is less than the expected cost of non-conforming items. In this case, the 100% inspection is optimal.
Third state: The objective function is convex. It means, a specific sample size exists that will minimize the total cost of sampling plan. In the third case, the model results in a sampling plan with a given sample size as the solution.

5. Conclusion

The purpose of this research is to find the most economical solution using a mathematical model to distinguish the optimal sample size to control the quality of the products in the input lot. To obtain this goal, the model should determine an optimal balance between the inspection cost, the cost of non-conforming items entering the assembly line and the cost of the lot rejection.

The model of this research is an integer non-linear programming model for designing a single sampling plan with a zero-acceptance number in order to inspect the items entering to the assembly line. The proposed model provides an optimal solution for the problem.

In this research, a practical example with 20 sections is presented to explain the model application. The input parameters were given to the model and the optimal sample size was achieved. In the numerical example, it can be seen that the rate of non-conforming items, the cost of non-conforming items and the lot rejection cost, and the total cost of the quality control, has decreased after implementing the proposed method, and the use of the model by companies and manufacturers reduces costs and thus increases the profits.

The model considered in this study is according to the single sampling plan. In future research, double or other sampling schemes could be used to compare with a single sampling plan. Also, in the proposed model, the acceptance number is zero; in future models, other acceptance numbers can be analyzed. In addition, it is possible to consider the parameters as fuzzy instead of constant and compare the results with the results. In the proposed model the objective is reducing the quality control cost, thus a model with the objective of reducing the average number of inspections can be designed.

References

