تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,089,888 |
تعداد دریافت فایل اصل مقاله | 97,193,587 |
تأثیر تیمارهای زیستی و عناصر غذایی بر پاسخهای مورفو-فیزیولوژیکی و جذب عناصر در گیاه گوجهفرنگی (Lycopersicon esculentum Mill) | ||
تحقیقات آب و خاک ایران | ||
دوره 51، شماره 10، دی 1399، صفحه 2559-2574 اصل مقاله (1.53 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2020.303408.668631 | ||
نویسندگان | ||
میثم چراغی1؛ بابک متشرع زاده* 2؛ حسینعلی علیخانی2 | ||
1گروه علوم و مهندسی خاک دانشکده مهندسی و فناوری کشاورزی دانشگاه تهران، ایران | ||
2گروه علوم و مهندسی خاک دانشکده مهندسی و فناوری کشاورزی پردیس کشاورزی و منابع طبیعی دانشگاه تهران، ایران | ||
چکیده | ||
بهمنظور بررسی تأثیر تیمارهای زیستی و عناصر غذایی بر خصوصیات رشدی و جذب عناصر غذایی در گیاه گوجهفرنگی، آزمایشی در شرایط گلخانه و در قالب طرح کاملاً تصادفی بهصورت فاکتوریل انجام شد. تیمارها شامل: شاهد (F0)، عرف مصرف کود توسط کشاورز (F1)، سطح بهینه عناصر بر اساس آزمون خاک (F2)، کود تجاری محرک رشد ریشه (F3)، سطح بهینه عناصر + مصرف نیتروژن، فسفر، روی و سیلیسیم به میزان دو برابر توصیه (F4) و کودهای زیستی: شاهد (BF0)، PGPR (BF1)، مایکوریز آربسکولار (BF2)، ورمیکمپوست (BF3) و بسته زیستی (BF4) بود. نتایج نشان داد که اثر متقابل تیمارها فقط بر وزن خشک اندام هوایی معنیدار بود. کاربرد F4-BF4 و F2-BF4 وزن خشک اندام هوایی را به ترتیب %122 و %121 نسبت به شاهد (F0-BF0) افزایش داد. کاربرد BF4، مساحت سطح برگ را %55 و کاربرد F4، شاخص کلروفیل برگ (SPAD) را %29 نسبت به شاهد افزایش داد و بهترین تیمارها در افزایش این صفات بودند. در بین تیمارهای زیستی کاربرد BF4 میزان جذب عناصر نیتروژن، فسفر، پتاسیم و سیلیسیم در اندام هوایی را به ترتیب %4/108، %7/224، %6/115 و %3/226 و در بین تیمارهای شیمیایی مصرف F4 جذب این عناصر را به ترتیب %7/58، %9/14، %1/25 و %158 نسبت به شاهد افزایش داد. نتایج این تحقیق نشان داد که در خاکهای با pH نسبتاً بالا، با مصرف سطح بهینه عناصر غذایی و حتی سطوح بالاتر از آن همراه با کود ورمیکمپوست میتوان رشد و جذب عناصر غذایی را در گیاه گوجهفرنگی به طور مؤثری بهبود بخشید. | ||
کلیدواژهها | ||
آزمون خاک؛ کود شیمیایی؛ مایکوریز آربسکولار؛ ورمیکمپوست؛ PGPR | ||
عنوان مقاله [English] | ||
Nutritional and Morpho-physiological Responses of Tomato Plant (Lycopersicon esculentum Mill) Affected by Biological and Chemical Fertilizers | ||
نویسندگان [English] | ||
Meysam Cheraghi1؛ Babak Motesharezadeh2؛ Hossein Ali Alikhani2 | ||
1Department of Soil Science, Faculty of Agricultural Engineering & Technology, College of Agriculture & Natural Resources, University of Tehran | ||
2Department of Soil Science Engineering, Faculty of Agricultural Engineering & Technology, University of Tehran, Karaj, Iran. | ||
چکیده [English] | ||
The present study was carried out to investigate the effects of biological and chemical fertilizers on morpho-physiological characteristics and nutrients uptake in tomato plant (Lycopersicon esculentum Mill). A factorial trial arranged in a completely randomized design was carried out under greenhouse conditions. Treatments consisted of five levels of chemical fertilizers applied as: control (F0), fertilizer traditionally used (F1), soil-test-based optimum nutrients levels (F2), commercial root stimulant (F3), optimum nutrients levels + application of N, P, Zn and Si by the rate of twofold of the optimum levels (F4) and five levels of biological fertilizers including: control (BF0), PGPR (BF1), arbuscular mycorrhiza fungi (BF2), vermicompost (BF3), and biological package (BF4).The results indicated that the interaction effect of treatments was significant only for shoot dry weight. F4-BF4 and F2-BF4 treatments increased shoot dry weight up to 122% and 121% compared to the control (F0-BF0), respectively. The application of BF4 incresed the leaf area 55% and the application of F4 increased SPAD chlorophyll index 29% as compared to the control and they were the best for increasing such properties. Among the biological treatments, the application of BF4 increased the uptake of N, P, K and Si in the shoot by 108.4, 224.7, 115.6 and 226.3%, respectively, and among the chemical treatments, the application of F4 increased the uptake of these elements by 58.7%, 14.9% 25.1% and 158% in comparison with control, respectively. The results of this study showed that in the soils with high pH, the nutrients uptake of tomato plant can be effectively improved via integrated application of vermicompot and chemical fertilizers under both optimum and even higher levels. | ||
کلیدواژهها [English] | ||
Arbuscular mycorrhiza, Chemical fertilizer, PGPR, Soil testing, Vermicompost | ||
مراجع | ||
Adiloğlu, S., Eryılmaz Açıkgöz, F., Solmaz, Y., Çaktü, E., & Adiloğlu, A. (2018). Effect of vermicompost on the growth and yield of lettuce plant (Lactuca sativa L. var. crispa). International Journal of Plant & Soil Science, 21(1), 1-5. Ahmed, B., Khan, M. S., & Musarrat, J. (2018). Toxicity assessment of metal oxide nano-pollutants on tomato (Solanum lycopersicon): A study on growth dynamics and plant cell death. Environmental Pollution, 240, 802-816. Alam, M. J., Rahman, M. H., Mamun, M. A., Ahmad, I., & Islam, K. (2006). Enzyme activities in relation to sugar accumulation in tomato. Proceedings-Pakistan Academy of Sciences, 43(4), 241. Alexander, M. (1983). Most probable number method for microbial populations. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 815-820. Amanullah, H., Marwat, K. B., Shah, P., Maula, N., & Arifullah, S. (2009). Nitrogen levels and its time of application influence leaf area, height and biomass of maize planted at low and high density. Pak. J. Bot, 41(2), 761-768. Anderson, J. P. (1983). Soil respiration. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 831-871. Arancon, N. Q., Edwards, C. A., Bierman, P., Metzger, J. D., Lee, S., & Welch, C. (2003). Effects of vermicomposts on growth and marketable fruits of field-grown tomatoes, peppers and strawberries: the 7th international symposium on earthworm ecology· Cardiff· Wales· 2002. Pedobiologia, 47(5-6), 731-735. Arancon, N. Q., Edwards, C. A., Bierman, P., Welch, C., & Metzger, J. D. (2004). Influences of vermicomposts on field strawberries: 1. Effects on growth and yields. Bioresource technology, 93(2), 145-153. Asadi, E., Haghnia, G., Lakzian, A., & Maftoun, M. (2014). Effect of Silicon and Nitrogen different quantities on morphology characteristics, yield and yield components of two varieties of wheat. Applied Field Crops Research, 27(103), 167-178. doi: 10.22092/aj.2014.101218. (In Farsi) Atiyeh, R. M., Domínguez, J., Subler, S., & Edwards, C. A. (2000). Changes in biochemical properties of cow manure during processing by earthworms (Eisenia andrei, Bouché) and the effects on seedling growth. Pedobiologia, 44(6), 709-724. Augé, R. M. (2004). Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science, 84(4), 373-381. Bai, B. A., & Malakout, M. J. (2007). The effect of different organic manures on some yield and yield quality parameters in Onion. Iran Soil and Water Sciences Journal, 21(1), 43-33. Basirat, M., & Zolfi Bavariani, M. (2015). Plant Nutrition Manual in Tomato Production to Reduce Nitrate Resdual In The Fruit. Soil and Water Research Institute. Publication No. 544. (In Farsi) Black, C. A., Evans, D. D., & Dinauer, R. C. (1965). Methods of soil analysis (Vol. 9, pp. 653-708) Madison. WI: American Society of Agronomy. Bremner, J. M. (1996). Nitrogen‐total. Methods of Soil Analysis: Part 3 Chemical Methods, 5, 1085-1121. Chand, S., Pande, P., Prasad, A., Anwar, M., & Dhar Patra, D. (2007). Influence of Integrated Supply of Vermicompost and Zinc‐Eniched Compost with Two Graded Levels of Iron and Zinc on the Productivity of Geranium. Communications in Soil Science and Plant Analysis, 38(19-20), 2581-2599. Chapman, H. D., & Pratt, P. F. (1961). Methods of Analysis for Soils, Plants and Waters,” The University of California’s Division of Agriculture Sciences, Davis, Calif, USA. Chen, J. H. (2006). The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. In International workshop on sustained management of the soil-rhizosphere system for efficient crop production and fertilizer use (Vol. 16, No. 20, pp. 1-11). Land Development Department Bangkok Thailand. Costa, C., Dwyer, L. M., Zhou, X., Dutilleul, P., Hamel, C., Reid, L. M., & Smith, D. L. (2002). Root morphology of contrasting maize genotypes. Agronomy Journal, 94(1), 96-101. Dunn, B. L., Singh, H., Payton, M., & Kincheloe, S. (2018). Effects of nitrogen, phosphorus, and potassium on SPAD-502 and atLEAF sensor readings of Salvia. Journal of Plant Nutrition, 41(13), 1674-1683. Elliott, C. L., & Snyder, G. H. (1991). Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. Journal of Agricultural and Food Chemistry, 39(6), 1118-1119. Essa, E. M., Abd El-Rheem, K. M., Yassen A. A., & Elsawy, A. M. (2019). Effect of Vermicompost and Sulfur on Growth, Yield and Nutritional Status of Tomato plants grown on Calcareous Soil. World Wide Journal of Multidisciplinary Research and Development, 5(2), 46-50 Gamalero, E., Trotta, A., Massa, N., Copetta, A., Martinotti, M. G., & Berta, G. (2004). Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza, 14(3), 185-192. Gee, G. W. & Bauder, J. W. (1986). Particle‐size analysis. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 383-411. Ghanbari, A. A., Shakiba, M. R., Toorchi, M., & Choukan, R. (2013). Nitrogen changes in the leaves and accumulation of some minerals in the seeds of red, white and chitti beans ('Phaseolus vulgaris') under water deficit conditions. Australian Journal of Crop Science, 7(5), 706. He, Y., Pantigoso, H. A., Wu, Z., & Vivanco, J. M. (2019). Co‐inoculation of Bacillus sp. and Pseudomonas putida at different development stages acts as a biostimulant to promote growth, yield and nutrient uptake of tomato. Journal of applied microbiology, 127(1), 196-207. Hemke, P. H., & Spark, D. L. (1996). Potassium. 551-574. Sparks, DL et al., Method of soil analysis. Published by: Soil Science Society of America, Inc. American Society of Agronomy, Inc. Madison, Wisconsin, USA. Hosseinzadeh, S. R., Amiri, H., & Ismaili, A. (2016). Effect of vermicompost fertilizer on photosynthetic characteristics of chickpea (Cicer arietinum L.) under drought stress. Photosynthetica, 54(1), 87-92. Inugraha, M., & Widaryanto, E. (2014). Response of Stevia (Stevia rebaudiana Bertoni M) to nitrogen and potassium Fertilization. IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS), 7(10), 47-55. Jones Jr, J. B. (2007). Tomato plant culture: in the field, greenhouse, and home garden. CRC press. Joshi, R., Singh, J., & Vig, A. P. (2015). Vermicompost as an effective organic fertilizer and biocontrol agent: effect on growth, yield and quality of plants. Reviews in Environmental Science and Bio/Technology, 14(1), 137-159. Kalbani, F.O.S.A. Salem, M.A. Cheruth, A.J. Kurup, S. S. and Kumar, A.S. (2016). Effect of some organic fertilizers on growth, yield and quality of tomato (Solanum lycopersicum). International Letters of Natural Sciences,53, 1-9. Kanr, R. Savage, G.P. and Diatta, P.C. (2002). Antioxidants vitamins in four commercially grown tomato cultivars. Nutrition Society of New Zealand, 27, 69–74. Karimzadeh, J. Alikhani, H. A. Etesami, H. & Pourbabaei, A. A. (2020). Improved Phosphorus Uptake by Wheat Plant (Triticum aestivum L.) with Rhizosphere Fluorescent Pseudomonads Strains Under Water-Deficit Stress. Journal of Plant Growth Regulation, 1-17. Kashem, M. A., Sarker, A., Hossain, I., & Islam, M. S. (2015). Comparison of the effect of vermicompost and inorganic fertilizers on vegetative growth and fruit production of tomato (Solanum lycopersicum L.). Open Journal of Soil Science, 5(02), 53. Khadem-Moghadam, N. Motesharezadeh, B. & Maali-Amiri, R. (2016). Changes in antioxidative systems and membranes stability index of canola in response to saline soil and fertilizer treatment application, Global Nest Journal, 18(3), 508-515. Kheyri, N., Norouzi, A. H., Mobasser, H. R., & Torabi, B. (2018). Effect of different resources and methods of silicon and zinc application on agronomic traits, nutrient uptake and grain yield of rice (Oriza sativa L.) Applies Ecology and Environmental Research, 16(5), 5781-5798. Khosravi, A., Zarei, M., & Ronaghi, A. (2018). Effect of PGPR, phosphate sources and vermicompost on growth and nutrients uptake by lettuce in a calcareous soil. Journal of Plant Nutrition, 41(1), 80-89. Krouk, G., Lacombe, B., Bielach, A., Perrine-Walker, F., Malinska, K., Mounier, E., & Zazimalova, E. (2010). Nitrate-regulated auxin transport by NRT1. 1 defines a mechanism for nutrient sensing in plants. Developmental cell, 18(6), 927-937. Kumar, M. & Kumar, K. (2019). Role of Bio-fertilizers in vegetables production: A review. Journal of Pharmacognosy and Phytochemistry, 8(1), 328-334. Lack, S. H., Kermanshahi, M., & Noryani, H. (2015). Variation trend of leaf area index, yield and yield components of green beans (Phaseolous vulgaris L.) by using zinc sulfate and nitrogen. 9(36(4)), 599-610. (In Farsi) Lambers, H., Albornoz, F., Kotula, L., Laliberté, E., Ranathunge, K., Teste, F. P., & Zemunik, G. (2018). How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems. Plant and Soil, 424(1-2), 11-33. Li, H., Li, M., Luo, J., Cao, X., Qu, L., Gai, Y., & Polle, A. (2012). N-fertilization has different effects on the growth, carbon and nitrogen physiology, and wood properties of slow-and fast-growing Populus species. Journal of experimental botany, 63(17), 6173-6185. Li, H., Zhu, Y., Hu, Y., Han, W., & Gong, H. (2015). Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta physiologiae plantarum, 37(4), 71. Lindsay, W. L. & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper 1. Soil science society of America journal, 42(3), 421-428. Malakouti, M. J., & Tehrani, M. M. (1999). Effects of micronutrients on the yield and quality of agricultural products (micro nutrients with macro effects). Tarbiat Modares University publication, Iran. (In Farsi) Minolta, C. (1989). Manual for chlorophyll meter SPAD-502. Osaka: Minolta Radiometric Instruments Divisions. Narayanaswamy, C., & Prakash, N. B. (2009). Calibration and categorization of plant available silicon in rice soils of South India. Journal of plant nutrition, 32(8), 1237-1254. Nasrolahzadeh, S., Shirkhani, A., Zehtab salmasi, S., & choukan, R. (2016). Effects of Biofertilizer and Chemical Fertilizer on Maize Yield and leaf Characters in Different Irrigation Conditions. Applied Field Crops Research, 29(4), 72-86. (In Farsi) Nelson, D. W. & Sommers, L. (1982). Total carbon, organic carbon, and organic matter 1. Methods of soil analysis. Part 2. Chemical and microbiological properties, (methodsofsoilan2), 539-579. Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture. Prasad, R., & Power, J. (1995). Nitrification inhibitors for agriculture, health, and the environment. Advances in Agronomy, 54, 233-281. Qiao, X., He, Y., Wang, Z., Li, X., Zhang, K., & Zeng, H. (2014). Effect of foliar spray of zinc on chloroplast β-carbonic anhydrase expression and enzyme activity in rice (Oryza sativa L.) leaves. Acta physiologiae plantarum, 36(2), 263-272. Rashtbari, M. Alikhani, H. A. & Ghorchiani, M. (2012). Effect of vermicompost and municipal solid waste compost on growth and yield of canola under drought stress conditions. International Journal of Agriculture: Research and Review, 2(4), 395-402. Razaq, M., Zhang, P., & Shen, H. L. (2017). Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PloS one, 12(2), e0171321. Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. Methods of Soil Analysis: Part 3 Chemical Methods, 5, 417-435. Ryan, J., Estefan, G., & Rashid, A. (2001). Soil and Plant Analysis Laboratory Manual. ICARDA. Sabijon, J. & Sudaria, M. A. (2018). Effect of vermicompost amendment and nitrogen levels on soil characteristics and growth and yield of tomato (Solanum lycopersicum cv. Diamante max). International Journal of Agriculture Forestry and Life Sciences, 2(2), 145-153. Savci, S. (2012). An agricultural pollutant: chemical fertilizer. International Journal of Environmental Science and Development, 3(1), 77-80. Shahbazi, K., & Besharati, H. (2013). Overview of agricultural soil fertility status of Iran. Land Management Journal, 1, 1-15. Sharma, A. & Chetani, R. (2017). A review on the effect of organic and chemical fertilizers on plants. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 5(2), 677-680. Singh, P., Singh, D., Singh, A. K., Singh, B. K., & Singh, T. (2020). Growth and Yield of Tomato Grown Under Organic and Inorganic Nutrient Management. Int. J. Curr. Microbiol. App. Sci, 9(3), 365-375. Song, C. J., Ma, K. M., Qu, L. Y., Liu, Y., Xu, X. L., Fu, B. J., & Zhong, J. F. (2010). Interactive effects of water, nitrogen and phosphorus on the growth, biomass partitioning and water-use efficiency of Bauhinia faberi seedlings. Journal of arid environments, 74(9), 1003-1012. Songsri, P. Jogloy, S. Holbrook, C. C. Kesmala, T. Vorasoot, N. Akkasaeng, C. & Patanothai, A. (2009). Association of root, specific leaf area and SPAD chlorophyll meter reading to water use efficiency of peanut under different available soil water. Agricultural water management, 96(5), 790-798. Sparks, D. L., Page, A. L., Helmke, P. A., Loppert, R. H., Soltanpour, P. N., Tabatabai, M. A., & Summner, M. E. (1996). Methods of soil analysis: chemical methods, part 3. ASA and SSSA, Madison, WI. Sturz, A. V., & Christie, B. R. (2003). Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil and Tillage Research, 72(2), 107-123. Tao, L., Guo, M. Y., Xu, D., & Ren, J. (2014). Effect of Zinc on Seed Germination, Coleoptile Growth and Root Elongation of Six Pulses. In Applied Mechanics and Materials (Vol. 618, pp. 339-343). Trans Tech Publications Ltd. Thomas, G. W. (1996). Soil pH and soil acidity. Methods of soil analysis: part 3 chemical methods, 5, 475-490. Tyburski, J., Dunajska, K., & Tretyn, A. (2010). A role for redox factors in shaping root architecture under phosphorus deficiency. Plant signaling & behavior, 5(1), 64-66. Ucar, E., Ozyigit, Y., Demirbas, A., Yasin Guven, D., & Turgut, K. (2017). Effect of different nitrogen doses on dry matter ratio, chlorophyll and macro/micro nutrient content in sweet herb (Stevia rebaudiana Bertoni). Communications in Soil Science and Plant Analysis, 48(10), 1231-1239. Waraich, E. A., Ahmad, Z., Ahmad, R., Saifullah, & Ashraf, M. Y. (2015). Foliar applied phosphorous enhanced growth, chlorophyll contents, gas exchange attributes and PUE in wheat (Triticum aestivum L.). Journal of plant nutrition, 38(12), 1929-1943. Xu, C., & Mou, B. (2016). Vermicompost affects soil properties and spinach growth, physiology, and nutritional value. HortScience, 51(7), 847-855. Zamora, R. F. (2007). Fertilizer and water management for lowland rice production Undergrad Thesis ViSCA, Baybay. Zand, B., Sorooshzadeh, A., Ghanati, F., & Moradi, F. (2014). Effect of zinc (Zn) and auxin (IBA) foliar application on phytohormonal variation and growth of corn (Zea mays L.). Iranian Journal of Plant Biology, 6(22), 63-76. (In Farsi) Zhang, J., Yan, X., Su, F., Li, Z., Wang, Y., Wei, Y., & Hu, S. (2018). Long-term N and P additions alter the scaling of plant nitrogen to phosphorus in a Tibetan alpine meadow. Science of the Total Environment, 625, 440-448. Zhihui, W. E. N., Jianbo, S. H. E. N., Blackwell, M., Haigang, L. I., Bingqiang, Z. H. A. O., & Huimin, Y. U. A. N. (2016). Combined applications of nitrogen and phosphorus fertilizers with manure increase maize yield and nutrient uptake via stimulating root growth in a long-term experiment. Pedosphere, 26(1), 62-73. | ||
آمار تعداد مشاهده مقاله: 564 تعداد دریافت فایل اصل مقاله: 395 |