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Abstract  

The use of conventional data envelopment analysis (DEA) models in real-world problems are limited 

because of some restrictions that must be considered in the model such as imprecise or vague data in 

inputs and outputs as well as additional information or assumptions. One way to handle this problem is 

by using fuzzy DEA with assurance regions (FDEA/AR) models. There is a common approach in 

almost all the suggested methods for solving FDEA/AR models. However, in this paper, we show that 

in some DEA/AR models, applying this approach can be led to inappropriate results. Four theorems 

are given to provide some sufficient conditions for a DMU to be the DEA/AR efficient. These 

theorems can be used to check the accuracy of the presented methods for solving FDEA/AR models, 

too. Moreover, a new method for solving a generalized FDEA/AR model that includes established 

DEA models such as CCR model (Charnes et al., 1978), BCC model (Banker et al., 1984), FG model 

(Färe & Grosskopf, 1985), and ST model (Seiford & Thrall, 1990) is proposed. These models are 

constant, variable, non-decreasing, and non-increasing returns to scale models, respectively. The 

proposed method is applied to evaluate the performance of manufacturing enterprises. 
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Introduction 

  

Data envelopment analysis (DEA) is a famous and effective method for evaluating the relative 

efficiency of homogeneous decision-making units (DMUs) that use multiple inputs to produce 

multiple outputs. DEA was first introduced by Charnes et al. in 1978. Since 1978, DEA has 

had continuous growth and extensive applications. The most popular DEA models are the 

CCR model, the BCC model, the FG model, and the ST model. These models were 

introduced by Charnes et al. (1978), Banker et al. (1984), Färe and Grosskopf (1985), and 

Seiford and Thrall (1990), and they are constant, variable, non-decreasing, and non-increasing 

returns to scale models, respectively. Yu et al. (1996a, 1996b) proposed a generalized model 

that included the popular DEA models mentioned above. However, in the presence of 

additional information or assumptions in a DEA problem, we have to restrict some weights. 

Therefore, we face a DEA problem with assurance regions. 

A DEA problem with assurance regions (DEA/AR) was first introduced by Thompson et 

al. (1986) and made DEA more applicable. In conventional DEA/AR problems, inputs and 

outputs must be measured by exact values, but in the face of imprecise or vague data, 
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traditional DEA/AR models are not applicable. For example, to provide more flexibility in 

DEA/AR models, Cooper et al. (2001) used imprecise data to a DEA/AR model and then, 

they applied it to evaluate the efficiencies of the Korean mMobile Telecommunication 

Company's branch offices. An appropriate method to model imprecise or vague data is to use 

fuzzy numbers that convert conventional DEA/AR models to fuzzy DEA/AR (FDEA/AR) 

models. 

Since the time the first study was done by Sengupta (1992), many papers have been 

published about FDEA. For example, Saati et al. (2002) proposed an advantageous method to 

evaluate the efficiency of DMUs in the fuzzy CCR (FCCR) model based on α-cuts. 

Lertworasirikul et al. (2003) developed the possibility and credibility approaches for solving 

fuzzy BCC (FBCC) models. To apply qualitative factors in the input and output data, Liao et 

al. (2007) developed a new FDEA model using cloud theory. In their model, for different 

amounts of α, fuzzy data was converted to interval data and then, two conventional DEA 

models were employed to evaluate the upper and lower bounds of DMUs' efficiencies. Using 

fuzzy arithmetic, Wang et al. (2009) introduced different models to evaluate the lower 

bounds, middle values, and upper bounds of the DMU's efficiencies in an FDEA model. Then, 

by a preference degree approach, they combined the obtained efficiency measures and 

proposed a complete ranking of DMUs. In addition, the proposed method was applied to 

evaluate the performance of eight manufacturing enterprises in China. Later, Amirteimoori et 

al. (2020) applied Wang et al. (2009) approach for two-stage FDEA models and obtained the 

optimistic and pessimistic measures of both the overall and stage-based efficiencies of DMUs. 

Wen et al. (2011) proposed some sensitivity and stability analysis on the FDEA models. 

Emrouznejad et al. (2011) proposed two methods for computing the Malmquist productivity 

index using DEA models whose data and price vectors are fuzzy or vary in intervals. 

Moreover, Emrouznejad et al. (2014) presented a taxonomy and review of the published 

papers in this field from 1999 to 2013. Using a transformation function, Foroughi and 

Shureshjani (2017) converted a generalized FDEA model into a generalized parametric DEA 

model that was dependent on the α-cuts. By applying the lower and upper bounds of fuzzy 

input and output data, Hatami-Marbini et al. (2017a) proposed a stepwise FDEA method to 

characterize weakly efficient frontiers. Their method guaranteed a feasible solution for the 

FDEA problem. In another work, Hatami-Marbini et al. (2017b) characterized both data and 

variables by trapezoidal fuzzy numbers and suggested a lexicographic multi-objective linear 

programming method to solve the proposed fully fuzzy DEA (FFDEA) models in constant 

and variable returns to scale conditions. Furthermore, a super efficiency FFDEA model was 

introduced to compare the fuzzy efficient DMUs. Similar to Hatami-Marbini et al. (2017b), 

Namakin et al. (2018) considered fuzziness in all inputs, outputs, and parameters of a DEA 

model. They proposed a new method to solve a fully fuzzy DEA model with Z-numbers. 

Inspired by the TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) 

technique, Hu et al. (2017) proposed a method for evaluating the efficiency of DMUs in an 

FDEA model with common weights. In this method, first two appropriate models were used 

to obtain the positive and negative ideal solutions. Then, using two distance functions, the 

initial FDEA model was converted to a fuzzy bi-objective nonlinear programming problem. In 

addition, supposing the linearity of membership functions, their models became linear and 

simple to use. In a case study, Wanke et al. (2018) compared the obtained efficiency results of 

Angolan banks from different stochastic DEA and fuzzy DEA models. They concluded that 

although the obtained efficiency scores from different models are roughly similar, the ranking 

of DMUs may be substantially different. Hatami-Marbini (2019) considered trapezoidal fuzzy 

numbers as inputs, intermediate products, and outputs in a two-stage DEA model. Then, by 

standard arithmetic operators, Hatami-Marbini (2019) proposed four different DEA models to 
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evaluate the efficiency of DMUs. These four obtained efficiency results were then used to 

obtain the fuzzy measure of the DMUs' scale efficiencies. Besides, the proposed method was 

applied to compare and rank 39 Spanish airports. By considering the optimistic, pessimistic, 

or compromise tendency of the decision-maker, Peykani et al. (2019) first proposed a general 

fuzzy measure on the possibility of space. Then, they applied the proposed measure to an 

FDEA model with trapezoidal fuzzy input and output data. In this case, the FDEA model was 

converted to a parametric DEA model with optimistic-pessimistic parameters. As an example, 

they applied the proposed model to evaluate the efficiency of 38 hospitals in the East Virginia 

Department of Health and Human Services in the USA. 

Despite many works in the FDEA field, few methods are offered for solving FDEA/AR 

models. First, Liu (2008) entered fuzzy numbers into DEA/AR models and based on Zadeh’s 

extension principle (Zadeh, 1978), he transformed an FDEA/AR model into a family of crisp 

DEA/AR models to offer the lowest and the highest bounds for the efficiency of DMUs at 

different α-levels. Then by applying Chen and Klein’s (1997) index, Liu (2008) obtained a 

crisp number and ranked DMUs. In a comment, Jahanshahloo et al. (2009) made some 

corrections to the theorem-proof presented by Liu (2008) as well as their proposed model. 

Again, Zhou et al. (2010) provided some corrections and proposed a different proof for 

Jahanshahloo et al.’s (2009) theorem. Liu and Chuang (2009) used the FDEA/AR model 

proposed by Liu (2008) to evaluate the performance of 24 university libraries in Taiwan. 

Later, in a note, Zhou et al. (2012a) corrected the models and proof of a proposition in Liu 

and Chuang (2009) and proposed a generalized FDEA/AR model. In addition, Zhou et al. 

(2012b) proposed a generalized FDEA/AR model and developed the Liu (2008) method to 

solve well-known DEA/AR models such as CCR, BCC, ST, and FG models with fuzzy inputs 

and outputs and assurance regions. Zhou et al. (2012b) applied Chen and Wang’s (2009) 

index to rank DMUs. The proposed method was applied to evaluate the efficiency of ten 

manufacturing enterprises. As a real-world application of the FDEA/AR models, Hongmei et 

al. (2015) applied an FDEA/AR model to assess the seismic behavior of reservoir dams. 

Similar to Liu’s (2008) method, they first calculated the lowest and highest bounds of the 

damaged reservoir dams' efficiencies by two appropriate models for different α-levels and 

then, using a ranking index, they compared 19 damaged reservoir dams in Luojiang County, 

Sichuan Province. 

In this paper, four sufficient conditions for BCC/AR, FG/AR, or ST/AR efficiency of a 

DMU are provided. Then, a new method for solving a generalized FDEA/AR model is 

proposed. The proposed method converts an FDEA/AR model to a parametric DEA/AR 

model that is dependent on α-levels. In this method, the decision maker's opinion contributes 

to the decision process by the selection of α. Furthermore, the proposed method is illustrated 

in an example and the obtained results are compared with two other methods in this field. 

The reminder of the paper is organized as follows. In Section 2, generalized DEA/AR and 

generalized FDEA/AR models are briefly described. Liu’s (2008) method is the most famous 

approach to solving FDEA/AR models. In Section 3, two proposed models by Liu (2008) for 

evaluating lower and upper bounds of DMUs' efficiencies in an FDEA model are introduced. 

In Section 4, four theorems are proved to propose sufficient conditions for the BCC/AR, 

ST/AR, or FG/AR efficiency of a DMU. Moreover, a new approach for solving the 

generalized FDEA/AR model is proposed in Section 5. In Section 6, our method is applied to 

evaluate the performance of manufacturing enterprises. Furthermore, the obtained results 

from our method are compared with the obtained results from Liu's (2008) and Zhou's 

(2012b) methods. Finally, some conclusions are drawn in Section 7. 
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Generalized DEA/AR and FDEA/AR Models 

  

Let ( 1,..., )ijx i m and ( 1,..., )rjy r s be the positive inputs and outputs of ( 1,..., )jDMU j n , 

then the generalized DEA model (Yu et al., 1996a; Yu et al., 1996b) is formulated as follows. 
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where, iv and ru  are the weights given to input i and output r, respectively. In addition, 

1 2 3, ,   are binary parameters, and we have: 

(і) If 1 =0, then the generalized DEA model is reduced to the CCR model. 

(іі) If 1 = 1 and 2 = 0, then the generalized DEA model is reduced to the BCC model. 

(ііі) If 1 2 1    and 3  = 0, then the generalized DEA model is reduced to the FG model. 

(іv) If  1 2 3 1     , then the generalized DEA model is reduced to the ST model. 

However, due to additional information or assumptions that should be considered in real-

world problems, some of the weights in a DEA problem might need to be restricted. Hence, 

Zhou et al. (2012b) developed Model (1) into Model (2), considering assurance regions as 

follows. 
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(2) 

Here, we assume that  0 L U

pq pqC C   and 0 L U

pq pqD D  . 

In the model (2), we should provide many pairwise comparisons to determine the lower 

and upper bounds of the ratio between two arbitrary input weights or the ratio between two 

arbitrary output weights. However, pairwise comparisons between all the input weights or 

output weights are a very significant challenge and can lead to inconsistency. One of the 

appropriate ways to handle this problem is to determine one input as an “input numeraire” and 

one output as an “output numeraire” and then, compare the weights of all inputs and outputs 

with the weight of their numeraires. In this case, it is easier for the decision-maker to express 

his/her judgment; fewer comparisons are needed and so, less inconsistency will occur. This 

technique is common to reduce comparisons and to provide more accurate and consistent 

models. For example, Rezaei (2015) applied this approach and proposed the best-worst 

method (BWM) that is an MCDM method for evaluating multiple alternatives with multiple 

decision criteria. He proved that in comparison with the analytic hierarchy process (AHP) 

method, the BWM method is more consistent and needs fewer comparisons.  
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Here, we select one of the inputs, say 
1x , as an “input numeraire” and one of the outputs, 

say 
1y , as an “output numeraire” (Cooper et al., 2007; Thompson et al., 1986; Thompson et 

al., 1990). In this case, the assurance regions are simplified as: 

1 1 1 1 1 1 1 1, 2,..., and , 2,...,L U L U

q q q q q qC v v C v q m D u u D u q s       (3) 

So, model (2) will be converted to the following DEA/AR model: 
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(4) 

And by considering fuzzy input ( ijx ) and fuzzy output ( rjy ) data, the generalized DEA/AR 

model (model 4) can be converted to the following generalized FDEA/AR model. The 

difference between the following model and the generalized FDEA/AR model proposed by 

Zhou et al. (2012b) is that in the following model, the first inputs and outputs are considered 

as “numeraires.” 
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(5) 

 

Lower and Upper Bounds of DMUs' Efficiencies in an FDEA/AR Model 

 

Calculating the lower and upper bounds of DMUs' efficiencies is one of the most famous 

approaches for solving FDEA models in the literature. In addition, as mentioned in the 

introduction, most of the proposed methods for solving FDEA/AR models are inspired by the 

work of Liu (2008). Using two appropriate models, Liu (2008) calculated the lower and upper 

bounds of a DMU's fuzzy efficiency for different amounts of α-cuts. Here we briefly 

introduce the Liu (2008) models. 

Let ijx~  and rjy~  be the fuzzy amounts of ith input and rth output of the jth DMU, 

respectively. Also, suppose )~( ijxS  and )~( rjyS  indicate the support of ijx~  and rjy~ . The α-cuts of 

ijx~  and rjy~  are defined as: 
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For an arbitrary amount of α-cut, the lower and upper bounds of efficiencies for each DMU 

under evaluation are calculated as follows, respectively (Liu, 2008). 
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From the two above-mentioned models, it can be seen that to obtain the lower bound of the 

efficiency of the DMU under evaluation, the lower bounds of its outputs and the upper bounds 

of its inputs are considered, whereas for the other DMUs, the upper bounds of their outputs 

and the lower bounds of their inputs are applied. Moreover, to calculate the efficiency of the 

upper bound of the DMU under evaluation, the upper bounds of its outputs and the lower 

bounds of its inputs are considered, whereas for the other DMUs, the lower bounds of outputs 

and the upper bounds of inputs are used. Therefore, it is clear that for each amount of α, we 

obtain a wide interval as the efficiency of the DMU under evaluation, and as a result, it will 

be difficult to compare and rank DMUs. To solve this problem, Liu (2008) applied the 

following index, which was first proposed by Chen and Klein (1997) for ranking fuzzy 

numbers, to combine the obtained efficiency intervals and rank DMUs. 
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Although most of the proposed methods for solving FDEA/AR models are inspired by 

Liu's (2008) method, in the following sections, it will be shown that using this method can 

lead to inappropriate results in some FDEA/AR models.  

   

Four Sufficient Conditions for BCC/AR, FG/AR, or ST/AR Efficiency of a DMU 

 

Cooper et al. (2007) proved that a DMU is BCC efficient if it has a minimum input value for 

any input item or a maximum output value for any output item. This theorem may not be 

applied to BCC models with assurance regions (BCC/AR models). However, considering 

model 4 as a DEA/AR model, we can prove the following theorems. These theorems provide 

some sufficient conditions for BCC/AR, FG/AR, and ST/AR efficiency of a DMU, 

respectively.  

Theorem 1 A oDMU  with , , 1,..., ,o j o jy y y y j n j o    , is BCC/AR efficient. 

Proof. We can write the BCC/AR model (model 4) corresponding to oDMU  as follows: 
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,  

thus: 

12 21 12 22 1 1 1 2

21 22 21 22 12 21 12 22 12 21 12 22

1 2 1 2 1 1 1 2 1 1 1 2

0

0 0
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0 0

L U L U

s s s s

L U L U

L U L U

s s s s s s s s s s s s

D D D D

D D D D

D D D D

   

       

       

     

         


         

                      

  From (**), we have 12 21 12 22 1 1 1 2, ...,L U L U

s s s sD D D D     , and by considering  

1 10 , 2,...,L U

j jD D j s    and 21 22 1 2, , s s     , we conclude 0  . 

By setting 0   in (*) we have oY y  , so from  , ,o j o jy y y y j o    we should have 

1, 0,o j j o    . Furthermore,  0ox X P      and by using the found λ we 

have 0o ox x P    , therefore 0o oP x x     (note that θ is the optimal objective value 

of the problem, so obviously 1  ). 

  Similarly, from  0P   we conclude 0  , therefore  1   and oDMU  is BCC/AR 

efficient. □ 

Theorem 2 A oDMU  with , , 1,...,n,o j o jx x x x j j o    , is BCC/AR efficient. 

Proof. The proof is similar to the proof of theorem 4.1 and is thus omitted.  

 

Theorem 3 A oDMU  with , , 1,..., ,o j o jy y y y j n j o    , is FG/AR efficient. 

Proof. To prove this theorem, you just need to replace 1e   with 1e at the proof of 

theorem 1. 

 

Theorem 4 A oDMU  with , , 1,...,n,o j o jx x x x j j o    , is ST/AR efficient. 

Proof. The proof of this theorem will be similar to the proof of theorem 1 by considering 

1e . 

These theorems provide some sufficient conditions for the DEA/AR efficiency of a DMU 

and can be used to check the accuracy of the proposed methods for solving FDEA/AR 

problems. The reason is that most of the proposed methods for solving FDEA/AR problems 

are inspired by Liu's (2008) method, and as can be seen in Section 3, after the selection of 

alpha parameter, we should solve the models in the same way as  models 9 and 10 – which are 

traditional DEA/AR models – are solved. 

 

The Proposed Method 

 

In this section, we present a new method for solving the generalized fuzzy data envelopment 

analysis model with assurance regions (generalized FDEA/AR model). First, some definitions 

are given about fuzzy numbers and then, the function Q  that is proposed by Abbasi 

Shureshjani and Darehmiraki (2013) is introduced. They applied this function to compare and 

rank fuzzy numbers. In their method, first the fuzzy numbers are replaced with assigned Q  
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functions. Then, by an appropriate selection of α, the fuzzy numbers are compared and ranked 

based on the obtained amounts of Q . 

Definition 1 According to Abbasi Shureshjani and Darehmiraki (2013), a fuzzy number A
~

 

in parametric form is an ordered pair  )(),( rArA  of functions )(rA  and ,0),(  rrA  

which satisfy the following requirements: 

1. )(rA is a bounded monotonic increasing left continuous function over  ,0 , 

2. )(rA is a bounded monotonic decreasing left continuous function over  ,0 ,  

3.  rrArA 0),()( . 

  is an arbitrary constant such that 10  . 

In the above-mentioned definition, if 1  then A
~

is called a normal fuzzy number.  

Definition 2 According to Abbasi Shureshjani and Darehmiraki (2013), the α-cut of an 

arbitrary fuzzy number is defined as       0,)(),(
~

AAA . 

Definition 3 According to Abbasi Shureshjani and Darehmiraki (2013), a normal 

trapezoidal fuzzy number A
~

 can be characterized by a trapezoidal membership function 

parametrized as  dcba ,,,  where cba ,, and d are real values. If cb  , then we have a normal 

triangular fuzzy number, which for simplicity purposes will be represented by  dba ,, . 

In Figure 1, two arbitrary normal trapezoidal and triangular fuzzy numbers are shown. 

 
Figure 1. (a) A Normal Trapezoidal Fuzzy Number, (b) A Normal Triangular Fuzzy Number 

 

  Let ( ( ), ( )), 0 1A A r A r r    be a normal fuzzy number (Figure 2). The function ( )Q A
 is 

defined as follows (Abbasi Shureshjani & Darehmiraki, 2013): 
1

( ) ( ( ) ( )) , 0 1Q A A r A r dr


     (12) 

The amount of function ( )Q A  is graphically shown in Figure 2. This value is the 

summation of the dotted area and the crosshatched area. Using this function, Abbasi 

Shureshjani and Darehmiraki (2013) proposed the following definitions for ranking normal 

fuzzy numbers.  

 
Figure 2. ( ( ), ( ))A A r A r  (Abbasi Shureshjani & Darehmiraki, 2013)  
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Let ),,,(
~

dcbaA   be a normal trapezoidal fuzzy number and ),,(
~

dbaB    be a normal 

triangular fuzzy number. Then we have: 

,)1.(
2

)(
)1).(()

~
( 2 




dcba
cbAQ  (13) 

2)1.(
2

)2(
)1).(2()

~
(  




dba
bBQ  (14) 

Definition 4 If A
~

 and B
~

 are two arbitrary normal fuzzy numbers, then we have: 

BA
~~

  if and only if  )
~

()
~

(],1,0[ BQAQ    

BA
~~

  if and only if  )
~

()
~

(],1,0[ BQAQ    

BA
~~

  if and only if  )
~

()
~

(],1,0[ BQAQ    

Definition 5 If we compare two arbitrary normal fuzzy numbers including A
~

 and B
~

 at a 

decision level higher than “ ” and [0,1] , then we have: 

BA
~~

  if and only if  )
~

()
~

( BQAQ    

BA
~~

  if and only if  )
~

()
~

( BQAQ    

BA
~~

  if and only if  )
~

()
~

( BQAQ    

where, BA
~~

  means that, at decision level higher than α, B
~

 is greater than or equal to A
~

. 

From the definition of the Q  function, we can see that unlike the two models that are 

proposed by Liu (2008) (models 9 and 10), this function considers both the left and right parts 

of a fuzzy number. Therefore, it is sensitive to any changes in the left and right parts of a 

fuzzy number simultaneously and can be an appropriate representative of fuzzy inputs and 

outputs in the fuzzy DEA/AR model. 

By replacing fuzzy inputs and outputs with their assigned Q  functions, the generalized 

fuzzy DEA/AR model is transformed into a parametric linear programming problem that is 

dependent on α-levels. We can write this transformed generalized FDEA/AR model as 

follows: 

3

1 0

1

1

1 0

1 1

1 1 1 1

1 1 1 1

1 2 0

max ( )

. . ( ) 1

( ) ( ) 0, 1,...,
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s

r ro

r

m

i io

i

s m
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 

 
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   

  

  

    





 
 

(15) 

Then, by choosing an appropriate α (that is a confidence level and depends on the decision 

maker's ideas), model (15) will be converted to a conventional DEA/AR model and the 

efficiency of DMUs can be easily computed. As can be seen from Figure 2, if α is defined 

close to 1, just the elements with high membership quantities of fuzzy numbers (fuzzy inputs 

and outputs) are considered (a low-risk decision). Alternatively, if α is defined close to zero, it 

means that the elements with low membership quantities of fuzzy numbers are considered in 

addition to the high membership quantities (a high-risk decision). Thus, the model (15) is a 

flexible model based on the decision maker's idea. For example, a risk-averse decision-maker 
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can evaluate the efficiency of decision-making units by the model (15) with the alpha 

parameter near to zero, whereas a risk-prone decision-maker prefers to solve model (15) with 

the alpha parameter close to 1 for evaluating the efficiency of the decision-making units. In 

addition, neutrality in risk can be chosen in the model (15) by selecting the alpha parameter 

close to 0.5. 

We can provide the following efficiency definitions for a DMU in the transformed 

FDEA/AR model (model (15)). 

Definition 6  
oDMU  is FBCC/AR efficient if and only if [0,1)  , oDMU  is efficient in the 

transformed FBCC/AR model. 

Definition 7 oDMU  is FBCC/AR α-efficient if and only if for the selected α, oDMU  is 

efficient in the transformed FBCC/AR model. 

  Similar definitions for FCCR/AR, fuzzy FG/AR (FFG/AR) and fuzzy ST/AR (FST/AR) 

models can be obtained. Now we can rewrite the previous theorems for DMUs with fuzzy 

inputs and outputs as follows.  

Corollary 1 For a selected α, if oDMU  has , , 1,...,n,o j o jx x x x j j o     , or 

, , 1,..., ,o j o jy y y y j n j o     , then oDMU  is FBCC/AR α-efficient. 

Proof. According to definition 5.5, for a selected α, , , 1,...,n,o j o jx x x x j j o     , 

if and only if ( ) ( ), ( ) ( ), 1,...,n,o j o jQ x Q x Q x Q x j j o       . In this case, according to 

theorem 4.2, oDMU  is efficient in the transformed FBCC/AR model and according to 

definition 5.7, oDMU  is FBCC/AR α-efficient. Proof for the 

case , , 1,..., ,o j o jy y y y j n j o      is the same. □ 

Corollary2 If for all α, [0,1) , oDMU  has the assumptions of corollary 5.1, oDMU  is 

FBCC/AR efficient.  

Proof. According to definition 5.4, for all α, [0,1) , , , 1,...,n,o j o jx x x x j j o     , 

if and only if ( ) ( ), ( ) ( ), 1,...,n,o j o jQ x Q x Q x Q x j j o       . In this case, according to 

theorem 4.2, for all α  oDMU  is efficient in the transformed FBCC/AR model and according 

to definition 5.6, oDMU  is FBCC/AR efficient. Proof for the case that for all α, [0,1) , 

, , 1,..., ,o j o jy y y y j n j o      is  the same. □ 

   Similar to the above-mentioned proofs, we can also prove the following corollaries: 

Corollary 3 For a selected α, if oDMU  has , , 1,..., ,o j o jy y y y j n j o     , then 

oDMU  is FFG/AR α-efficient. 

Corollary 4 If for all α, [0,1) , oDMU  has the assumptions of corollary 5.3, oDMU  is 

FFG/AR efficient. 

Corollary 5 For a selected α, if oDMU  has , , 1,...,n,o j o jx x x x j j o     , then 

oDMU  is FST/AR α-efficient. 

Corollary 6 If for all α, [0,1) , oDMU  has the assumptions of corollary 5.5, oDMU  is 

FST/AR efficient. 

 

Evaluating the Performance of Manufacturing Enterprises 

 

Here, we consider the same data that was used by Zhou et al. (2012b) (Table 1) to illustrate 

the proposed approach and to compare the obtained efficiency results from our method with 
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the two other methods in this field. In Table 1, there are ten manufacturing enterprises with 

three inputs and two outputs. In the input data, the manufacturing cost data (MC) are normal 

trapezoidal fuzzy numbers, but the number of employee data (NOE) and the floor space data 

(FS) are crisp. In the output data, the gross output value data (GOV) are represented by 

normal trapezoidal fuzzy numbers, and the product quality data (PQ) are presented as normal 

triangular fuzzy numbers. 

 
Table 1. Input and Output Data for the Ten Manufacturing Enterprises (Zhou et al., 2012b) 

DMU 
Input Output 

MC                         NOE         FS GOV                              PQ 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

(21.00,21.30,21.70,22.10)      1780        17.30 

(14.10,14.50,14.60,15.00)      1430        16.40 

(25.00,25.50,25.70,26.10)      2630        11.20 

(22.00,22.50,23.50,24.00)      2000        10.50 

(14.80,15.00,15.20,15.60)      1570          9.50 

(19.60,20.00,20.30,21.00)      1670          4.80 

(22.00,22.40,22.60,23.20)      1890          6.20 

(24.00,24.60,25.20,25.50)      2350        11.10 

(15.80,16.30,16.80,17.60)      1750          9.80 

(14.90,15.30,15.80,16.00)      1690          8.50 

(147.50,147.90,148.00,148.70)       (3,4,5) 

(125.80,126.20,127.20,128.10)       (1,2,3) 

(179.00,180.00,182.60,184.50)       (3,4,5) 

(149.70,152.70,154.00,155.00)       (3,4,5) 

(138.90,142.60,143.30,145.40)       (1,2,3) 

(140.50,143.10,144.60,145.70)       (2,3,4) 

(164.50,168.70,170.80,175.40)       (2,3,4) 

(176.70,179.60,181.20,185.30)       (3,4,5) 

(139.80,146.20,148.30,150.00)       (1,2,3) 

(140.00,142.80,143.50,144.50)       (2,3,4) 

   

We consider  1x  as an “input numeraire” and  1y  as an “output numeraire” and the 

assurance regions (AR) on input and output weights are provided as: 

32 2

1 1 1

0.17 0.25 0.32 0.40 0.28 0.35
, ,

0.83 0.75 0.83 0.75 0.50 0.41

vv u

v v u
       (16) 

The efficiencies of DMUs obtained from the proposed method are shown in Tables 2 and 

3. The results show that for different amounts of α, different efficiency measures are obtained. 

According to the presented definitions, DMU E is FCCR/AR efficient; DMUs B, C, E, G, and 

H are FBCC/AR efficient; DMUs C, E, G, and H are FFG/AR efficient; and DMUs B, and E 

are FST/AR efficient. 

  
Table 2. FCCR/AR and FBCC/AR Efficiency Scores 

DMU 
FCCR/AR efficiency score FBCC/AR efficiency score 

α=0.0           α=0.3           α=0.6           α=0.9 α=0.0           α=0.3           α=0.6           α=0.9 

A 0.915320 0.914423 0.913500 0.912592 0.918098 0.917422 0.916717 0.916015 

B 0.970259 0.969157 0.968029 0.966916 1.000000 1.000000 1.000000 1.000000 

C 0.768134 0.767187 0.766219 0.765264 1.000000 1.000000 1.000000 1.000000 

D 0.846859 0.846956 0.847028 0.849557 0.850807 0.851337 0.851859 0.854937 

E 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

F 0.949608 0.949574 0.949513 0.949465 0.950287 0.950325 0.950336 0.950361 

G 0.990507 0.989522 0.988509 0.987512 1.000000 1.000000 1.000000 1.000000 

H 0.852165 0.851006 0.849824 0.848657 1.000000 1.000000 1.000000 1.000000 

I 0.920709 0.922172 0.923604 0.925048 0.922431 0.924165 0.925904 0.927674 

J 0.939652 0.939677 0.939675 0.939686 0.940114 0.940191 0.940240 0.940305 
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Table 3. FFG/AR and FST/AR Efficiency Scores 

DMU 
FFG/AR efficiency score FST/AR efficiency score 

α=0.0           α=0.3           α=0.6           α=0.9 α=0.0           α=0.3           α=0.6           α=0.9 

A 0.918098 0.917422 0.916717 0.916015 0.915320 0.914423 0.913500 0.912592 

B 0.970259 0.969157 0.968029 0.966916 1.000000 1.000000 1.000000 1.000000 

C 1.000000 1.000000 1.000000 1.000000 0.768134 0.767187 0.766219 0.765264 

D 0.850807 0.851337 0.851859 0.854937 0.846859 0.846956 0.847028 0.849557 

E 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

F 0.950287 0.950325 0.950336 0.950361 0.949608 0.949574 0.949513 0.949465 

G 1.000000 1.000000 1.000000 1.000000 0.990507 0.989522 0.988509 0.987512 

H 1.000000 1.000000 1.000000 1.000000 0.852165 0.851006 0.849824 0.848657 

I 0.922431 0.924165 0.925904 0.927674 0.920709 0.922172 0.923604 0.925048 

J 0.940114 0.940191 0.940240 0.940305 0.939652 0.939677 0.939675 0.939686 

 

However, as mentioned before, in Liu (2008) and Zhou et al. (2012b) methods, just a 

boundary for efficiency measure of a DMU is suggested for each amount of the alpha 

parameter, and these boundaries include a wide range of efficiency measures. Especially for 

ranking DMUs, combining these obtained boundaries can lead to inaccurate results.   

As an example, in fuzzy number ranking methods used in some papers (e.g., Abbasi 

Shureshjani & Darehmiraki, 2013; Chen & Klein, 1997; Chen & Wang, 2009; Liu, 2008; 

Zhou et al., 2012b), we can show that DMU C has the biggest outputs among all DMUs. 

From Table 1, we see that output 1 of DMU C is clearly the biggest among output 1 of all 

DMUs except for output 1 of DMU H.  

We set )50.184,60.182,00.180,00.179(~
1 Cy  and  )30.185,20.181,60.179,70.176(~

1 Hy  that 

are the output 1 of DMUs C and H, respectively. Cy1
~  and  Hy1

~  are two intersected fuzzy 

numbers, and by applying the ranking fuzzy numbers proposed by Abbasi Shureshjani and 

Darehmiraki (2013), we have: 
2

1

2

1 )1(6.0)1(8.360)~(,)1(45.0)1(6.362)~(    HC yQyQ  

We can see that )~()~(],1,0[ 11

HC yQyQ   , then according to definition 5.4, we have:  

HC yy 11
~~  . In addition, by calculating I index proposed by Chen and Klein (1997) (used in Liu 

(2008) method) and RI index proposed by Chen and Wang (2009) (used in Zhou et al. 

(2012b) method) for Cy1
~  and  Hy1

~ , we have HC yy 11
~~  , too, as shown in Table 4. It means that 

in all these three ranking methods, the output 1 of DMU C is bigger than output 1 of DMU H, 

too. 

  Similarly, output 2 of DMU C is biggest among output 2 of all the DMUs.  

Therefore, if we replace fuzzy inputs and outputs of the DMUs with their assigned values 

from Abbasi Shureshjani and Darehmiraki (2013) index, Chen and Klein index (1997) (used 

in Liu (2008) method), or Chen and Wang (2009) index (used in Zhou et al. (2012b) method), 

we can see that DMU C has the biggest outputs among all the DMUs, and based on Theorem 

4.1, it is natural to expect that DMU C be an efficient DMU. This result is obtained by our 

proposed approach (Table 2). But, if we solve this example with the method of Liu (2008) or 

Zhou et al. (2012b), DMU C will be inefficient and will obtain rank 9 among these 10 DMUs, 

which is an inappropriate result (Tables 5 and 6).  

Moreover, if we replace fuzzy inputs and outputs of the DMUs with their assigned values 

from Abbasi Shureshjani and Darehmiraki (2013) index, Chen and Klein index (1997) (used 

in Liu (2008) method), or Chen and Wang (2009) index (used in Zhou et al. (2012b) method), 

we can see that DMU B has the smallest inputs among all the DMUs, and based on theorem 

4.2, it is natural to expect that DMU B is an efficient DMU. As can be seen from Tables 2, 5, 

and 6, this result is confirmed by all the above-mentioned approaches. 
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Table 4. I and RI Indexes for Output 1 of DMUs C and H 

DMU 
α 

0.0       0.1       0.2       0.3       0.4       0.5       0.6       0.7       0.8       0.9       1.0            I          RI 

Cy1
~

 
L 

U 

179      179.1   179.2   179.3   179.4   179.5   179.6   179.7   179.8   179.9   180       0.9087  0.8687 

184.5   184.31 184.12 183.93 183.74 183.55 183.36 183.17 182.98 182.79 182.60 

Hy1
~

 
L 

U 

176.7   176.99 177.28 177.57 177.86 178.15 178.44 178.73 179.02 179.31 179.6    0.8893  0.8510 

185.3   184.89 184.48 184.07 183.66 183.25 182.84 182.43 182.02 181.61 181.2 

 

   Table 5. Efficiency Scores for FBCC/AR Model from Liu (2008) Method 
DMU A B C D E F G H I J 

Index 0.6227 1.0000 0.5667 0.3817 0.9765 0.7388 1.0000 0.7798 0.6387 0.7122 

Rank 8 1 9 10 3 5 1 4 7 6 

 

Table 6. The Lower and Upper Bounds of Efficiency Scores for FBCC/AR Model From Zhou et al. 

(2012b) Method 

DMU 
α 

0.0       0.1       0.2       0.3       0.4       0.5       0.6       0.7       0.8       0.9       1.0        RI       Rank 

A 
L 

U 

0.883   0.886   0.889   0.891   0.894   0.897   0.900   0.903   0.906   0.909   0.912   0.1156       8 

0.965   0.960   0.956   0.951   0.947   0.942   0.938   0.934   0.929   0.925   0.921 

B 
L 

U 

1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   0.1850       1 

1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000 

C 
L 

U 

0.773   0.784   0.795   0.806   0.816   0.827   0.837   0.848   0.858   0.868   0.879   0.1080       9 

1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000 

D 
L 

U 

0.803   0.806   0.810   0.814   0.818   0.823   0.827   0.831   0.835   0.840   0.844   0.0625      10 

0.904   0.900   0.895   0.891   0.886   0.882   0.878   0.874   0.870   0.865   0.861 

E 
L 

U 

0.980   0.984   0.988   0.992   0.996   1.000   1.000   1.000   1.000   1.000   1.000   0.1842       3 

1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000 

F 
L 

U 

0.910   0.915   0.918   0.920   0.923   0.925   0.928   0.931   0.934   0.938   0.942   0.1416       5 

1.000   1.000   0.999   0.994   0.989   0.984   0.979   0.974   0.969   0.964   0.959 

G 
L 

U 

1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   0.1850       1 

1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000 

H 
L 

U 

0.829   0.855   0.880   0.903   0.926   0.947   0.968   0.987   1.000   1.000   1.000   0.1675       4 

1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000 

I 
L 

U 

0.869   0.873   0.877   0.881   0.885   0.889   0.893   0.897   0.904   0.911   0.917   0.1204       7 

0.994   0.988   0.983   0.977   0.972   0.966   0.961   0.955   0.950   0.945   0.940 

J 
L 

U 

0.907   0.909   0.912   0.914   0.917   0.919   0.922   0.925   0.928   0.931   0.935   0.1349       6 

0.996   0.991   0.986   0.981   0.976   0.971   0.966   0.961   0.956   0.952   0.947 

 

Conclusions 

 

Fuzzy data envelopment analysis with assurance regions (FDEA/AR) is an appropriate 

method for evaluating the efficiency of DMUs when we face fuzzy data in inputs and outputs, 

or when we come to assumptions or additional information that must be considered in a DEA 

model. 

In this paper, some sufficient conditions for DEA/AR and FDEA/AR efficiency of a DMU 

are provided. These theorems can be used to check the accuracy of the proposed methods in 

this field. Then, a new approach for solving a generalized FDEA/AR model included in four 

popular DEA models, i.e., CCR, BCC, FG, and ST models, is proposed. The proposed 

method converts a generalized FDEA/AR model to a generalized parametric DEA/AR model 

dependent on α-level sets. Finally, the proposed method is applied to evaluate the 

performance of manufacturing enterprises. In this example, we show that although calculating 

the lower and upper bounds of DMUs’ efficiencies is a common method for solving 

FDEA/AR problems, , this method in practice can lead to inappropriate results. 
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In real-world problems, such as supply chains, some DMUs have important interior 

structures; considering the system as a black box ignores these interior structures when 

evaluating the efficiency of DMUs. Network DEA models study the internal structure of 

DMUs (Guo et al., 2017). Because of the structure of Liu's (2008) approach, applying it to 

network FDEA models will be more complicated. As future works, we want to apply our 

proposed method to different kinds of network FDEA models such as two-stage FDEA, multi-

stage FDEA, dynamic network FDEA, etc. 
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