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Abstract 
This study is aimed to determine geochemical anomalies of rare earth elements (REEs) and provides a concentration 
distribution map for the Esfordi phosphate deposit (EPD), Bafq metallogenic province (BMP), Central Iran. With an average 
grade of 5519 ppm for REEs, the EPD is one of the prominent deposits of the region. In this research, sequential Gaussian 
simulation (SGS) and concentration-area (C-A) fractal modeling are used to determine concentration anomalies and provide a 
∑REEs concentration map based on surface data. The log-ratio matrix is used to investigate the mineralization processes, 
determining the relationships between the anomalies and the rock units, and validating the results of SGS fractal modeling. The 
results are indicating that the main anomaly has strong correlation with the apatite-iron, and in particular, with the apatite 
mineralization, which can be considered as an exploration guide. The results also confirm the efficiency of simultaneous 
application of fractal modeling and SGS simulation. 
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Introduction 
 
Different stages of mining always have some degree of uncertainty in parameters such as ore 
grade and size. The uncertainties that directly affect the technical and economic parameters of 
exploiting the resources, are sometimes caused by inherent variations of deposits, but in many 
cases result from limited information imposed by high costs (Kühn & Visser, 2014). To unravel 
such complicated situations, accurate estimation methods may be an asset. In this regard, 
determining geochemical anomalies and separating them from the background can be 
efficiently and precisely used in mineral exploration, geological developments, and in the 
recognition and interpretation of ore deposits (Cheng et al., 1994; Agterberg, 1995; Wang, 
2003; Hassanpour & Afzal, 2013; Afzal et al., 2015; 2016; 2017; Yasrebi & Hezarkhani, 2019; 
Shahsavar et al., 2020). 
    To gain a better understanding of the ore deposit situation, it is important to employ methods 
that take into account spatial distribution of geochemical data. Geostatistics is used to identify 
and explain the spatial geochemical variability of ore deposits, and ore exploration. The “simple 
kriging” technique (Journel & Huijbregts, 1978) is one of the most well-known and widely-
used methods of geostatistical estimation, but it causes less variability than actual value, and 
may create statistical uncertainty or even statistical error in non-sampled areas (Emery & 
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Lantuéjoul, 2006; Pardo-Igúzquiza & Atkinson, 2007; Goovaerts, 2008). 
    Traditional methods, which are often based on interpolation results, do not pay much 
attention to the uncertainties around the estimated values, and this will be especially effective 
when data volumes are low. Because awareness of uncertainties is needed in analysis of 
geochemical anomalies, the possible uncertainties must be calculated and measured in 
subsequent decisions. Thus, geostatistical simulations can be very worthwhile. They consider 
concentration distribution as well as local uncertainties (Chen et al., 2012; Madani Esfahani & 
Asghari, 2013; Soltani et al., 2014; Hajsadeghi et al., 2017). Since in exploratory studies 
relatively small number of samples are used for a given study area, having different ore-deposit 
types rather than an average image is important in optimal modeling of anomalies and 
mineralized zones (Afzal et al., 2014; Hajsadeghi et al., 2017). 
    Fractal methods (Mandelbrot, 1983) can be considered as one of the most reliable non-
Euclidean geometric methods in determining the concentration distribution of an ore in a 
deposit. These methods, take into account the spatial distribution of the relevant data, and 
proceed the analysis of the data without distorting it. These methods use data to classify various 
geological features, especially the separation of anomalies from background. These advantages 
have led to the widespread usage of fractal methods in geosciences (Davis, 2002; Zuo et al., 
2009; Zuo & Xia, 2009; Afzal et al., 2010; 2011; Zuo, 2011a;2011b; Afzal et al., 2012; Carranza 
et al., 2012; Afzal et al., 2014; Shamseddin Meigoony et al., 2014; Yasrebi, 2014; Afzal et al., 
2015; Nazarpour et al., 2015; Afzal et al., 2016; Rezaie & Afzal, 2016; Zuo & Wang, 2016; 
Afzal et al., 2017; Jebeli et al., 2018; Afzal et al., 2019; Ahmadfaraj et al., 2019; Farahmandfar 
et al., 2020). 
    The main objective of the current research is to provide the fractal simulation for total rare 
elements (∑REEs) using “sequential Gaussian” simulation (SGS) and the “concentration-area” 
fractal (C-A) method (Cheng et al., 1994) for the Esfordi phosphate deposit located in the Bafq 
metallogenic province. Moreover, for validation purposes and better understanding of the rock 
characteristics in the studied deposit, the “log-ratio” matrix proposed by Carranza (2011) is 
employed. 
 
Methodology 
 
Sequential Gaussian simulation 
 
Geostatistical simulation and its methods are widely used in various branches of geosciences such 
as exploration and exploitation of natural resources, and environmental studies. Among such 
methods, the “sequential Gaussian” simulation (SGS) model is the most flexible and practical one 
(Journel, 1974; Deutsch, 2002; Dubrule, 2003; Asghari et al., 2009; Soltani et al., 2014). 
    The SGS method assumes the multi-Gaussian nature of the random model function and is 
based on the logic that the conditional distribution of the observed values can be used to 
simulate sequential points of the network (Goovaerts, 1997; Asghari et al., 2009). In other 
words, the algorithm is chosen to simulate a random path that crosses all blocks of the network. 
    The steps of this method are summarized below (Deutsch & Journel, 1992; Cheuiche Godoy 
et al., 2001; Queiroz et al., 2001; Soltani et al., 2014): 
1) Calculation of the statistical parameters of the initial data and plotting of the relevant 
histogram; 
2) Data normalization;  
3) Plotting of a variogram using normal data; 
4) Selection of a random path for the simulation; 
5) Data estimation on the selected network using one of the kriging methods; 
6) Plotting a histogram at any point and random selection of a number from the histogram; 
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7) Repeating the previous steps for the entire network;
8) Repeating the previous steps for all realizations;
9) Reversing the conversion of the simulated data;
10) Validation.

When SGS simulation is used on a regular network, the method algorithm is usually applied
to the central points of each network cell. If the used conditional data is upgraded to a regular 
network, then the points nominally represent the scale of the network elements. However, if 
SGS simulation is applied to a series of irregular points, it would be scale difference between 
the simulated values and the network elements which represent the center points of the 
unstructured network elements of different shapes and volumes (Asghari et al., 2009; Manchuk, 
2010). 

C-A fractal model

Cheng et al. (1994) developed a “concentration-area” fractal model (C-A) to separate 
geochemical anomalies from the background. The method employed to describe the 
relationships between the elemental concentration values and the geological data, based on the 
amount of area that each specific concentration occupies in the study area; having in mind that 
by an increase in element concentration, the occupied area decreases (Cheng et al., 1994; 
Goncalves et al., 2001; Afzal et al., 2010; Daneshvar Saein & Afzal, 2017). This model has the 
general form of relation 1 (Cheng et al., 1994): 

Aሺρ ൑ ϑሻ∞ρି௔భ	; Aሺρ ൒ ϑሻ∞ρିୟమ     (1) 

where A(ρ≤ϑ) and A(ρ≥ϑ) denote the area with concentration values ρ that are respectively, 
smaller and greater than contour value ρ defining areas υ, which represents threshold value, and 
a1 and a2 are characteristic exponents for both criteria. The area A (ρ) for a given ρ is equal to 
the area of cells with grade levels higher than ρ multiplied in the number of cells. The average 
concentration value is used for cells with more than one sample. Fractures between straight-
line segments on the concentration-area log-log plot and the corresponding values of ρ are used 
as thresholds for separating geochemical values among various components. 

Log-ratio matrix 

In geochemical and geostatistical studies, after estimation or simulation, the results should be 
verified and validated. The “log-ratio” matrix (Carranza, 2011) is an efficient tool for checking 
the compatibility of the two binary models and calculating the accuracy and spatial correlation 
between them (Table 1).  
    This method has been used in various exploratory and geological studies, especially in the 
adaption of geochemical anomalies (both surface and depth) with rock units, alteration zones, 
and different ore deposit zones (Navidi et al., 2014; Soltani et al., 2014; Carranza, 2017; Jebeli 
et al., 2018; Gholampour et al., 2019). 

Table 1. Log-ratio matrix for correlation between fractal modeling results and geological units 

Geological zone 

Inside Zone Outside Zone 

Fractal model 
Inside Zone True positive (A) False positive (B) 

Outside Zone False negative (C) True negative (D) 
Type 1 error=C/(A+C) Type 2 error=B/(B+D) 

Overall accuracy= (A+D)/ (A+B+C+D) 
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    An important parameter in the log-ratio matrix is called overall accuracy (OA), and it is 
calculated to evaluate the accuracy of anomaly separation from the background, which is the 
main factor for final decision-making. A higher value of OA indicates a higher correlation. In 
addition, two types of errors can be calculated using anomalies and background; type 1 error 
(T1E) indicates the method’s capability in background analysis, and type 2 error (T2E) indicates 
the method’s capability in anomaly analysis; lower T2E values are more important than lower 
T1E ones (Carranza, 2011). 

Geological setting 

The Esfordi phosphate deposit is located 150 km to the southeast of Yazd and 35 km to the 
northeast of Bafq. As one of the most important iron and apatite mineralizations in the BMP 
and Iran, this deposit has a high and significant potential for rare earth elements (Jami et al., 
2007; Torab & Lehmann, 2007; Taghipour et al., 2015). The area is a part of the Central Iran 
zone (Haghipour, 1964; Foerster & Jafarzadeh, 1994; Jami, 2006; Torab & Lehmann, 2007) 
and Bafq-Poshtbadam subzone (Jami, 2006; Torab & Lehmann, 2007; Taghipour et al., 2015). 
In terms of metallurgical studies, it lies within the BMP (Figure 1). The Bafq province contains 
a narrow north-trending rift zone between the Kuhbanan and Kuh Daviran faults. Moreover, it 
hosts large iron and apatite ore deposits which have formed in nonmetamorphic Early Cambrian 
rhyolitic to rhyodacitic pyroclastic units (Daliran, 2002; Stosch et al., 2011). 

Figure 1. Location of the Esfordi deposit on map of the geological zones of Iran and the geological map 
of the Bafq metallogenic province (modified after Bonyadi et al., 2011) 
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    The EPD, with an average grades of ~17.2% and ~14% for Fe and P2O5 respectively, and 
having high-grade apatite veins (P2O5>35%), is one of the high phosphorus deposits in the 
region (Torab, 2008). The amount of REE of this deposit, which is LREE-enriched, is close to 
2% (Torab & Lehmann, 2007). Apatite crystals are mainly the hosts of REEs in this deposit, 
but some other host minerals such as monazite, bastnaesite and allanite, are also found as 
inclusions in apatite (Jami, 2006; Mokhtari, 2015). 
    The Esfordi deposit forms a U-shaped structure with high altitude in the north, moderate 
heights in the south and east, and low altitudes in the central and western parts (Figure 2). The 
general trend of units forming around the northwest-southeast mineral with a westward gradient 
of 40-50 degrees have been altered by intrusion of igneous rocks and ore-bearing fluids which 
have created different dips and strikes for the rock layers in each part. As a result of intrusion 
of igneous masses, a series of fractures followed by disruptions in lithological units have been 
created. Therefore, this caused the disruption of the primary rock units. 
    The EPD consists of a series of sedimentary, volcano-sedimentary, intrusive, and extrusive 
igneous rocks. The adjacent areas and the mining area consist mainly of sedimentary rocks, the 
oldest rocks in the region, including dolomite and limestone of the Rizu series along with the 
rhyolite, diabase, syenite, gabbro-diorite, and basalt. Based on the available evidence and 
studies, the mineralization zones in the mine are of following types (Figures 3 and 4):  

Figure 2. Morphological status of the Esfordi deposit 

Figure 3. Geological map of the Esfordi phosphate deposit; scale 1:1,000 
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Figure 4. Images of outcrops of the rock units 

   Apatite-iron zone (APA-IRO): Best outcrops of this zone are in the southern part of the 
mine pit. The zone is a combination of apatite, hematite, magnetite, and tremolite- actinolite. 
Apatite mineralization in form of patches of different size is the characteristic feature of this 
zone. 
   Iron-apatite zone (IRO-APA): This zone has a considerable expansion in the northern part 
of the apatite-iron zone and in the north and northwest sections of the mine pit. The grade of 
iron and the amount of apatite in this zone decrease from north to northeast. The minerals that 
build up this zone are hematite, magnetite, apatite, and tremolite- actinolite. The less apatite 
content is the characteristic difference between this zone and the iron-apatite zone. 
   Amphibole-bearing rhyolite zone (RHY-AMP): This zone is developed in the peripheral 
parts of the ore, especially in the north of the mine pit. The rocks are mainly rhyolite to rhyolitic 
tuffs and contain considerable amounts of amphibole minerals. Ore minerals as patches, lenses, 
and scattered apatite and hematite veins, may be considerable in some parts of the zone. 
   Iron-apatite flow zone (HEM-APA): In the southwestern part of the mine, hematite and 
apatite are associated with significant surface exposure of thin lava flows, covering other rock 
and mineral assemblages. This unit is considered here as an iron-apatite immiscible liquid. 
   Hematite patches (HEM): The iron-rich hydrothermal solutions have caused a number of 
bodies, veins, and impregnations of hematite mineralization in the rocks. Some of these types 
of iron ores, which are more noticeable in the western part of the deposit, have significant 
economic volumes. 

Discussion 

Dataset 

Sampling is the crucial source of information used in the geochemical and geological studies 
of ore deposits; studied area; thus, accurate sampling and sample preparation are important 
(Yasrebi, 2014). In this study, 41 samples were taken from different rock and mineral units 
inside and around the ore in order to investigate the anomaly status and the distribution of rare 
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earth elements (Figure 5). 
    The samples were analyzed by ICP-MS for a number of rare earth elements in the Iran 
Minerals Processing Research Center (IMPRC); each one is listed with its detection limit in 
Table 2. After preparing the “raw data”, the data was processed in terms of censored values and 
replaced by the simple replacement method (Hawkes & Webb, 1979). Due to the large number 
of rare earth elements, the sum of these elements (∑REEs) was used. 

Statistical and geostatistical analysis 

To use the data more accurately and to analyse the results more appropriately, it was important 
to evaluate and identify the characteristics of the raw data used in the estimation. The results of 
the statistical analysis of the raw data are shown in Figure 6a. Clearly, the raw data has an 
abnormal distribution. Since it is necessary to use normal standard data for using SGS method, 
the normal standard transform operation was performed over the data, as shown in Figure 6b. The 
data had a variance and standard deviation of about 1 and a mean and skewness of about 0. 

Table 2. Analyses of rare earth elements and their detection limits 

Element 
(ppm) 

Detection limit 
Number of 

Censored values 
Substitute values 

Lower Upper Lower Upper Lower Upper 
Ce 1 6500 - 4 - 8667
Dy 5 120 9 9 3.75 160
Er 5 100 13 1 3.75 133.33
Eu 5 100 15 - 3.75 - 
Gd 5 500 7 - 3.75 - 
La 10 6500 1 - 7.5 - 
Lu 3 100 41 - - - 
Nd 1 6500 - - - - 
Pr 10 500 4 - 7.5 - 
Sc 5 1000 33 - - -
Y 5 6500 1 - 3.75 - 

Yb 5 40 15 6 3.75 53.33 

Figure 5. Samples’ locations map within Esfordi deposit on satellite image 
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    Variography is the most important tool for inferring and displaying spatial integration 
(David, 1970). It is used to analyze the status of the spatial structure of data, which is the basis 
of geostatistical estimations. After generating the standard normal data, the variogram was 
performed and an anisotropy ellipsoid was generated. The variogram and characteristics of the 
key parameters are shown in Figure 7. 

Application of SGS 

Providing an accurate geochemical anomaly map will be important and effective in providing 
efficient access to the ore mineral. To create various realizations via SGS, simulation was 
conducted 10 times by “ArcGIS 10.5” software based on standard normal data. The “simple 
kriging” method was used to estimate the cells. Kriging is the best unbiased linear geostatistical 
estimator which is capable of estimating both block and cell space (Journel, 1980; Machuca-
Mory & Deutsch, 2009). For normal data, kriging ensures unbiased and minimal estimation 
variance (Webster & Oliver, 2007; Nas, 2009). In Gaussian simulation, each realization consists 
of random-specified value, it is possible to condition the simulation to increase the accuracy of 
the results. This process, which works with similar data used in estimation process ensures that 
the simulated values at each point adhere to the input data. Finally, the mean of both values is 
reported as the value of each cell (Journel, 1974). 
    In compliance with the sampling distance and the geological setting, each cell has a 
dimension of 10×10 m. After performing 10 simulation modes, statistical analysis was 
performed on the results of different realizations (Table 3). Finally, a unified map representing 
all realizations was created by calculating the average value of each cell (“E-Type”) in 10 
modes, and statistical studies were performed (Figure 8). 

Figure 6. Histogram and statistical parameters: a, Raw data and b, Standardized normalized data 

Figure 7. Variogram of the data and the best-fit model 
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Table 3. Statistical parameters of each realization obtained from the Gaussian simulation 
Statistics ∑REEs (ppm) 

Mean Minimum Maximum 
Std. 

Deviation 
Variance Skewness 

Realization1 4051.69 1.75 21629.20 3862.24 14916859.99 0.88 
Realization2 4782.04 17.81 23905.50 4215.46 17770064.33 0.57 
Realization3 3675.04 5.58 21993.90 3831.59 14681093.77 0.97 
Realization4 3589.36 8.99 16656.00 3707.49 13745461.77 0.84 
Realization5 4417.67 7.62 33367.30 4685.66 21955364.96 1.27 
Realization6 3051.50 3.47 21391.80 3560.28 12675601.53 1.25 
Realization7 3749.59 3.05 19879.50 3885.95 15100608.38 0.90 
Realization8 4517.99 3.14 31671.30 5009.72 25097314.16 1.43 
Realization9 3072.67 0.68 22932.30 3834.40 14702642.40 1.34 
Realization10 3893.12 10.33 28190.60 3892.14 15148750.43 1.16 

Figure 8. Histogram and statistical parameters of E-Type derived from data simulation 

C-A fractal modeling

The calculation of high precision threshold values for anomalies and the separation of 
concentration communities are very important in construction of mineral potential maps 
(Yousefi et al., 2012; Shamseddin Meigoony et al., 2014). After the SGS simulation results 
were obtained, C-A fractal modeling was performed on the pixel values. The Log-Log plots 
and the threshold values for the four randomly selected realization modes (Realizations 1, 2, 5, 
and 6), and also the “E-Type” mode are shown in Figure 9. 
    After calculating the anomaly threshold, random selected maps and the E-Type map were 
plotted (Figures 10 and 11). As shown in the realization map (Figure 10), the main anomaly 
focus is in the central part of the deposit and corresponds to the extraction pit and its periphery. 
    It is clear from Figure 11 that the severe anomaly lies along the northeast-southwest 
approximation in the center of the mining area, which corresponds to the trend of the extraction 
pit. Comparison between this map and the geological map (Figure 3) clarifies that there is an 
association between the main anomalies with the apatite units and their marginal units existing 
in the studied area. Also, the existence of a fault with similar strike in the vicinity of the anomaly 
can confirm the result of the simulation method and the role of fault in mineral formation. 
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Figure 9. C-A fractal modeling log-log plot and specified threshold value 

 

Application of log-ratio matrix 
 
To better understand the ∑REE concentration distribution and to validate the SGS C-A fractal 
modeling maps, the correlation between different rock units of the mine and high concentration 
geochemical communities was investigated and overall accuracy (OA) was calculated. 
    This correlation between the concentration-rich communities identified by fractal modeling 
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(two stronger communities) and all existing rock units was assessed, and the main and 
indicative rock units associated with mineralization, including microgranite to rhyolite (MGR-
RHY), amphibole-bearing microgranite to rhyolite, containing ore mineral patches (MGR-
RHY-AMP), iron-apatite zone (IRO-APA), and apatite-iron zone (APA-IRO), are listed in the 
Table 4. 
 

 
Figure 10. Random selected ∑REEs realizations obtained from the SGS simulation based on the C-A 
fractal modeling 

 

 
Figure 11. E-Type map of ∑REEs derived from the SGS simulation based on the C-A fractal modeling 
with faults and rock units (explanation of rock units based on Figure 3) 
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    Based on the log-ratio matrix results (Table 4), it is clear that in all evaluated realizations as 
well as the E-type, the determined anomalies have strong correlation with APA-IRO, IRO-
APA, MGR-RHY-AMP, and MGR-RHY and no significant correlation with other rock units 
in the mine. Among these realizations, realization 2 with OA = 0.89 has the greatest correlation 
with the APA-IRO unit. However, other realizations especially the E-Type, has similar OAs. It 
is important to note that all four units mentioned above have significant correlations with the 
specified anomalies containing apatite of various forms. As a result, this point can be considered 
as a guide for further exploration and investigation. 

 
Table 4. Overall accuracy (OA) and T1E and T2E associated with concentration rich geochemical 
communities identified by SGS C-A fractal modeling and rock units 

 

MGR-RHY MGR-RHY-AMP APA-IRO IRO-APA 

Inside 
Zone 

Outside 
Zone 

Inside 
Zone 

Outside 
Zone 

Inside 
Zone 

Outside 
Zone 

Inside 
Zone 

Outside 
Zone 

Realization 1 
∑REE>8317.6 

(ppm) 

Inside 
Zone 

A= 216 B= 594 A= 130 B=  680 A= 53 B=  575 A= 77 B=  733 

Outside 
Zone 

C= 832 D= 3318 C= 508 D= 3642 C= 102 D= 4048 C= 325 D= 3825 

 T1E= 0.79 T1E= 0.79 T1E= 0.65 T1E= 0.8 

 T2E= 0.15 T2E= 0.15 T2E= 0.15 T2E= 0.16 

 OA= 0.71 OA= 0.76 OA= 0.82 OA= 0.78 

Realization 2 
∑REE>11220.

1 (ppm) 

Inside 
Zone 

A= 87 B=  315 A= 81 B=  321 A=   8 B=  394 A= 53 B=  349 

Outside 
Zone 

C= 961 D= 3597 C= 557 D= 4001 C= 147 D= 4411 C= 349 D= 4209 

 T1E= 0.91 T1E= 0.87 T1E= 0.94 T1E= 0.86 

 T2E= 0.08 T2E= 0.07 T2E= 0.08 T2E= 0.07 

 OA= 0.74 OA= 0.82 OA= 0.89 OA= 0.85 

Realization 5 
∑REE>7943.2 

(ppm) 

Inside 
Zone 

A= 226 B=  962 A= 40 B= 1088 A= 54 B= 1074 A= 78 B= 1050 

Outside 
Zone 

C= 822 D= 2950 C= 598 D= 3234 C= 101 D= 3731 C= 324 D= 3508 

 T1E= 0.78 T1E= 0.93 T1E= 0.65 T1E= 0.8 

 T2E= 0.24 T2E= 0.25 T2E= 0.22 T2E= 0.23 

 OA= 0.64 OA= 0.66 OA= 0.76 OA= 0.72 

Realization 6 
∑REE>079.4 

(ppm) 

Inside 
Zone 

A= 130 B=  689 A= 158 B=  661 A= 82 B=  737 A= 160 B=  659 

Outside 
Zone 

C= 918 D= 3223 C= 480 D= 33661 C= 73 D= 4068 C= 242 D= 3899 

 T1E= 0.87 T1E= 0.75 T1E= 0.47 T1E= 0.6 

 T2E= 0.17 T2E= 0.15 T2E= 0.15 T2E= 0.14 

 OA= 0.67 OA= 0.76 OA= 0.83 OA= 0.81 

E-Type 
∑REE>8317.6 

(ppm) 

Inside 
Zone 

A= 64 B=  618 A= 155 B=  527 A= 91 B=  591 A= 106 B=  576 

Outside 
Zone 

C= 984 D= 3294 C= 483 D= 3795 C= 64 D= 4214 C= 296 D= 3982 

 T1E= 0.93 T1E= 0.75 T1E= 0.41 T1E= 0.73 

 T2E= 0.15 T2E= 0.12 T2E= 0.12 T2E= 0.12 

 OA= 0.67 OA= 0.79 OA= 0.86 OA= 0.82 
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Conclusion 
 
In this study, the SGS simulation method was applied in order to adhere to data covariance 
models because of its computational efficiency and productivity in generating various 
realizations. 
    ∑REE concentration investigation in the Esfordi deposit showed an average grade of 5519 
ppm in samples and 3880 ppm in the E-Type map obtained from simulation. Fractal C-A 
modeling with five separated geochemical communities, yielded grades of 9549.92 ppm and 
12302.69 ppm, which are regarded to be very high intensity and extremely high intensity 
thresholds, respectively. 
    The evaluation of the correlation and adoption of the E-Type map with rock units using log-
ratio matrix indicate that geochemical anomalies with OA = 0.86 are best correlated with APA-
IRO units. In addition, geochemical anomalies are well in association with other units such as 
IRO-APA, MGR-RHY-AMP, and MGR-RHY. This is indicative of correlation between REE 
concentrations and apatite mineralization. MGR-RHY-AMP unit (known as the “green rock” 
in the property), despite being identified in the anomalous community (due to containing apatite 
crystals), is transferred to the tailing dump. Therefore, reconsideration has to be conducted since 
there are volume of REEs and apatite crystals in the mine tailing dump. 
    In this research, the calculation and validation showed that the simultaneous application of 
geostatistical simulation and fractal modeling can be effective and useful in accurately 
identifying and separating anomalous communities. 
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