تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,912 |
تعداد دریافت فایل اصل مقاله | 97,206,480 |
ارزیابی میزان تاثیرگذاری سامانه کنترل خودکار توزیع آب سطحی کشاورزی به منظور کاهش برداشت و تعادل بخشی آبخوان در شرایط کم آبی (مطالعه موردی: کانال اصلی شبکه آبیاری قزوین) | ||
مدیریت آب و آبیاری | ||
دوره 10، شماره 2، مهر 1399، صفحه 281-299 اصل مقاله (986.37 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jwim.2020.301641.791 | ||
نویسندگان | ||
محسن حسینی جلفان1؛ سید مهدی هاشمی شاهدانی* 2؛ سامان جوادی2 | ||
1دانش آموخته کارشناسی ارشد سازه های آبی، گروه مهندسی آبیاری، پردیس ابوریحان، دانشگاه تهران، تهران، ایران | ||
2دانشیار، گروه مهندسی آبیاری، پردیس ابوریحان، دانشگاه تهران، تهران، ایران | ||
چکیده | ||
این پژوهش به بررسی میزان تاثیر ارتقا عملکرد توزیع آب سطحی کشاورزی در تعادل بخشی و احیا آبخوان در شرایط کمآبی می-پردازد. در گام نخست، مدل عددی آبخوان، با کد MODFLOW، بهمنظور تحلیل مکانی تعادلبخشی آبخوان توسعه داده شد. در ادامه مدل شبیهساز هیدرولیک جریان سیستم توزیع آب در نرمافزار MATLAB توسعه، کالیبره و صحت سنجی شد و با مدل کنترل خودکار سیستم بهرهبرداری سامانه توزیع لینک شد. نهایتا با لینک نمودن مدلهای توسعه داده شده، تأثیر استفاده از روش ارتقا بهرهبرداری شبکه آبیاری، در قالب سناریو جهت تعادل بخشی آبخوان، بررسی گردید. نتایج تحقیق نشان داد با ارتقا عملکرد سیستم توزیع آب کشاورزی، حتی در شرایط کمآبی، میانگین شاخص کفایت توزیع آب کشاورزی در محدودههای زراعی در سامانهی کنترل خودکار غیرمتمرکز در حدود 32.7 درصد بهبود عملکرد داشته است. براین اساس میزان کاهش برداشت از آبخوان، 45.3 درصد در روش بهرهبرداری خودکار غیرمتمرکز حاصل شد. نتایج مدلسازی عددی آبخوان جهت تحلیل مکانی تعادل بخشی آبخوان نشان داد که در روش معمول بهرهبرداری تراز آب زیرزمینی همچنان روند افزایشی افت خود را حفظ میکند. بطوریکه نتایج نمایانگر مقدار افت سالانه در حدود 150 سانتیمتر تحت روش معمول بهرهبرداری است. با بکارگیری سامانه کنترل خودکار غیرمتمرکز و افزایش کفایت تحویل آب در روش مذکور، این امر سبب افزایش تراز در چاههای مشاهدهای قرار گرفته در شبکه آبیاری شد. راهکار تعادلبخشی آبخوان ارائه شده در این تحقیق، قابلیت توسعه برای کلیه نواحی زراعی (شبکه آبیاری) دارد که منابع تامین آب آن به صورت تلفیقی از منابع آب سطحی و زیرزمینی است. | ||
کلیدواژهها | ||
تعادل بخش آبخوان؛ تلفات توزیع و انتقال؛ توسعه پایدار؛ سیستم کنترل خودکار؛ شبکه آبیاری قزوین | ||
عنوان مقاله [English] | ||
Assessing the Effectiveness of the Centralized Proportional-Integral Control System in Improving Operation Management of the Main Irrigation Canal and Aquifer Storage and Recovery in water shortage conditions (Case study: Qazvin irrigation District) | ||
نویسندگان [English] | ||
Mohsen Hosseini Jolfan1؛ S, Mehdy Hashemy Shahdany2؛ Saman Javadi2 | ||
1M.Sc. Graduated in Hydraulic Structures, Department of Irrigation Engineering, College of Aburaihan, University of Tehran, Tehran, Iran | ||
2Associate professor, Department of Irrigation, College of Aburaihan, University of Tehran, Tehran, Iran | ||
چکیده [English] | ||
The quantitative and qualitative degradation of groundwater resources has become a serious crisis due to high consumption in agriculture, population growth and urbanization, and the industrialization of communities. Rehabilitating groundwater aquifers is one of the main requirements in aquifer management. In this study, the effect of improving the performance of irrigation district and, of course, reducing waste in the process of transfer, distribution and delivery of agricultural water, balancing and rehabilitating aquifers were examined. For this purpose, in the first step, the numerical model of Qazvin aquifer, with the code MODFLOW, was developed for spatial equilibrium analysis of aquifer. Then, the hydraulic simulator model of agricultural water distribution system flow in MATLAB software was developed, calibrated and verified and the automatic control system of the distribution system was linked with the automatic control model. Finally, by linking the developed models, the effect of using the method of improving the operation of the irrigation district, in the form of a scenario for balancing the aquifer, was examined. The results showed that with the improvement of the performance of the agricultural water distribution system, even in low water conditions, the average efficiency index of agricultural water distribution in agricultural areas in the decentralized automatic control system has been about 32.7%. Accordingly, the rate of decline in aquifer harvest was 45.3% in the decentralized automatic operation method. The results of numerical modeling of aquifer for spatial analysis of aquifer balancing showed that in the usual method of groundwater level operation, the increasing trend continues to decrease. The results show an annual drop of about 150 cm under the usual method of operation. By using a decentralized automatic control system and increasing the adequacy of water delivery in this method, this increased the level in the observation wells located in the irrigation district. The equilibrium solution for aquifers presented in this study can be developed for all agricultural areas (irrigation district) whose water supply sources are a combination of surface and groundwater resources. | ||
کلیدواژهها [English] | ||
Aquifer storage and recovery, Automatic control system (PI), Distribution and transfer losses, Qazvin irrigation district, Sustainable development | ||
مراجع | ||
1. جوادی، س.، کاردانمقدم، ح. (1398). شبیهسازی سهبعدی تهاجم جبهههای آبشور در آبخوانهای کویری با استفاده از مدل SEAWAT. مدیریت آب و آبیاری. 9 (2)، 262-251. 2. حسینیجلفان، م.، هاشمی شاهدانی، م.، جوادی، س.، و بنیحبیب، م.ا. (1397). ارزیابی اثربخشی بهبود بهرهبرداری از منابع آب سطحی در کاهش برداشت آب از آبخوان (مطالعه موردی: شبکه آبیاری قزوین). تحقیقات منابع آب ایران. 14 (4)، 132-146. 3. حسینیجلفان، م. (1397). بررسی تاثیر دو راهکار خودکارسازی و بهرهبرداری تلفیقی آب سطحی و زیرزمینی در بهبود مدیریت بهرهبرداری کانال اصلی شبکه آبیاری از دیدگاه رابطه آب-انرژی. پایاننامه کارشناسی ارشد. دانشگاه تهران- تهران. 4. غفوریخرانق، س.، بنیحبیب، م.ا.، جوادی، س. (1398). ارزیابی اجتماعی سناریوهای حکمرانی آب زیرزمینی. مدیریت آب و آبیاری. 9 (2)، 319-305. 5. یلتقیانخیابانی، م.، هاشمی شاهدانی، م.، بنیحبیب، م.ا.، و حسنی، ی. (1398). امکانسنجی بهکارگیری روشهای غیرسازهای و خودکارسازی در ارتقاء بهرهبرداری از سامانههای توزیع آب(مطالعه موردی: شبکه آبیاری رودشت). مدیریت آب و آبیاری. 9 (1)، 127-109. 6. وزارت نیرو، (1394)، گزارش برنامه کاهش و تعادل آب زیرزمینی، 72. 7. Alcamo, J., Henrichs, T., & Rösch, T. (2017). World water in 2025: Global modeling and scenario analysis for the world commission on water for the 21st century. 8. Amiri, M. A., & Mesgari, M. S. (2018). Analyzing the spatial variability of precipitation extremes along longitude and latitude, northwest Iran. Kuwait Journal of Science, 45 (1), 121-127. 9. Banihabib, M. E., Vaziri, B., & Javadi, S. (2018). A model for the assessment of the effect of mulching on aquifer recharging by rainfalls in an arid region. Journal of hydrology, 567, 102-113. 10. Burt, C. M. (2013). The irrigation sector shift from construction to modernization: What is required for success?. Irrigation and drainage, 62 (3), 247-254. 11. Clemmens, A. J., Kacerek, T. F., Grawitz, B., & Schuurmans, W. (1998). Test cases for canal control algorithms. Journal of irrigation and drainage engineering, 124 (1), 23-30. 12. Dash, C. J., Sarangi, A., Singh, D. K., & Adhikary, P. P. (2019). Numerical simulation to assess potential groundwater recharge and net groundwater use in a semi-arid region. Environmental monitoring and assessment, 191 (6), 371. 13. Gude, V. G. (2017). Desalination and water reuse to address global water scarcity. Reviews in Environmental Science and Bio/Technology, 16 (4), 591-609. 14. Harbaugh, A. W., Banta, E. R., Hill, M. C., & McDonald, M. G. (2000). MODFLOW-2000, The U. S. Geological Survey Modular Ground-Water Model-User Guide to Modularization Concepts and the Ground-Water Flow Process. Open-file Report. U. S. Geological Survey, (92), 134. 15. HASHEMY, S. M., Firoozfar, A., Maestre, J. M., Mallakpour, I., Taghvaeian, S., & Karimi, P. (2018). Operational performance improvements in irrigation canals to overcome groundwater overexploitation. Agricultural Water Management, 204, 234-246. 16. HASHEMY, S. M., FIRROZFAR, A., Sadeghi, S., & ADIB, M. E. (2016). Performance assessment of decentralized automatic control system for applying in operation of a main irrigation canal under inflow fluctuations. Irrigation and drainage Structures Engineering Research, 66, 137-152. 17. Hosseini Jolfan, M., Hashemy Shahdany, S. M., Javadi, S., Mallakpour, I., & Neshat, A. (2020). Effects of canal automation on reducing groundwater extraction within irrigation districts: Case study of Qazvin irrigation district. Irrigation and Drainage, 69 (1), 11-24. 18. Jin, X., Chen, M., Fan, Y., Yan, L., & Wang, F. (2018). Effects of mulched drip irrigation on soil moisture and groundwater recharge in the Xiliao River Plain, China. Water, 10 (12), 1755. 19. Litrico, X., & Fromion, V. (2009). Modeling and control of hydrosystems. Springer Science & Business Media, New York, 409. 20. Madani, K. (2014). Water management in Iran: what is causing the looming crisis?. Journal of environmental studies and sciences, 4(4), 315-328. 21. Mazza, R., La Vigna, F., & Alimonti, C. (2014). Evaluating the available regional groundwater resources using the distributed hydrogeological budget. Water resources management, 28(3), 749-765. 22. Molden, D. J., & Gates, T. K. (1990). Performance measures for evaluation of irrigation-water-delivery systems. Journal of irrigation and drainage engineering, 116(6), 804-823. 23. Qadir, A., Ahmad, Z., Khan, T., Zafar, M., Qadir, A., & Murata, M. (2016). A spatio-temporal three-dimensional conceptualization and simulation of Dera Ismail Khan alluvial aquifer in visual MODFLOW: a case study from Pakistan. Arabian Journal of Geosciences, 9(2), 149. 24. Rogers, D. C., & Goussard, J. (1998). Canal control algorithms currently in use. Journal of Irrigation and Drainage Engineering, 124(1), 11-15. 25. Rousta, I., Soltani, M., Zhou, W., & Cheung, H. H. (2016). Analysis of extreme precipitation events over central plateau of Iran. American Journal of Climate Change, 5(3), 297-313. 26. Schuurmans, J., Clemmens, A. J., Dijkstra, S., Hof, A., & Brouwer, R. (1999). Modeling of irrigation and drainage canals for controller design. Journal of irrigation and drainage engineering, 125 (6), 338-344. 27. Shahverdi, K., & Monem, M. J. (2015). Application of reinforcement learning algorithm for automation of canal structures. Irrigation and drainage, 64(1), 77-84. 28. Sheikhipour, B., Javadi, S., & Banihabib, M. E. (2018). A hybrid multiple criteria decision-making model for the sustainable management of aquifers. Environmental Earth Sciences, 77 (19), 712. 29. Van Overloop, P. J., Schuurmans, J., Brouwer, R., & Burt, C. M. (2005). Multiple-model optimization of proportional integral controllers on canals. Journal of irrigation and drainage engineering, 131 (2), 190-196. 30. Zamani, S., Parvaresh Rizi, A., & Isapoor, S. (2015). The effect of design parameters of an irrigation canal on tuning of coefficients and performance of a PI controller. Irrigation and drainage, 64(4), 519-534. | ||
آمار تعداد مشاهده مقاله: 889 تعداد دریافت فایل اصل مقاله: 333 |