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Abstract 
This study interprets aeromagnetic data across Sokoto Basin with the aim of estimating the Curie 
point depth, geothermal gradient and heat flow for geothermal energy exploration. The study area 
lies between the longitude of 30E and 60E and latitudes 110N and 130N. The total magnetic 
intensity of the area was subjected to regional/residual separation using polynomial fitting. The 
residual data was divided into 30 overlapping spectral blocks, where the log of spectral energies 
was plotted against the frequency; hence, the centroid depth and the top to the magnetic sources 
were deduced. These depth results were used in estimating the Curie point Depth and geothermal 
gradient. The total magnetic intensity indicated a variation of 32932.84 to 33118.27 nT, while the 
residual map shows magnetic anomalies that vary from -82 to 51 nT, both maps indicated high, 
low and intermediary magnetic anomalies. The centroid depth results vary from 4.67 to 28.80 km, 
and the top to the magnetic source varies from 1.04 to 4.65 km with an average depth of 2.21 km. 
The Curie point depth range from 6.92 to 55.04 km with an average depth of 18.65 km, and the 
geothermal gradients revealed ranges from 10.54 oCkm-1 at the Southwest (Danko and Gummi) 
areas to 83.82oCkm-1 at the northwest (Argungu) area. Therefore, these areas with high geothermal 
gradients are good indicators of geothermal energy potential and should be exploited for more 
power generation. 
 
Keywords: Magnetic anomalies; Spectral Analysis; Curie Point Depth; Geothermal energy; Heat 

flow. 
 
1. Introduction  
Nigeria remains the largest economy in the 
sub-Sahara of Africa, endowed with 
abundant energy resources (renewable and 
conventional), which if properly harnessed 
can provide the country with sufficient 
capacity to meet the need of both the urban 
and the rural areas. Despite the abundant 
resources, the country has one of the lowest 
consumption rates of electricity per capita in 
Africa (i.e., far behind Cape Verde, South 
Africa and Ghana). This avoidable 
development of inadequate electricity is not 
only unhealthy but highly detrimental to the 
country’s economic growth. It is alarming to 
note that only about 45% of the population 
(200 million) has access to electricity, 55% 
of whom are from urban areas and 45% are 
in rural areas (Power Africa, 2018).  Nigeria, 
like every other country, have keyed into 
exploring renewable energy, thereby making 
efforts to provide sufficient energy that will 
further boost the economy. Consequently, 
activities are concentrated on solar energy, 

wind energy, and some researches are 
ongoing about nuclear energy as well. So far, 
the use of geothermal energy as an 
alternative source of energy has at best 
remains within the corridors of academics 
through researches in the tertiary institutions. 
Aeromagnetic surveys are widely used to aid 
in the production of geological maps and are 
also commonly used during mineral and 
geothermal exploration (Burger et al., 2006). 
Magnetic exploration in geothermal is 
important to identify the potential area of 
reducing magnetization due to thermal 
activity (Georgsson, 2009). Evaluation of 
geothermal potential can be done by applying 
the spectral analysis method to the 
aeromagnetic data obtained during 
aeromagnetic surveys. The model has proven 
successful in estimating average depths to the 
tops of magnetized bodies (Trifonova et al., 
2006; Dolmaz, 2005; Tselentis, 1991).  
Geothermal energy is a viable and 
sustainable source of energy from deep inside 

*Corresponding author:                                                                           taufiq.suleiman.pg01826@unn.edu.ng 



148                                Journal of the Earth and Space Physics, Vol. 46, No. 4, Winter 2021 

 

the earth, which has the potential of 
supplying source baseload, drive long-term 
energy and emission reduction of greenhouse 
gas (Dickson and Fanelli, 2004; Salako et al., 
2020). To venture into geothermal plants in a 
particular area for the purpose of generating 
electricity, which can be of industrial usage, 
domestic, recreational activities, design of 
deep wells, oil and gas evolution history (i.e. 
hydrocarbon generation) there must be 
knowledge of the geothermal gradient of the 
place (Adedapo et al., 2014). Geothermal 
gradient is the rate of increase in temperature 
per unit depth in the earth due to the outflow 
of heat from the center (Lowrie, 1997). It 
indicates that heat flowing from the Earth’s 
warm interior to its surface. On average, the 
temperature increases by 25°C in general for 
every kilometer of depth. This difference in 
temperature drives the flow of geothermal 
energy and allows humans to use this energy 
for heating and electricity generation. Heat 
flow is the flow of heat energy by 
conduction, convection, and radiation in 
sediments (Beardsmore and Cull, 2001). Heat 
flow from the interior to the surface of the 
earth is ongoing through the earth, losing its 
heat of planetary formation as well as the 
heat generated internally by radioactive 
decay (Hantschel and Kauerauf, 2009). 
A geothermal system consists of the 
following: a heat sources, a reservoir, a fluid 
which carries and transfers heat, and a 
recharge area (Berktold, 1983). The heat 
source is due to the active tectonic plate 
margins, which represent major zones of 
magmatic matter that is cooling and 
radioactivity (Uysal, 2009). The reservoir of 
the geothermal system is the volume of rocks 
from which heat can be extracted. This 
reservoir contains hot fluids, vapor and gases. 
The reservoir is surrounded by colder rocks 
through which water flows from the outside 
into the reservoir. The area around the 
reservoir in which water (fluids) flows into 
the reservoir is called the recharge area. The 
hot fluids in the reservoir move under the 
influence of buoyancy forces towards a 
discharge area. The geothermal systems are 
associated with fracture and heat flow instead 
of specific lithology (Zira, 2013). 
Depth to the bottom of magnetic sources can 
provide valuable information about the local 
and regional temperature distribution with 

depth and the concentration of the subsurface 
geothermal energy (Tselentis, 1991). Depth 
to the bottom of magnetic sources in a 
regional survey can be referred to as the 
Curie depth, which corresponds to a depth at 
which magnetic signal is lost due to the heat 
from the interior of the earth subsurface 
(Shehu et al., 2016). Estimation of curie point 
depth has aided in the determination of 
geothermal energy in different countries, as 
such, many authors (Bansal et al., 2010; 
Aboud et al., 2011; Abd & Naby, 2012; 
Salako and Udensi, 2013; Ofor and Udensi, 
2014; Aliyu et al., 2018; Rowland and 
Ahmed, 2018; Adewumi et al., 2019; Salako 
et al., 2020) have adopted it and good results 
were obtained. Bhattacharyya (1966) 
proposed the theory for determining Curie 
depth, a theory which was later developed by 
Spector and Grant (1970). The theory shows 
that the Curie temperature isotherm 
corresponds to the temperature at which 
minerals lose their ferromagnetism 
(approximately 580°C). Thus, Curie depth 
isotherm corresponds to the basal surface of a 
magnetic crust and can be calculated from 
the power spectrum of the magnetic 
anomalies (Byerly and Stolt, 1977; Connard 
et al., 1983; Mishra and Naidu, 1974; Salem 
et al., 2000). 
This investigation is therefore aimed at 
exploring the geothermal potential across 
Sokoto Basin, which can serve as an 
alternative to the present hydropower in the 
country.  
 
2. Geology and Location of the Study Area 
The study area is Sokoto Basin in 
Northwestern Nigeria that lies between 
longitudes 30E and 60E and latitudes 110N 
and 130N. The Basin forms the Southeastern 
sector of the Lullemmeden Basin, one of the 
young (Mesozoic–Tertiary) inland cratonic 
sedimentary basins of West Africa (McCurry 
1976; Obaje, 2009). The Basin like other 
intra-continental basins and the African 
continent in general was developed by 
epeirogenic warping of stretching and rifting 
of technically stabilized crust. These 
movements commenced around the 
beginning of the Paleozoic and continued 
upper cretaceous and more responsible for 
the Southwestern propagation of sediments 
deposited within the basin (Kogbe, 1979 and 
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3-2. Methods  
In actualizing the aim of this investigation, 
these processes were adopted, thus, reduction 
of the total magnetic intensity to the 
magnetic equator, hence, separation of 
regional and residual data, estimation of 
spectral analysis, curie point depth, 
geothermal gradient and heat flow.  
The fifteen aeromagnetic sheets were 
assembled in Oasis Montaj 8.4.2v software, 
merged, and gridded using a bi-directional 
line gridding method to produce the total 
magnetic intensity map, TMI (Figure 2) of 
the area. 
 
3-2-1. Reduction to Magnetic Equator 
(RTE) 
Reduction to the equator is used in low 
magnetic latitudes to center the peak of 
magnetic anomalies over their sources, 
enhancing basement architecture including 
structural lineaments with its orientations 
thereby making the data easier to interpret 
without losing any geophysical meaning 
(Gilbert and Geldano, 1985). The TMI was 
reduced-to-equator in agreement with the 
International Geomagnetic Reference Field 
(IGRF) reduction technique using 
geomagnetic inclination angle -1.4°, 
geomagnetic declination angle -1.7° and a 
standard deviation of 0.1. Equation (1) is the 
expression for RTE (Leu, 1981). 
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                                                     (1) 

If (/Ia/</I/), Ia = I 
where  = geomagnetic inclination  = 
Inclination for amplitude correction (never 
less than I), D = geomagnetic declination, 
L(θ) is Reduction to Equator, θ is the wave 
number direction. 
 
3-2-2. Regional/Residual Separation  
The residual magnetic field of the study area 
was produced by subtracting the regional 
field from the total magnetic field using the 
polynomial fitting of second-order of least 
square method. Equation (2) was used in 

generating the algorithm for removal of 
regional data (Ugwu et al., 2013): 

   0 1 2r a a x x a y yref ref             (2) 

where r is the regional field, refx and refy are 

the x and y coordinates of the geographic 
center of the data set respectively; 0a , 1a and 

2a are the regional polynomial coefficients. 

 
3-2-3. Spectral Method 
Spectral method permits an estimation of 
depth of magnetized blocks of varying depth, 
width, thickness and magnetization 
(Bhattacharyya, 1966; Spector and Grant, 
1970; Shuey et al., 1977; Onuoha et al., 
1994; Tanaka et al., 1999). The residual data 
was divided into thirty window spectral 
blocks (block A – DD) such that, block A – 
O have spectral probe of 55 km by 55 km, 
block P – Y have spectral probe of 82.5 km 
by 55 km, block Z – CC have spectral probe 
of 165 km by 110 km and block DD has a 
spectral probe of 165 km by 165 km. 
Subsequently, spectral program plot (SPP) 
developed with MATLAB software was 
employed in the estimation of the depth to 
the centroid (Zo) of the magnetic from the 
slope of the first-longest wavelength part of 
the spectrum using Equation (3) 
(Bhattacharyya & Leu, 1975; Okubo et al., 
1985). 

( )
ln ln 2

P s
A s Zo

s
 

 
 
 
 

                        (3) 

where P(s) is the radially averaged power 
spectrum of the anomaly, |s| is the 
wavenumber, and A is constant.   
Similarly, the depth to the top boundary (Zt) 
was also estimated from the slope of the 
second-longest wavelength part of the 
spectrum using Equation (4) (Okubo et al., 
1985). 

ln ln 2( )P B S ZtS   
  

                        (4) 

where B, is the sum of constant independent 
of |s|. 
 
3-2-4. Curie Point Depth Estimation 
The estimation of the Curie point depth (Zb), 
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5. Conclusion  
An investigation of the geothermal energy 
potential across Sokoto Basin was carried out 
using high-resolution aeromagnetic data and 
the results show that the Northwest 
(Argungu) and Northeastern parts (Gandi and 
Rabah) of the areas have high potentials 
because they are associated with shallower 
Curie point, high geothermal gradient and 
high heat flow. Hence, exploiting the 
geothermal prospect of these areas with high 
geothermal gradients will go a long way in 
adding to the power generation in Nigeria. 
These results have no doubt provided 
important geophysical inputs, which are 
useful for geothermal exploration in the 
basin.  
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