تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,497 |
تعداد دریافت فایل اصل مقاله | 97,206,131 |
بررسی دقت و کارایی ماهوارۀ TRMM در برآورد بارش ماهانه در حوضۀ آبخیز گرگانرود | ||
اکوهیدرولوژی | ||
مقاله 13، دوره 7، شماره 3، مهر 1399، صفحه 719-729 اصل مقاله (914.98 K) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2020.261641.917 | ||
نویسندگان | ||
حسین امامی1؛ علی سلاجقه* 2؛ علیرضا مقدم نیا3؛ شهرام خلیقی سیگارودی3 | ||
1دانشآموختۀ کارشناسی ارشد علوم و مهندسی آبخیز، دانشکدۀ منابع طبیعی، دانشگاه تهران | ||
2استاد دانشکدۀ منابع طبیعی، دانشگاه تهران | ||
3دانشیار دانشکدۀ منابع طبیعی، دانشگاه تهران | ||
چکیده | ||
از روشهای سنجش از دور ماهوارهای بهویژه ماهوارۀ TRMM برای برآورد بارش حوضههای آبخیز با ایستگاه بارانسنجی اندک و پراکنده استفاده میشود. به منظور اعتبارسنجی باید دادههای بارش ماهوارۀ TRMM با دادههای بارش مشاهداتی مقایسه شوند. به همین منظور، در تحقیق حاضر ابتدا با استفاده از چهار روش آماری آزمونهای همگنی نرمال استاندارد، دامنۀ بیوشند، پتیت و نسبت ون نیومن، کیفیت دادههای بارش ایستگاههای بارانسنجی حوضۀ آبخیز گرگانرود بررسی شد تا برآورد صحیحی از دقت و کارایی ماهوارۀ TRMM داشته باشیم. پس از استخراج نتایج آزمونهای همگنی و بررسی دقیقتر از طریق مقایسه با دادههای ایستگاههای مجاور، یک ایستگاه مشکوک به دلیل مطابقت نداشتن با دادههای ایستگاههای مجاور از روند تحقیق حذف شد. سپس، به منظور بررسی کارایی ماهوارۀ TRMM در برآورد بارش ماهانه از طریق مقایسۀ آن با دادههای بارش مشاهداتی از معیارهای آماری Bias، RMSE، R2 و NSE استفاده شد. نتایج نشان داد مقدار R2 برای تمامی ایستگاههای بارانسنجی واقع در حوضۀ آبخیز گرگانرود بین 31/0 تا 75/0 است. RMSE بین 85/15 تا 82/56 به دست آمد. ایستگاههای بارانسنجی که در حوضۀ آبخیز گرگانرود واقع شدهاند، مقدار NSE بین 82/0- تا 66/0 دارند. شاخص آماری Bias بین 74/55- تا 01/69 است. همچنین، مقدار R2، RMSE، NSE و Bias برای کل حوضۀ آبخیز گرگانرود بهترتیب 79/0، 94/20، 57/0 و 13/28- به دست آمد. نتایج ارزیابی دقت و کارایی ماهوارۀ TRMM در برآورد بارش ماهانه نشان داد کارایی خوبی در برآورد بارش منطقۀ مطالعهشده دارد و برای مناطق بدون ایستگاه بسیار ارزشمند است. | ||
کلیدواژهها | ||
آزمونهای همگنی؛ اعتبارسنجی؛ برآورد بارش؛ حوضۀ آبخیز گرگانرود؛ ماهوارۀ TRMM | ||
عنوان مقاله [English] | ||
Evaluation of TRMM satellite accuracy and efficiency in estimating monthly rainfall in Gorganroud watershed | ||
نویسندگان [English] | ||
Hossein Emami1؛ Ali Salajegheh2؛ Alireza Moghaddamnia3؛ Shahram Khalighi Sigaroudi3 | ||
1MSc Watershed Science and Engineering, Faculty of Natural Resource, University of Tehran, Iran | ||
2Professor, Faculty of Natural Resource, University of Tehran, Iran | ||
3Associate Professor, Faculty of Natural Resource, University of Tehran, Iran | ||
چکیده [English] | ||
Satellite remote sensing methods especially the TRMM satellite are used to estimate the precipitation of watersheds with a dispersed rainfall station. It is necessary to compare the rainfall data of the TRMM satellite with the observation precipitation data. We first used four statistical methods: Standard Normal Homogeneity Test, Buishand, Pettit, and Von Neuman, the accuracy and quality of precipitation data of rainfall stations in the Gorganroud watershed was investigated in order to predict the accuracy and performance of the TRMM satellite rainfall data. After extracting the results of homogeneous tests, by comparing with the data of adjacent stations, a suspicious station was removed from the study due to the lack of conformity with the data of adjacent stations. Then, in order to evaluate the TRMM satellite performance in estimating monthly precipitation, it was compared with the observational precipitation data using Bias, RMSE, R2 and NSE. The results showed that the R2 value for all rain gauge stations in the Gorganroud watershed is between 0.31 and 0.75. RMSE was obtained between 15.85 and 56.82. The rain gauge stations located in the Gorganroud watershed have a NSE value of -0.82 to 0.66. The Bias index is between -55.74 and 69.01. Also, the R2, RMSE, NSE and Bias values for the whole Gorganroud basin were obtained 0.79, 20.94, 0.57 and -28.13 respectively. The results of the TRMM efficiency evaluation in the monthly rainfall estimation showed that it has a good performance in estimating the precipitation and is very valuable for areas without a station. | ||
کلیدواژهها [English] | ||
Estimating rainfall, TRMM Satellite, Homogeneous Tests, Validation, Watershed Gorganroud | ||
مراجع | ||
[1].Alexakis DD, Tsanis IK. Comparison of multiple linear regression and artificial neural network models for downscaling TRMM precipitation products using MODIS data. Environmental Earth Sciences. 2016 Jul 1; 75(14):1077. [2].Collischonn B, Collischonn W, Tucci CE. Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. Journal of Hydrology. 2008 Oct 15; 360(1-4):207-16. [3].Jia S, Zhu W, Lű A, Yan T. A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China. Remote sensing of Environment. 2011 Dec 15; 115(12):3069-79. [4].Immerzeel WW, Rutten MM, Droogers P. Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula. Remote Sensing of Environment. 2009 Feb 16; 113(2):362-70. [5].Huffman GJ, Bolvin DT. TRMM and other data precipitation data set documentation. NASA, Greenbelt, USA. 2013 Nov; 28(2.3):1. [6].Akbari. M. Efficiency and Accuracyin the Estimation of Daily, Monthly and Quarterly Rainfall Data from TRMM-3B42 in Khorasan Razav. MSc Thesis Ferdowsi University of mashhad Faculty of Agriculture. 2013. [Persian]. [7].Scheel ML, Rohrer M, Huggel C, Santos Villar D, Silvestre E, Huffman GJ. Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA) performance in the Central Andes region and its dependency on spatial and temporal resolution. Hydrology and Earth System Sciences. 2011; 15(8):2649-63. [8].Guofeng Z, Dahe Q, Yuanfeng L, Fenli C, Pengfei H, Dongdong C, Kai W. Accuracy of TRMM precipitation data in the southwest monsoon region of China. Theoretical and applied Climatology. 2017 Jul 1; 129(1-2):353-62. [9].Alexandersson H. A homogeneity test applied to precipitation data. Journal of climatology. 1986; 6(6):661-75. [10].Ghajarnia, N., Liaghat, A.M. Daneshkar Arasteh. P. Verifying precipitation data of TAMAB and meteorology institute in Urmia basin. Journal of Soil and Water Resources Conservation. Fall 2014; 4(1). [Persian]. [11].Alexandersson H, Moberg A. Homogenization of Swedish temperature data. Part I: Homogeneity test for linear trends. International Journal of Climatology: A Journal of the Royal Meteorological Society. 1997 Jan; 17(1):25-34. [12].Khaliq MN, Ouarda TB. On the critical values of the standard normal homogeneity test (SNHT). International Journal of Climatology: A Journal of the Royal Meteorological Society. 2007 Apr; 27(5):681-7. [13].Buishand TA. Some methods for testing the homogeneity of rainfall records. Journal of hydrology. 1982 Aug 1; 58(1-2):11-27. [14].Pettit AN. Anon-parametric approach to the change-point detection. Appl. Stat. 1979; 28:126-35. [15].Von Neumann J. Distribution of the ratio of the mean square successive difference to the variance. The Annals of Mathematical Statistics. 1941 Dec 1; 12(4):367-95.
[16].Wijngaard JB, Klein Tank AM, Können GP. Homogeneity of 20th century European daily temperature and precipitation series. International Journal of Climatology: A Journal of the Royal Meteorological Society. 2003 May; 23(6):679-92.
[17].Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. 2007; 50(3):885-900.
[18].Shirvani, A. Fakhari Zade Shirazi, E. Comparison of ground based observation of precipitation with TRMM satellite estimations in Fars Province. Journal of Agricultural Meteorology. Autumn &Winter 2014; 2(2):1-15. [Persian].
[19].Madadi, Gh. Hamzeh, S. Noroozi. A. A. Evaluation of rainfall on a daily, monthly and annual basis using satellite imagery (Case study: west boundary basin of Iran)., RS & GIS for Natural Resources. 2015; 1(2). 59-74. [Persian]. [20].Mohamadpour. M.A. Evaluation of TRMM (3B43-V7) Satellite Data Based on Selected Stations for Iran. MSc Thesis Ferdowsi University of mashhad Faculty of Agriculture. 2015. [Persian].
[21]. Adjei KA, Ren L, Appiah-Adjei EK, Kankam-Yeboah K, Agyapong AA. Validation of TRMM data in the Black Volta Basin of Ghana. Journal of Hydrologic Engineering. 2012 May 1; 17(5):647-54.
[22].Yang Y, Luo Y. Evaluating the performance of remote sensing precipitation products CMORPH, PERSIANN, and TMPA, in the arid region of northwest China. Theoretical and applied climatology. 2014 Nov 1; 118(3):429-45.
[23].Mantas VM, Liu Z, Caro C, Pereira AJ. Validation of TRMM multi-satellite precipitation analysis (TMPA) products in the Peruvian Andes. Atmospheric Research. 2015 Sep 15; 163:132-45. | ||
آمار تعداد مشاهده مقاله: 561 تعداد دریافت فایل اصل مقاله: 328 |