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1. Introduction 

Functionally graded materials (FGM) are special composites 
whose properties change gradually though direction. In generally, 
functionally graded materials consist of a mixture of ceramic and 
metal materials. In the last years, the functionally graded materials 
have been found in many engineering applications, such as 
aircrafts, space vehicles and biomedical sectors.  

    By increasing functionally graded structures, many researchers 
investigated the mechanical behavior of functionally graded 

structures in last decade. In the literature, some investigations of 
mechanical behavior of functionally graded and composite 

structures are as follows; Agarwal et al. [1] presented the 
geometrically nonlinear static and vibrations of FGM beams. Ke 

et al. [2] studied the postbuckling behavior of damaged FGM 
beams. Kang and Li [3] studied the nonlinear deformation of a 

FGM cantilever beam with considering work hardening of power 
law. Su et al. [4] presented post-buckling of FGM 

Timoshenko beams with piezoelectric layers under temperature 
and electric effects. Kocatürk et al. [5] presented geometrically 

non-linear static analysis of a FGM beam by using Total 
Langragian finite element approximation with Timoshenko beam 

theory. Soleimani and Saadatfar [6] presented large deflection of 
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FGM beams by using shooting method. Anandrao et al. [7] studied 
nonlinear vibration and buckling of FGM Timoshenko beams by 

using finite element method. Askari et al. [8] presented nonlinear 
oscillations of FGM beams. Anandrao et al. [9] analyzed non-

linear stress analysis FGM beams by using Euler-Bernoulli beam 
theory and finite element method. Machado and Piovan [10] 

analyzed the nonlinear vibrations of FGM beams under thermal 
and harmonic transverse loads. Akbaş [11] investigated 

geometrically nonlinear analysis of edge cracked FG Timoshenko 
beams by using Total Langragian finite element method. Tung and 

Duc [12] investigated nonlinear results of thick functionally 
graded doubly curved shallow panels resting on foundations under 

different type loads. Akbaş [13] investigated post-buckling of 

axially FGM beams. Nguyen et al. [14] presented the 
geometrically nonlinear analysis of FGM planar beam and frame 

structures by using the finite element method. Mohammadi and 
Rastgoo [15,16] presented the nonlinear vibration analysis of 

composite nanoplates with functional-graded cores. Mohammadi 
et al. [17] investigated Nonlinear free and forced vibration 

behavior of a porous functionally graded Euler-Bernoulli 
nanobeam subjected to mechanical and electrical loads.   Kocatürk 

and Akbaş [18], Akbaş [19-24] investigated post-buckling 
responses of functionally graded and composite beams by using 
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The aim of this paper is to investigate geometrically nonlinear static analysis of an 

axially functionally graded cantilever beam subjected to transversal load. The 

considered problem is solved by finite element method with total Lagrangian 

kinematic approach. The material properties of the beam vary along the 

longitudinal direction according to the power law function. The finite element 

model of the beam is considered in the three dimensional continuum approximation 

for an eight-node quadratic element. The geometrically nonlinear problem is solved 
by Newton-Raphson iteration method. In the numerical results, the effects of the 

material distribution on the geometrically nonlinear static displacements of the 

axially functionally graded beam are investigated. Also, the differences among of 

material distributions are investigated in geometrically analysis. 
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finite element method within total Langrangian nonlinearity. Wu 
et al. [25] presented dynamic investigations of axially functionally 

graded beams by using the semi-inverse method. Huang and Li 
[26] investigated free vibration of axially functionally non-

uniform graded beams. Hein and Feklistova [27] investigated 
vibration of axially functionally graded beams with different 

cross-sections and boundary conditions by using the Haar wavelet 

series. Alshorbgy et al. [28] presented free vibration analysis of of 
non-uniform axially or transversally graded beams. Eltaher et al. 

[29] presented free vibration analysis of functionally graded 
nanobeams based on nonlocal elasticity theory by using finite 

element method. Shahba et al. [30] and Shahba and Rajasekaran 
[31] analyzed free vibration and stability of axially functionally 

graded beams by using finite element method. Akbaş [32-36] 
presented free vibration analysis of functionally graded beams 

with different mechanical cases. Farajpour et al. [37,38] 
investigated buckling analysis of nano composite plates based on 

nonlocal theories. Şimşek et al. [39] investiated dynamic analysis 
of axially functionally graded simply supported beam subjected to 

moving harmonic load. Huang et al. [40] investigated vibration 
behaviors of axially functionally graded Timoshenko beams with 

non-uniform cross-section. Rajasekaran [41,42] presented 
vibration analysis of axially functionally graded tapered and non-

uniform beams by using differential transformation and 
differential quadrature element methods. Akgöz and Civalek [43] 

presented vibration responses of axially functionally graded 
tapered microbeams based on modified couple stress 

theory. Nguyen [44] studied large displacements of tapered an 
axially functionally graded cantilever beam. Babilio [45] 

investigated the dynamics of an axially functionally graded simply 
supported beam under axial time-dependent load. Akbaş [46] 

presented free vibration of axially functionally graded beams with 

thermal effects. Mohammadi et al. [47,48] investigated effects 

of temperature on the vibration of Graphene Sheets resting on 

foundation. Akgöz and Civalek [49,50] presented static and 

vibration analyses of functionally graded microbeams by using the 

nonlocal theory. Akbaş [51-58] investigated forced vibration of 
functionally graded beams by using finite element method. 

Ghayesh [59] analyzed forced nonlinear vibration of axially 
functionally graded micro beams by using coupled stress theory. 

Liu et al. [60] studied free vibration of axially functionally graded 
tapered beams by using the spline finite point method. Çalım [61] 

presented transient analysis of axially functionally graded beams 
with variable cross-section.  Alimoradzadeh et al. [62] 

investigated nonlinear vibration analysis of axially functionally 
graded beams under moving harmonic load. Uzun et al. [63] 

investigated free vibration of functionally graded nanobeams by 
using finite element method. Cao and Gao [64] investigated free 

vibration of non-uniform axially functionally graded beams with 
the asymptotic development method. Barati et al. [65] presented 

static torsion of bi-directional functionally graded microtube based 
on the couple stress theory under magnetic field. Sharma et al. [66] 

presented the modal analysis of an axially functionally graded 
beam under hygrothermal effect. 

 

    In this study, geometrically nonlinear static analysis of an 
axially functionally graded cantilever beam subjected to 

transversal load is investigated by using finite element method 
with total Lagrangian and three dimensional continuum 

approximation. The nonlinear problem is solved by incremental 
displacement-based finite element method in conjunction with 

Newton-Raphson iteration method. 

2. Theory and Formulations 

   In figure 1, a cantilever beam with length L, width b, 

thickness h under a non-follower transversal point load Q is 

shown with Lagrangian coordinate system (X,Y,Z) and Euler 

coordinate system (x,y,z). 

 

 

Figure 1. A cantilever axially functionally graded three dimensional 
beam under a transversal point load (Q). 

 

The material properties (P) of the beam in case of functionally 

graded material change though longitudinal direction (X) based on 

following power-law function distribution; 
  

  

                              P(X) = (PL-PR) (1-
X

L
)

k

+ PR          (1) 

 

where 𝑃𝐿 and 𝑃𝑅 are the material properties of the left and the right 

surfaces of the beam and k is the non-negative power-law exponent 
which dictates the material variation profile through the axially 

direction. In Eq. (1), when X=0, 𝑃 = 𝑃𝐿, and when X=L, 𝑃 = 𝑃𝐿. 
when k=0 material of beam gets homogenous full left side 

material, and when k=∞ material of beam gets homogenous right 
material. 

In this study, Total Lagrangian finite element equations of three 
dimensional continuums for an eight-node quadratic element are 

used for geometrically nonlinear analysis of axially functionally 
graded three dimensional beams.  

 
The constitutive relation between the second Piola-Kirchhoff 

stress tensor (Sij) and the Green-Lagrange strain tensor (Eij) can be 
assumed as follows 

 

     

      (2) 

 

The components of the constitutive tensor can be written in terms 
of Young’s modulus E and Poisson’s ratio υ and their dependence 

on X coordinate are given by Eq. (1) as follows: 
 

              

         

(3)
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The Green-Lagrange strain tensor is presented within three-

dimensional solid continuum as follows;  
 

    (4) 

 
where the displacement fields of the finite element are expressed 

in terms of nodal displacements as follows: 
 

  
(5a) 

 

   (5b) 
 

   (5c) 
 

These total and incremental displacement fields are presented as 
follows: 

 

         
       (6) 

 

            (7) 

where  

 

(8a) 

 

 (8b)          

 

  (8c) 
 
where ψi are the shape functions (Akbaş [13]). Eight-node three 

dimensional finite element is displayed in figure 2.  
 

 
Figure 2. Eight-node three dimensional finite element.  

 
The nonlinear finite element equation of the total Lagrangian finite 

element model of three dimensional continua for an eight-node 
quadratic element is presented as follows (Akbaş [13]): 

 

     
                                                                                                    (9) 

where KijL and KijN are the components of linear and nonlinear for 

tangent stiffness matrix. �̅�, �̅�, �̅� are incremental dispşacements 

vector and Fi is the load vector. The detail expressions of these 
martix and vectors can be read in Akbaş [13]. 

 
In the solution of nonlinear equations of the problem, Newton-

Raphson iteration method is implemented and for i th iteration and 
n+1 th load increment, the solution form is presented as follows; 

 

                                                      (10) 

where  𝑲𝑻
𝒊 , 𝑹𝒏+𝟏

𝒊  and 𝒅𝒖𝒏
𝒊  are tangent stiffness matrix, residual 

vector and solution increment vector, respectively. The iteration 
limit of eq. (10) is selected as following form; 

 

         (11) 

 

where 

                 (12a) 

 

                                                          (12b) 

3. Findings and Discussion 

    In this section, geometrically nonlinear static deflections and 

configurations are obtained with different values of the material 
gradient parameters. The material parameters of these materials 

are given as follows; at the left side is fully Zirconia (E=151 GPa, 

ν=0.2882) and at the right side is fully Aluminum Oxide (E70 GPa, 

ν=0.31). The geometry properties of the beam are selected as  𝑏 =
0.1 m, h=0.1 m and L= 3m. The number of finite elements are 

taken as 200 elements in X direction and 10 elements in both Y 
and Z directions.   

The effect of the material distributions on the geometrically 
nonlinear static displacements of the axially functionally graded 

beam is presented in figures 3 and 4. In figure 3, the load – the 
vertical displacements (at the free end of the beam) curves are 

plotted for different values of the power-law exponents (k). In 
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figure 4, the load – the power-law exponent (k) relation is plotted 
for Q= 400 kN. 

 

 
Figure 3. Load- transversal displacement curves for different values 

of the power-law exponent k. 

 

 
Figure 4. The power-law exponent k - transversal displacement 

curves for different values of the non-follower point load Q=400Kn.  

It is seen from figures 3 and 4 that increasing in the material power 

law index k causes increase in the vertical deflections for all values 
of the load (Q): Because when the material power law index k 

increase, the material of the beam get close to Aluminum Oxide 

(right side material) according to Eq. 1 and it is known from the 
physical properties of the Aluminum Oxide and Zirconia  that the 

Young modulus of Zirconia is approximately two times greater 
than that of Aluminum Oxide. As a result, the strength of the 

material decreases. Also, it is seen from Fig. 6 that increase in the 
material power law index k, the curve has an asymptote. In the case 

of k=∞, the functionally graded material beam is reduced to the 
homogeneous Zirconia (left side material) beam according to Eq. 

1. 
In figures 5-8, the effects of the material power law index k on the 

geometrically nonlinear static configuration of the axially 
functionally graded beam are shown for the non-follower point 

load P=500kN. 

 
Figure 5. Geometrically nonlinear static deflection configuration of 

the axially functionally graded beam for k=0. 

 

 
Figure 6. Geometrically nonlinear static deflection configuration of 

the axially functionally graded beam for k=0.5. 

 

 
Figure 7. Geometrically nonlinear static deflection configuration of 

the axially functionally graded beam for k=1. 

 

 
Figure 8. Geometrically nonlinear static deflection configuration of 

the axially functionally graded beam for k=5. 

 
It is seen from figures 5-8 that displacements increase as the 

power-law exponent (k) increases. This is because as seen from 
Fig. 2, increase in the power-law exponent (k) leads to decrease in 

the elasticity modulus and the bending rigidity. 

4. Conclusions 

Geometrically nonlinear static analysis of an axially functionally 
graded cantilever beam subjected to a point load are investigated 

by using the total Lagrangian finite element model of three-
dimensional continuum model. The formulations of the 

geometrically nonlinear analysis of the axially functionally graded 
beam are derived for total Lagrangian finite element model of 

three-dimensional continuum. The material properties of the beam 
vary along the longitudinal direction according to the power law 

function. In the numerical results, effects of material gradient 
parameter on the geometrically nonlinear static responses of the 
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axially functionally graded beam are investigated. It is observed 

from the results that the power-law exponent k plays very 
important role on the responses of the geometrically nonlinear 

behaviour of the axially functionally graded beam.  

References 

[1] Agarwal S, Chakraborty A, Gopalakrishnan S, 2006, Large 
deformation analysis for anisotropic and 
inhomogeneous beams using exact linear static solutions, 
Composite Structures 72:91-104.     

[2]  Ke LL, Yang J, Kitipornchai S, 2009, Postbuckling analysis of 

edge cracked functionally graded Timoshenko beams under end 
shortening, Composite Structures  90:152-160. 

[3] Kang YA, Li XF, 2010, Large deflections of a non-linear cantilever 
functionally graded beam, Journal of Reinforced Plastics and 
Composites 29:1761-1774. 

[4] Su HD, Li SR, Gao Y, 2010, Thermal post-buckling of functionally 
graded material Timoshenko beams with surface-bonded 
piezoelectric layers, Chinese Journal of Computational Mechanics 

27:1067-1072. 
[5] Kocatürk T, Şimşek M, Akbaş ŞD, 2011, Large displacement static 

analysis of a cantilever Timoshenko beam composed of 
functionally graded material, Science and Engineering of 
Composite Materials 18: 21-34. 

[6] Soleimani A, Saadatfar M, 2012, Numerical study of large 
defection of functionally graded beam with geometry 
nonlinearity, Advanced Materials Research  403-408: 4226-4230. 

[7] Anandrao KS, Gupta RK, Ramchandran P, Rao GV, 2012, Non-
linear free vibrations and post- buckling analysis of shear flexible 
functionally graded beams, Structural Engineering and Mechanics 
44:339-361. 

[8] Askari H, Younesian D, Saadatnia Z, Esmailzadeh E, 2012, 

Nonlinear free vibration analysis of the functionally 
graded beams, Journal of Vibroengineering 14:1233-1245. 

[9] Anandrao KS, Gupta RK, Ramchandran P. and Rao GV, 2012, 
Flexural stress analysis of uniform slender functionally graded 
material beams using non-linear finite element method, IES 
Journal Part A: Civil and Structural Engineering 5:231-239. 

[10] Machado SP, Piovan MT, 2013, Nonlinear dynamics of rotating 

box FGM beams using nonlinear normal modes, Thin-Walled 
Structures 62:158-168. 

[11] Akbaş ŞD, 2013, Geometrically nonlinear static analysis of edge 
cracked Timoshenko beams composed of functionally graded 
material, Mathematical Problems in Engineering 2013:1-14. 

[12] Tung HV, Duc ND, 2014, Nonlinear response of shear 
deformable FGM curved panels resting on elastic foundations and 
subjected to mechanical and thermal loading conditions, Applied 

Mathematical Modelling 38:2848-2866. 
[13] Akbaş ŞD, 2015, Post-Buckling Analysis of Axially Functionally 

Graded Three-Dimensional Beams, International Journal of 
Applied Mechanics 7, 1550047, Doi: 
10.1142/S1758825115500477. 

[14] Nguyen DK, Gan BS, Trinh TH, 2014, 
Geometrically nonlinear analysis of planar beam and frame 
structures made of functionally graded material, Structural 

Engineering and Mechanics 49:727-743. 
[15] Mohammadi M., Rastgoo A., 2018, Primary and secondary 

resonance analysis of FG/lipid nanoplate with considering 
porosity distribution based on a nonlinear elastic 
medium. Mechanics of Advanced Materials and Structures, 1-22. 

[16] Mohammadi M., Rastgoo A., 2019, Nonlinear vibration analysis 
of the viscoelastic composite nanoplate with three directionally 
imperfect porous FG core. Structural Engineering and 
Mechanics, 69(2), 131. 

[17] Mohammadi M., Hosseini M., Shishesaz M., Hadi A., Rastgoo, 
A., 2019, Primary and secondary resonance analysis of porous 
functionally graded nanobeam resting on a nonlinear foundation 

subjected to mechanical and electrical loads. European Journal of 

Mechanics-A/Solids, 77, 103793. 
[18] Kocatürk T., Akbaş Ş.D., 2011, Post-buckling analysis of 

Timoshenko beams with various boundary conditions under non-
uniform thermal loading. Structural Engineering and 
Mechanics, 40(3): 347-371. 

[19] Akbaş Ş.D., 2015, On post-buckling behavior of edge cracked 
functionally graded beams under axial loads. International Journal 
of Structural Stability and Dynamics, 15(04), 1450065. 

[20] Akbaş Ş.D., 2017, Post-buckling responses of functionally 

graded beams with porosities. Steel and Composite 
Structures, 24(5), 579-589. 

[21] Akbaş Ş.D., 2018, Thermal post-buckling analysis of a laminated 
composite beam. Structural Engineering and Mechanics, 67(4), 
337-346. 

[22] Akbaş Ş.D., 2018, Post-buckling responses of a laminated 
composite beam. Steel and Composite Structures, 26(6), 733-743. 

[23] Akbaş Ş.D., 2018, Post-buckling analysis of a fiber reinforced 

composite beam with crack Engineering Fracture Mechanics, 212, 
70-80. 

[24] Akbaş Ş.D., 2019, Hygrothermal post-buckling analysis of 
laminated composite beams. International Journal of Applied 
Mechanics 11(01), 1950009. 

[25] Wu L., Wangi Q., Elishakoff I., 2005, Semi-inverse method for 
axially functionally graded beams with an anti-symmetric 
vibration mode, Journal of Sound and Vibration, 284, 1190–202. 

[26] Huang Y., Li X.F., 2010, A new approach for free vibration of 
axially functionally graded with non-uniform cross-section, 
Journal of Sound and Vibration, 329, 2291–303. 

[27] Hein H., Feklistova L., 2011, Free vibrations of non-uniform and 
axially functionally graded beams using Haar wavelets, 
Engineering Structures, 33(12), 3696-3701.  

[28] Alshorbgy A.E., Eltaher M.A. and Mahmoud, F.F., 2011, Free 
vibration characteristics of a functionally graded beam by finite 

element method, Applied Mathematical Modelling, 35, 412–25. 
[29] Eltaher M.A., Emam S.A., Mahmoud F.F., 2012, Free vibration 

analysis of functionally graded size-dependent 
nanobeams, Applied Mathematics and Computation, 218(14), 
7406-7420. 

[30] Shahba A., Attarnejad R., Marvi M.T., Hajilar S., 2011, Free 
vibration and stability analysis of axially functionally graded 
tapered Timoshenko beams with classical and non-classical  

boundary conditions, Composites Part B, 42, 801–8. 
[31] Shahba A.,and Rajasekaran S, 2012, Free vibration and stability 

of tapered Euler-Bernoulli beams made of axially functionally 
graded materials. Applied Mathematical Modelling, 36 (7), 3094-
3111. 

[32] Akbaş Ş.D. 2017, Vibration and static analysis of functionally 
graded porous plates. Journal of Applied and Computational 
Mechanics, 3(3), 199-207. 

[33] Akbaş,Ş.D. 2017, Thermal effects on the vibration of functionally 

graded deep beams with porosity. International Journal of Applied 
Mechanics, 9(05), 1750076. 

[34] Akbaş Ş.D. 2017, Free vibration of edge cracked functionally 
graded microscale beams based on the modified couple stress 
theory. International Journal of Structural Stability and 
Dynamics, 17(03), 1750033. 

[35] Akbaş Ş.D., 2013, Free vibration characteristics of edge cracked 
functionally graded beams by using finite element 

method. International Journal of Engineering Trends and 
Technology, 4(10), 4590-4597. 

[36] Akbaş Ş.D., 2015, Free vibration and bending of functionally 
graded beams resting on elastic foundation. Research on 
Engineering Structures and Materials, 1(1), 25-37. 

[37] Farajpour A., Shahidi A.R., Mohammadi M., Mahzoon M., 2012, 
Buckling of orthotropic micro/nanoscale plates under linearly 

mailto:krishnan@aero.iisc.ernet.in


Akbaş 

416 

 

varying in-plane load via nonlocal continuum 
mechanics. Composite Structures, 94(5), 1605-1615. 

[38] Farajpour A., Danesh M., Mohammadi M., 2011, Buckling 
analysis of variable thickness nanoplates using nonlocal 
continuum mechanics. Physica E: Low-dimensional Systems and 

Nanostructures, 44(3), 719-727. 
[39] Şimşek M, Kocatürk T, Akbaş Ş.D., 2012, Dynamic behavior of 

an axially functionally graded beam under action of a moving 
harmonic load, Composite Structures, 94 (8), 2358-2364. 

[40] Huangi Y., Yangi, L.E., Luoi Q.Z., 2013, Free vibration of 
axially functionally graded Timoshenko beams with non-uniform 
cross-section, Composites Part B:Engineering, 45 (1), 1493-1498. 

[41] Rajasekaran S., 2013, Free vibration of centrifugally stiffened 
axially functionally graded tapered Timoshenko beams using 

differential transformation and quadrature, Applied Mathematical 
Modelling, 37 (6), 4440-4463. 

[42] Rajasekaran S., 2013, Buckling and vibration of axially 
functionally graded nonuniform beams using differential 
transformation based dynamic stiffness approach, 
Meccanica, 48(5), 1053-1070. 

[43] Akgöz B., Civalek Ö., 2013, Free vibration analysis of axially 
functionally graded tapered Bernoulli-Euler microbeams based on 

the modified couple stress theory, Composite Structures, 98,  314-
322. 

[44] Nguyen D.K., 2013, Large displacement response of tapered 
cantilever beams made of axially functionally graded material, 
Composites Part B: Engineering, 55, 298-305. 

[45] Babilio E., 2013,  Dynamics of an axially functionally graded 
beam under axial load, European Physical Journal: Special Topics, 
222(7), 1519-1539. 

[46] Akbaş Ş.D., 2014, Free vibration of axially functionally graded 
beams in thermal environment, International Journal of 
Engineering and Applied Sciences, 6(3), 37-51. 

[47] Mohammadi M., Farajpour A., Goodarzi M., Heydarshenas R., 
2013, Levy type solution for nonlocal thermo-mechanical 
vibration of orthotropic mono-layer graphene sheet embedded in 
an elastic medium. Journal of Solid Mechanics, 5(2), 116-132. 

[48] Mohammadi, M., Farajpour, A., Goodarzi, M., & Mohammadi, 

H., 2013, Temperature Effect on Vibration Analysis of Annular 
Graphene Sheet Embedded on Visco-Pasternak Foundati. Journal 
of Solid Mechanics, 5(3), 305-323. 

[49] Akgöz B., Civalek Ö., 2015, Bending analysis of FG microbeams 
resting on Winkler elastic foundation via strain gradient 
elasticity. Composite Structures, 134, 294-301. 

[50] Akgöz B., Civalek Ö., 2017, Effects of thermal and shear 
deformation on vibration response of functionally graded thick 

composite microbeams. Composites Part B: Engineering, 129, 77-
87. 

[51] Akbaş Ş.D., 2019, Forced vibration analysis of functionally 
graded sandwich deep beams. Coupled Syst. Mech, 8(3), 259-271. 

[52] Akbaş Ş.D., 2018, Nonlinear thermal displacements of laminated 

composite beams. Coupled Syst. Mech, 7(6), 691-705. 
[53] Akbaş Ş.D., 2017, Forced vibration analysis of functionally 

graded nanobeams. International Journal of Applied 
Mechanics, 9(07), 1750100. 

[54] Akbaş Ş.D., 2015, Wave propagation of a functionally graded 
beam in thermal environments. Steel and Composite 
Structures, 19(6), 1421-1447. 

[55] Akbaş, Ş.D., 2016, Wave propagation in edge cracked 
functionally graded beams under impact force. Journal of 

Vibration and Control, 22(10), 2443-2457. 
[56] Akbaş Ş.D., 2018, Forced vibration analysis of cracked 

functionally graded microbeams. Advances in Nano 
Research, 6(1), 39. 

[57] Akbaş Ş.D., 2018), Investigation on free and forced vibration of 
a bi-material composite beam. Journal of Polytechnic-Politeknik 
Dergisi, 21(1), 65-73. 

[58] Akbaş Ş. D., 2020, Dynamic responses of laminated beams under 

a moving load in thermal environment. Steel and Composite 
Structures, 35(6), 729-737. 

[59] Ghayesh M.H., 2018, Mechanics of tapered AFG shear-
deformable microbeams, Microsystem Technologies, 24(4), 
2018,1743-1754. 

[60] Liu P., Lin K., Liu H., Qin R., 2016, Free transverse vibration 
analysis of axially functionally graded tapered Euler-Bernoulli 
beams through spline finite point method, Shock and 

Vibration,  5891030. 
[61] Çalim F.F., 2016, Transient analysis of axially functionally 

graded Timoshenko beams with variable cross-
section, Composites Part B: Engineering, 98, 472-483. 

[62] Alimoradzadeh M., Salehi M., Esfarjani S.M., 2019, Nonlinear 
dynamic response of an axially functionally graded (AFG) beam 
resting on nonlinear elastic foundation subjected to moving 
load, Nonlinear Engineering, 8(1), 250-260. 

[63] Uzun, B., Yaylı, M. Ö., Deliktaş, B., “Free vibration of FG 
nanobeam using a finite-element method”, Micro & Nano 
Letters, 15(1), 2020, 35-40. 

[64] Cao, D., Gao, Y., Free vibration of non-uniform axially 
functionally graded beams using the asymptotic development 
method, Applied Mathematics and Mechanics, 40(1), 2019, 85-
96. 

[65] Barati, A., Adeli, MM., Hadi, A., Static torsion of bi-directional 
functionally graded microtube based on the couple stress theory 

under magnetic field, International Journal of Applied 
Mechanics, 12(2), 2020, 2050021. 

[66] Sharma, P., Singh, R., Hussain, M., On modal analysis of axially 
functionally graded material beam under hygrothermal 
effect, Proceedings of the Institution of Mechanical Engineers, 
Part C: Journal of Mechanical Engineering Science, 234(5), 2020, 
1085-1101. 

 

 

 

 

 


