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Abstract 
Drought is one of the natural disasters in the world, which is associated with various global factors, 
most of which can be observed using remote sensing techniques. One of the factors affecting 
agricultural drought is the vegetation associated with other drought-related factors. These 
parameters have a complicated relationship with each other, so machine learning algorithms can be 
used to predict better and model this phenomenon. Factors considered in this study include 
vegetation as the most critical factor, Land Surface Temperature (LST), Evapo Transpiration (ET), 
snow cover, rainfall, soil moisture these are derived from the active and passive sensors of satellite 
sensors as the products of LST, snow cover and vegetation using images of products of the 
MODIS sensor, rainfall using the images of the TRMM satellite, and soil moisture using the 
images of the SMOS satellite during a period from June 2010 to the end of 2018 for the central 
region of Iran. After that, primary processing was performed on these images. The vegetation 
index (NDVI) is modelled and predicted using an Artificial Neural Network algorithm (ANN), 
Support Vector Regression (SVR), Decision Tree (DT), Random Forest (RF) for monthly periods. 
By using these methods we have been able to present a model with desirable accuracy. The ANN 
approach has provided higher accuracy than the other three algorithms. Also, an average accuracy 
with RMSE=0.0385 and ܴଶ=0.8740 was achieved. 
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1. Introduction 
Drought is a natural crisis that can occur 
intermittently in any area and any climate. 
This phenomenon, unlike other natural 
disasters, occurs gradually over a relatively 
long period, the effects of which can last for 
several years (Kogan, 2000). The drought 
phenomenon can have devastating and 
damaging effects on various factors, 
including human societies, the environment, 
and the climate of the region. Therefore, 
studying and monitoring this phenomenon in 
countries that experience frequent natural 
disasters is an obvious necessity (Zhang and 
Jia, 2013). Nowadays, the use of remote 
sensing techniques has closer oversight on 
this phenomenon. Images and remote sensing 
data from the meteorological data 
continuously obtain spatial information. 
Another advantage of this type of data is the 
spatial and temporal resolution of this type of 
data (Heumann, 2011). The drought 
phenomenon can be divided into four 
categories, including meteorological drought, 
agricultural drought, hydrological drought, 

and social drought (Wilhite and Buchanan-
Smith, 2005). Agricultural drought refers to 
vegetation, and when the soil moisture 
content is lower than the amount of water 
needed for plant growth and health, and 
vegetation is weaker than previous periods in 
the area and drought occurs (Szalai and 
Szinell, 2000). There are different methods 
for studying and monitoring drought in time 
and space, one of which is the use of drought 
indices (Kogan, 1995). Numerous studies 
have been conducted on a variety of drought 
indices using satellite data, including 
vegetation and thermal data in various 
regions of the world. However, there are still 
significant challenges in increasing accuracy, 
better predicting this phenomenon. This 
phenomenon is mostly nonlinear, while most 
studies use linear models (Bai et al., 2018). 
In a study, a time series of Nonlinear 
Aggregated Drought Index (NADI) was 
developed using precipitation data in 
meteorological stations in Australia, then by 
using two neural network methods, a direct 
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multistep neural network and recursive 
multistep neural network, have been 
forecasting this index for up to six months. 
The results have shown that both ways were 
the most accurate one-month prediction, and 
in the two-month and three-month periods of 
Direct Multistep Neural Network method has 
provided better accuracy (Barua et al., 2012). 
In another study, the Standardized 
Precipitation Index (SPI) obtained using 
precipitation data at meteorological stations, 
and then by using three machine learning 
methods including Artificial Neural Network 
algorithm (ANN) method, Support Vector 
Regression (SVR) and Wavelet-Transform 
Neural Network (WA-ANN) predicted this 
time series over three and six months (SPI) 
periods. The results showed that the wavelet 
neural network technique was better than the 
other two methods. Belayneh et al. (2014) 
produced SPI using precipitation data in 
Ethiopia and then implemented  machine 
learning techniques including WA-SVR and 
WA-ANN. The results have shown that the 
model (WA-ANN) has shown better results 
(Belayneh and Adamowski, 2013). In another 
study, using MODIS data (land surface 
temperature, NDVI and evapotranspiration) 
and TRMM data (precipitation) from 2000 to 
2012 in the United States, SPI was produced 
using random forest, boosted regression 
trees, and Cubist algorithms. The results 
show that the random forest method has been 
able to perform better modeling than the 
other two techniques. In this research, SPI is 
modeled as a meteorological drought index 
in meteorological stations. However, both 
Cubist algorithms and boosted regression 
trees have failed to perform the modeling 
well. Also, the type of study area has been 
influenced by the climate modeling process, 
so the type of study area is one of the 
essentials of this research (Park et al., 2017). 
In another study using meteorological 
precipitation data as well as satellite data 
such MODIS sensor and produce NDVI and 
Normalized Difference Water Index (NDWI) 
to predict the time series of SPI index by 
combined wavelet and neural network 
conversion method. Also, the combined 
method of wavelet transforms and support 
vector regression is performed in this study. 
The results have shown that both ways have 
been able to produce good results. Therefore, 

this study also forecasts precipitation in 
meteorological stations (Alizadeh and Nikoo, 
2018). Another study used precipitation data 
using TRMM satellite data and MODIS snow 
cover to model and to predict the MODIS 
vegetation index. However, this study did not 
provide effective data such as soil moisture, 
evapotranspiration and land surface 
temperature. Also, in this study, time steps 
have been selected by trial and error, so this 
may not be for the appropriate time steps 
(Mokhtari and Akhoondzadeh, 2020). 
Most of the studies using the meteorological 
data have been done to model and predict the 
precipitation in the meteorological stations. 
However, it is possible to increase the variety 
of data types to improve the accuracy of 
drought prediction using remote sensing data. 
An increased understanding of drought can 
be achieved by increasing the variety of 
satellite data types. The most crucial factor to 
consider in agricultural drought is vegetation 
indices, including NDVI. This indicator can 
show the status of vegetation, and when it is 
achieved over a long period, changes can be 
made in vegetation status in that area. The 
first type of drought is the meteorological 
drought. This is because reduced rainfall in a 
particular area causes other types of drought. 
Therefore, rainfall is one of the factors 
affecting the occurrence of agricultural 
drought. Soil moisture is an essential 
component of the water cycle that plays an 
important role in monitoring and predicting 
drought. Soil moisture is one of the causes of 
agricultural drought, and evapotranspiration 
is an essential component of the water and 
energy cycle. This factor can indicate the 
availability of water and the amount of 
moisture and its consumption by the plant. 
Therefore, evapotranspiration plays a very 
vital role in drought severity. Snow is a 
natural source of water, and snowmelt forms 
a significant part of the runoff. Shortage of 
snow in winter can lead to hydrological and 
agricultural drought; therefore, snow 
monitoring can be used in forecasting 
drought. Drought stress can be studied using 
surface brightness temperature. Land surface 
temperatures can provide valuable 
information on soil moisture content. 
Consequently, it can also affect the 
agricultural drought. Therefore, the factors  
of precipitation, snow, vegetation, land 
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2-2. Materials 
In this study, the information and data of the 
MODIS sensor, SMOS satellite, and TRMM 
satellite were used. Therefore, a brief 
explanation of these three is given. Moderate 
Resolution Imaging Spectroradiometer 
(MODIS) is a sensor mounted on Terra 
satellite. This sensor captures the entire 
surface of the Earth's once every two days 
and obtains data in 36 spectral bands with 
different spatial resolutions (Sánchez et al., 
2016). MODIS sees many of Earth’s vital 
signs. Soil Moisture and Ocean Salinity 
(SMOS) is a satellite that forms part of ESA's 
Living Planet Programme launched in 
November 2009. The satellite's two main 
objectives are to monitor the surface soil 
moisture with a four percent accuracy at 35-
50 km spatial resolution and monitor sea 
surface salinity with an accuracy of 0.1 PSU 
at 10- to 30-day average with a spatial 
resolution of 200 km (Kerr et al., 2010). The 
Tropical Rainfall Measuring Mission 
(TRMM) was a joint space mission between 
the National Aeronautics and Space 
Administration (NASA) and the Japan 
Aerospace Exploration Agency (JAXA) 
designed to monitor and study tropical 
rainfall. The TRMM was a joint mission 
between NASA and the Japan Aerospace 
Exploration Agency (JAXA) that designed to 
monitor and study tropical rainfall. The 
satellite was launched in Japan in November 
1997 and is still in orbit. This satellite is a 
joint product of Japan and the USA. The 
satellite is 350 km above the Earth's surface, 
and its products are for a range from 50 
degrees south to 50 degrees north. According 
to data provided by NASA, the product's 
spatial resolution is at least 0.25 by 0.25 
degrees and maximum by five at five degrees 
(Duan and Bastiaanssen, 2013). 
MODIS Vegetation Index Products 
(MOD13A3), produced on 1-month intervals 
and at multiple spatial resolutions, provides 
consistent spatial and temporal comparisons 
of vegetation canopy greenness, a composite 
property of leaf area, chlorophyll, and 
canopy structure. This product has a spatial 
resolution of 1 km, which is known as Level 
3 product of MODIS. The MODIS Global 
Vegetation Indexes are designed to provide a 
spatial and temporal comparison of 
vegetation conditions. This product has a 

spatial resolution of 1 km, produced  
on 1-month intervals, which is known  
as Level 3 product of MODIS that  
provides regular spatial and temporal 
comparisons of the intensity of vegetation 
(Sánchez et al., 2016). The images were 
downloaded from https://earthexplorer. 
usgs.gov. 
MODIS Land Surface Temperature 
(MOD11A2) is version 6 of the MODIS 
sensor, which is delivered every eight days 
with a resolution of one kilometer. The value 
of each pixel is obtained as a simple average 
of over eight-days (Sánchez et al., 2016). The 
images were downloaded from 
https://earthexplorer.usgs.gov. 
MODIS Evapotranspiration Products 
(MOD16A2) is a universal product that 
evapotranspiration product can be used to 
calculate energy balance and regional water, 
soil water status, which is produced in eight 
days. This product has a spatial resolution of 
500 m (Ramoelo et al., 2014). The images 
were downloaded from 
https://earthexplorer.usgs.gov. 
MODIS Snow Cover (MOD10CM) is 
monthly average of snow covers in 0.05 
degree (approx. 5 km) resolution Climate 
Modeling Grid (CMG) cells. The images 
were downloaded from 
https://search.earthdata.nasa.gov. 
Monthly Precipitation Estimates TRMM 
(3B43) is TRMM satellite precipitation at 
latitude 50 degrees north and 50 degrees 
south. The spatial resolution of this data is 
0.25 degrees by 0.25 degrees. The unit of 
data is in millimetres per hour. The images 
were downloaded from 
https://disc.gsfc.nasa.gov. 
Monthly Soil Moisture L3 corresponds to the 
spatial average of the L2 soil moisture 
measurements in the Equal-Area Scalable 
Earth (EASE)-2 grid of 25 km and one-
month temporal averaging periods. The 
images were downloaded from 
http://bec.icm.csic.es/land-datasets. 
 
3. Methods 
In this study, using satellite data and machine 
learning methods to model and predict 
agriculture drought in the study area has been 
done. Initially, satellite images and data from 
relevant sites were downloaded and pre-
processed for constructing the images. The 
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3-2. Wavelet Analysis for Data Pre-
Processing 
One of the techniques used in signal 
processing is wavelet transform. Therefore, 
this conversion is used in one-dimensional, 
two-dimensional, and three-dimensional 
signal processing (Kim and Valdés, 2003). 
Wavelet transform is one of the 
achievements of mathematics that has 
important applications in engineering 
sciences today. This conversion is a more 
advanced type of Fourier transform. The 
wavelet function is a specified function with 
a mean of zero. The continuous wavelet 
transform (CWT) of a signal fሺxሻ is defined 
as (Nason and Sachs, 1999): 

CWTሺa.bሻ= 1√a
 fሺxሻψ ቂx-b

a
ቃ dx

+∞

-∞
                 (1) 

where b is the scale parameter; a is the 
translation, ψ is the mother wavelet. Scale 
parameter means wavelet stretching or 
squeezing and denotes the amount or length 
of wavelength. Therefore, it is compacted on 
a small scale. When the scale has high 
values, it reduces the time resolution and 
increases the resolution of the frequency. To 
perform wavelet conversion on digital 
computers, it is necessary to discrete scale 
and translation parameters. This results in a 
discrete wavelet transform (DWT). the 
advantage DWT is that it is relatively simpler 
and requires less computational time. To 
create a DWT, it is sufficient to use discrete 
values of scale parameter and translation 
parameter (Nason and Sachs, 1999). 
Choosing an appropriate wavelet transform 
to solve a problem requires a sufficient 
understanding of the features of the candidate 
wavelet. In this research, the Daubechies 
wavelet transforms have been used. The 
Daubechies wavelets, as a family of 
orthogonal wavelets, they define a discrete 
wavelet transform. This type of wavelet 
transform is determined by the maximum 
number of vanishing moments for some 
given support (Daubechies, 1992). 
 
3-3. Artificial Neural Network 
The structure of neural networks is modeled 
from the biological network of the human 
brain. The neuron is the smallest unit of 
network processing. Each neuron consists of 
two parts, one inlet and the other in weight. 

Weight is a parameter whose value can be at 
most one and at least zero. The inputs are 
multiplied to the corresponding weight, then 
the weighted inputs are aggregated, and the 
result is transmitted as an input to all the 
neurons in the next layer. The ANN models 
used in this study have a feed-forward Multi-
layer perceptron (MLP) architecture, which 
was trained with the back propagation 
algorithm (Belayneh et al., 2014). MLP 
consists of an input layer with multiple input 
elements, a hidden layer with multiple 
neurons, and an output layer called the target 
layer. The ANN used in this study can be 
represented by (Kim and Valdés, 2003): 
 ܻᇱሺݐሻ = ݂[∑ ఫఫୀଵ̣ݓ ݂ ቀ∑ ୀଵݓ ሻݐሺݔ + ൫ݓ൯ቁ +     ݓ
                                                                    (2) 
 

where m is the number of neurons in the 
hidden layer, i is the input element, j is the 
hidden neuron, N is the number of 
samples,	ݔሺݐሻ is the input variable at time 
step t, ݓ is the weight that connects the ith 
neuron in the input layer and the jth neuron in 
the hidden layer;	w୨ is bias for the jth 
hidden neuron; ݂ is the activation function 
of the hidden layer; ݓ is the weight that 
connects the jth neuron in the hidden layer 
and kth neuron in the output layer; ݓ is bias 
for the kth output neuron; ݂ is the activation 
function for the output neuron and ܻᇱሺݐሻ is 
the forecasted kth output at time step t 
(Belayneh et al., 2014). The performance of 
the artificial neural network depends on the 
network architecture. The performance of the 
artificial neural network depends on the 
network architecture, different network 
architecture can provide different accuracy. 
For example, the number of neurons in the 
hidden layer needs to be optimized. This can 
be done by trial and error. 
 
3-4. Support Vector Regression 
Support vector machine (SVM) is a tool for 
classifying data in different classes. 
Therefore, the data can be separated linearly 
and non-linearly. Here we refer to another 
type of support vector machine algorithm 
that can be used in regression problems. 
Support Vector Regression (SVR) is a 
machine learning algorithm that can be used 
in regression problems. SVR models are 
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created based on the structural risk 
minimization principle. While neural 
network methods are based on the empirical 
risk minimization (Cortes and Vapnik, 1995). 
To solve a nonlinear regression problem, it 
can transmit the input data space to the 
feature space using the kernel, where linear 
regression can be applied: 

fሺxሻ=∑ wi
n
i=1̣ ϕiሺxሻ+b                                 (3) 

where ݓ is the weight factor, b is the bias 
term, ߶ denotes aset of non-linear 
transformation functions in the feature space. 
The purpose of the SVR algorithm is to 
estimate the regression function f(x). 
Detailed descriptions of SVR model 
development can be found in (Cimen, 2008). 
The SVR algorithm has two versions, 
including nu-SVR and epsilon-SVR. In the 
nu-SVR version, there is control over the 
number of data vectors that are considered as 
support vectors, whereas in the epsilon-SVR 
version, it is not possible. LIBSVM tool is 
one of the tools by which the problems can 
be predicted and modelled using the SVR 
algorithm. The LIBSVM tool supports both 
versions of SVR, including epsilon-SVR and 
nu-SVR. The nu-SVR model is used in time 
series and modelling problems (Chang and 
Lin, 2001). In this study, LibSVM tool and 
nu-SVR version were used for modeling and 
prediction using the SVR algorithm. The 
three basic parameters that are predicted in 
method nu-SVR are C, Gamma, and nu. For 
each leading month forecast, the parameters 
C, Gamma, and nu are optimized through a 
grid search method for getting the best 
RMSE for the validation data set (Zhang et 
al., 2014). 
 
3-5. Decision Tree 
Decision trees are commonly used in various 
research and operations, meaning that they 
can make a particular decision. In this study, 
the Classification and Regression Trees 
(CART) algorithm is used. CART is one of 
the algorithms in classification and 
regression, which acts as a tree hierarchy in 
the input space. This method use for discrete 
and continuous variables so it can be used for 
regression and classification applications. 
Each decision tree consists of a series of 
leaves, branches, and nodes. Depending on 
the data type of the experiment, a series of 

tests start along with the decision nodes from 
the root node and traverses the tree path to 
the leaf. In the leaf, the problem is predicted. 
The CART algorithm can easily be used for 
both nominal classification and regression 
problems (Ahmed et al., 2010).  
 
3-6. Random Forest 
Random forest is one of the ensemble 
learning methods for regression and 
classification problems (Breiman, 2001). The 
random forest is a set of decision trees that 
grow randomly beneath the feature space. 
Random forest is based on a set of decision 
trees CART. Each tree separately makes 
predictions for the regression and 
classification problems and finally on the 
classification problems based on the most 
votes and the regression problems based on 
the mean of the tree answers. In the random 
forest algorithm, the parameters affect the 
efficiency and accuracy of the algorithm. The 
most influential parameters can be the 
number of decision trees, the number of 
variables used in each node, and the 
maximum number of observations allowed in 
each node. Choosing inappropriate amounts 
of any of these parameters can lead to a 
reduction in the accuracy, and consequently, 
duplicate decisions are made. Because by 
increasing variables, the likelihood of using 
duplicate variables increases the likelihood of 
duplicate decision making (Breiman, 2017). 
 
3-7. Performance Result 
To assess the performance of the ANN, SVR, 
DT, and RF models, four statistical 
performance evaluation criteria are used: 
Coefficient of determination (R2), Root 
Mean Squared Error (RMSE), Mean Squared 
Error (MSE) and Mean Absolute Error 
(MAE). The R2 measures the degree of 
linear correlation between the observed 
variable and the predicted variable (Belayneh 
et al., 2014). 
 
3-8. Pre-Processing 
As mentioned above, to model and predict 
vegetation index (NDVI), which is one of the 
most important factors of drought 
agriculture, several parameters have been 
collected and used, including daytime and 
night-time land surface temperatures, 
evapotranspiration, soil moisture, 
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After that, the correlation between the data, 
and the time steps were performed. Then, 
using the wavelet transform to increase 
accuracy in modeling and prediction, signal 
decomposition is performed. Then different 
inputs are entered as inputs of machine 
learning algorithms such as ANN, SVR, DT, 
and RF, and the expected output is the 
(NDVI) index for the next month. The 
correlation coefficient between the time 
series steps of the parameters used is given in 
Table 1. According to Table 1, the 
correlation coefficients for the different steps 
are different, so that for the precipitation 
data, the highest correlation is related to the 
three-month step. However, the correlation 
coefficient for this factor is positive at all 
steps indicating that it has a direct effect on 
each factor with increasing vegetation index, 
and precipitation. In the snow cover data, the 
highest correlation coefficient in the four-
month step is also negatively correlated in 
the one-month and two-month steps. In the 
presence of snow, vegetation index decreases 
sharply, especially in the cold months of the 
year. The correlation coefficient between the 
land surface temperature at day, night and 

vegetation are always negative, which is the 
highest in the three-month steps. It can also 
be explained that the correlation coefficient 
between these two parameters is negative, as 
vegetation decreases with increasing LST. 
The correlation between soil moisture and 
vegetation has a positive value and in the 
one-month step, has its highest value. The 
correlation between Evapotranspiration and 
vegetation has a positive value and in the 
one-month step has its highest value. 
Using the wavelet transform, the primary 
signal can be hierarchically decomposed at 
N-level sub-series into subsets of 
approximation and detail. Therefore, in this 
study, each of the time-series data  
was analysed up to decomposed into 5-level 
sub-series using the wavelet transform,  
and then each sub-series was assigned to 
machine learning algorithms. Accuracy 
calculated for each step, and the results show 
that in the 1-level, the signal decomposition 
using wavelet transform is achieved with the 
highest accuracy. After one-level signal 
decomposition using wavelet transform, each 
of the inputs as shown in Figure 4 inputs to 
machine learning algorithms. 

 
Table 1. The correlation coefficient between the time series steps of the parameters with NDVI. 

Six-month 
step 

Five-month 
step 

Four-month 
step 

Three-
month 

step 

Two-month 
step 

One-month 
step 

Correlation 
coefficient 
with NDVI 

0.1126 0.3526 0.4193 0.7189 0.5879 0.3473 Precipitation 

0.0200 0.3822 0.7823 0.7653 -0.1573 -0.3847 Snow Cover 

0.2558 0.2120 0.1818 0.0365 0.3654 0.8324 
Evapotranspi

ration 

-.2194 -.6024 -.7426 -.8326 -0.4436 -0.3269 LST (day) 

-0.1388 -0.4120 -0.5363 -0.5626 -0.3724 -0.3172 LST (night) 

0.0112 0.1211 0.2812 0.3324 0.3836 0.5224 
Soil 

Moisture 
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Table 4 shows the accuracy of the random 
forest algorithm in 2018. According to Table 
4, the results show that the accuracy 
estimates for the forecast of the NDVI for the 
twelve months of 2018 are different. The 
results show that for May, it was the least 
accurate, and for October, it was the most 
accurate for the three indices of RMSE, 
MSE, and MAE. However, the coefficient of ܴଶ was highest for October and the lowest 
for March. 
Table 5 shows the accuracy of the decision 
tree algorithm in 2018. According to Table 5, 
the results show that the accuracy estimates 
for the forecast of the NDVI for the twelve 
months of 2018 are different. The results 
show that for May, it was the least accurate 
and for October it was the most accurate for 

the three indices of RMSE, MSE, and MAE. 
However, the coefficient of ܴଶ was highest 
for October and the lowest for March. 
Figure 5a is the NDVI index image of  
the vegetation product for the MODIS sensor 
for October 2018; Figure 5b is the NDVI 
index image obtained from the ANN 
algorithm model for October 2018; Figure 5c 
is the NDVI index image obtained from the 
SVR algorithm model for October 2018; 
Figure 5d is the NDVI index image obtained 
from the RF algorithm model for October 
2018; and finally Figure 5e is the NDVI 
index image obtained from the DT algorithm 
model for October 2018. As mentioned 
earlier, for the four algorithms, October had 
the best accuracy over other months of the 
year. 

 

Table 4. The accuracy of the algorithm, the random forest method 

Month RMSE MSE MAE ܴଶ Month RMSE MSE MAE ܴଶ 

Jan 0.0419 0.0018 0.0186 0.7558 July 0.0516 0.0027 0.0243 0.8036 

Feb 0.0462 0.0021 0.0209 0.7567 Aug 0.0316 0.0010 0.0139 0.9145 

Mar 0.0640 0.0041 0.0311 0.7006 Sept 0.0252 0.0006 0.0106 0.9424 

Apr 0.0577 0.0033 0.0307 0.8306 Oct 0.0221 0.0004 0.0108 0.9535 

May 0.0664 0.0044 0.0345 0.8185 Nov 0.0382 0.0015 0.0184 0.8323 

June 0.0571 0.0033 0.0267 0.8401 Dec 0.0433 0.0019 0.0213 0.8113 

 
Table 5. The accuracy of the algorithm, the decision tree method. 

Month RMSE MSE MAE ܴଶ Month RMSE MSE MAE ܴଶ 

Jan 0.0432 0.0019 0.0193 0.7407 July 0.0531 0.0028 0.0252 0.7925 

Feb 0.0471 0.0022 0.0215 0.7472 Aug 0.0330 0.0011 0.0147 0.9069 

Mar 0.0651 0.0042 0.0317 0.6902 Sept 0.0258 0.0006 0.0109 0.9395 

Apr 0.0591 0.0035 0.0315 0.8227 Oct 0.0227 0.0005 0.0112 0.9508 

May 0.0662 0.0044 0.0350 0.8198 Nov 0.0392 0.0015 0.0190 0.8239 

June 0.0558 0.0034 0.0274 0.8319 Dec 0.0445 0.0020 0.0220 0.8008 
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as inputs for modeling and predicting the 
drought in future studies. 
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