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1. Introduction 

Laminated sandwich beams are often subjected to delamination 

and stress concentration problems due to the abrupt change in 
material properties at the layer interface. To overcome these 

problems of laminated sandwich beams, functionally graded (FG) 

sandwich beams can be the best suitable option. FG materials are 

formed by gradually varying the material properties with a 

specific gradient from one surface to another surface of the beam 

[1-10]. Beam type structural elements are often subjected to axial 
forces which cause buckling of these structures. Therefore, an 

accurate study of the buckling behaviour of FG sandwich beams 

is required to design it for the axial forces. Classical beam theories 

such as the Euler-Bernoulli beam theory (EBT) of Bernoulli [11] 

and the first-order beam theory (FBT) of Timoshenko [12] are 

used by many researchers in the past decades. However, these 
theories are not accurate enough for the analysis of thick beams 

due to neglecting the effect of transverse shear deformation. Also, 

the FBT shows the constant variation of shear strain across the 
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thickness of the beam. These limitations of the classical theories 

force the researchers to develop more accurate theories for the 

analysis of thick beams. These theories are classified as higher 

order beam theories (HOBTs). The detailed and critical review of 

HOBTs can be found in Sayyad and Ghugal [13, 14]. Few review 
articles on FG materials and structures can also be found in the 

literature such as Jha et al. [15], Swaminathan et al.  [16], and 

Sayyad and Ghugal [17]. A good number of research papers have 

been published in the literature on buckling analysis of single layer 

FG beams [18-29], however, the literature on the analysis of FG 

sandwich beams is limited. 
    Bhangale and Ganesan [30] studied thermal buckling and 

vibration behavior of the FG sandwich beam with constrained 

viscoelastic layer core using the finite element method. Zenkour 

et al. [31] investigated the bending response of FG viscoelastic 

sandwich beams using various refined beam theories. Vo et al. 

[32, 33] have developed a finite element model for the vibration 
and buckling analysis of FG sandwich beams based on third order 

polynomial type beam theory. Nguyen et al. [34, 35] have 
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In this paper, a unified beam theory is developed and applied to study the buckling 
response of two types of functionally graded sandwich beams. In the first type 
(Type A), the sandwich beam has a hardcore whereas in the second type (Type B), 
the sandwich beam has a softcore. In both the type of beams, face sheets are made 
up of functionally graded material. The material properties of face sheets are varied 
through the thickness according to the power-law distribution. A unified beam 
theory developed in the present study uses polynomial and non-polynomial type 
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deformation. The present theory is built upon classical beam theory and shows a 
realistic variation of transverse shear stresses through the thickness of the beam. 
The governing equations are deduced based on the principle of virtual work. 
Analytical solutions for simply supported sandwich beams subjected to axial force 
are presented. The critical buckling load factors of two types of FG sandwich beams 
are investigated. The numerical results are obtained for various power law 
coefficients and face-core-face thickness ratios. The validity of the present theory 
is proved by comparing the present results with various available solutions in the 
literature.   

 

Keywords: 

A unified beam theory 

Shear deformation 

FG sandwich beam 

Softcore and hardcore 

Critical buckling load factors 

 



Sayyad and Ghugal 

444 

 

developed an inverse trigonometric beam theory for the vibration 

and buckling analysis of FG sandwich beams. Lanc et al. [36] have 

presented a buckling analysis of FG sandwich box beams using 
the Euler-Bernoulli beam theory and the Vlasov theory. Bennai et 

al. [37] developed a new hyperbolic beam theory considering the 

effects of shear and normal deformations for the free vibration and 

buckling analysis of FG sandwich beams under various boundary 

conditions. Tossapanon and Wattanasakulpong [38] have solved 

buckling and free vibration problems of FG sandwich beams using 
FBT based on the Chebyshev collocation method. Osofero et al. 

[39] presented an analytical solution for vibration and buckling of 

FG sandwich beams using various quasi-3D theories considering 

the effects of normal deformation. Kahya and Turan [40] have 

developed a finite element model for the vibration and buckling of 

FG sandwich beams based on FBT. Karamanli [41] studied the 
static behaviour of two-directional FG sandwich beams of 

different boundary conditions by using a third order polynomial 

type beam theory considering the effects of transverse shear and 

normal deformations based on the symmetric smoothed particle 

hydrodynamics method. Li et al. [42] developed a higher-order 

shear deformable mixed finite element model to determine 
displacements and stresses in FG sandwich beams. Sayyad and 

Ghugal [43] presented the nth order shear deformation theory for 

the analysis of composite laminates under cylindrical bending. 

Shinde et al. [44] applied the hyperbolic theory for the thermal 

analysis of isotropic plates. Sayyad and Avhad [45] presented a 

bending analysis of functionally graded sandwich beams using 
hyperbolic shear deformation beam theory. 

Mohammadi et al. [46-57] and; Mohammadi and Abbas 

Rastgoo [58, 59] have presented bending, buckling and free 

vibration analysis of nanobeams and graphene sheets embedded 

in an elastic medium under mechanical and thermal environment 

using various nonlocal theories. A similar study is applied by 
Asemi et al. [60-63] and Farajpour et al. [64-71] for the 

piezoelectric nanostructures. One can also refer [72-77] for a 

similar approach.     

    Based on the aforementioned literature review, it is pointed 

out that the studies on buckling analysis of FG sandwich beams 

are limited in the literature. Therefore, in this article, we restrict 
our focus on the buckling analysis of sandwich beam with 

homogenous core and FG face sheets. Two types of homogenous 

cores (softcore and hardcore) are considered in the present study. 

Buckling analysis of sandwich beams is carried out using a unified 

beam theory which recovered various shear deformation beam 

models such as the third order beam theory of Reddy [78], the FBT 
of Timoshenko [12], the CBT of Bernoulli-Euler [11], etc. Few 

non-polynomial type shape functions are first time used in the 

present form of displacement field such as the trigonometric 

function of Levy [79], the hyperbolic function of Soldatos [80], 

and the exponential function of Karama et al. [81]. The governing 

equations are deduced based on the principle of virtual work. 
Buckling solutions are obtained by using Navier’s technique for 

various power law coefficients, aspect ratios, and face-core-face 

thickness ratios.  

2. Geometry and materials 

Consider an FG sandwich beam as shown in Fig. 1. The beam 

has length L and rectangular cross-section b×h; h1, h2, h3, and h4 

are the thickness coordinates of each layer measured from the 

neutral axis. The width of the beam is considered as unity in the 

y-direction. The beam is subjected to axial forces. The four types 
of relations between face sheets to core thickness ratios are 

considered (1-0-1, 2-1-2, 1-1-1 and 1-2-1).  

 
Figure 1. Material gradation of FG sandwich beams (Type A: 

Hardcore, Type B: Softcore) 

Face sheets of the sandwich beams are made up of FG material 
in which elastic properties of the material are graded across the 

thickness of the beam. The simple rule of mixture i.e. the power-
law is used for the gradation of material properties. 
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where V(n) represents the function of volume fraction for the nth 
layer (n=1,2,3); Em represents and Young’s modulus of metal 

whereas Ec represents Young’s modulus of ceramic.  
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Figure 2. Through the thickness variation of Young’s modulus 

of FG sandwich plate (Type A: Hardcore) for various skin-core-
skin thickness ratios 

Functions of volume fraction for FG face sheets and homogenous 
core are assumed as follows. 
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where p is the power-law coefficient that indicates material 
variation profile through the thickness. Through-the-thickness 

variations of Young’s modulus of FG sandwich beams made of 
ceramic hardcore and metallic softcore are shown in Figs. 2 and 

3. 

3. Development of theory 

The kinematic formulation of the present unified beam theory 
is based on the following assumptions.  

1) Axial displacement consists of extension, bending and shear 
components.  

2) Axial displacement considered the effect of transverse shear 
deformation.  

3) Transverse displacement consists of only bending 
component.  

4) The effect of transverse normal strain is neglected. 

The displacement field of the present unified beam theory is as 
follows 

     

   

0 0
0

0

,
w w

u x z u x z R x
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                               (3) 

where 
0 0andu w  are the axial and transverse displacements of the 

neutral axis in x and z-directions respectively;  is the shear slope 

used to represent the effect of transverse shear deformation on the 

neutral axis of the beam. R represents transverse shear strain shape 
function in-terms of thickness coordinate (z) to satisfy traction free 

boundary conditions at the top and bottom surfaces of the beam. 
Different theories can be recovered by choosing their respective 

shape functions. 

Parabolic beam theory (PBT):   
2

1 4 3R z / z , z z / h   
 

 

Trigonometric beam theory (TBT):    sinR h / z   

Hyperbolic beam theory (HBT):    cosh 1 2 sinhR z / h z     

Exponential beam theory (EBT):  
2

exp 2R z z  
 

 

First-order beam theory (FBT): R z  

Classical beam theory (CBT): 0R   

 

The strains associated with the present unified beam theory in Eq. 
(3) are obtained from the linear theory of elasticity. 
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x x x x x xz xz

dR
z R ,
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                                             (4) 

where  
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              (5) 

The state of stress accounting for axial ( x ) and transverse shear 

stresses ( xz ) in the nth layer of FG sandwich beams can be 

expressed as:
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Figure 3. Through the thickness variation of Young’s modulus 

of FG sandwich plate (Type B: Softcore) for various skin-core-
skin thickness ratios 

 
   

 

 
and

2 1

n

nn n k n

x x xz xz

E z
E z   


 


                                  (6) 

The axial force, shear force and moment resultants associated with 
the present theory are determined by integrating stress expressions 

over the thickness of the beam. 
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The principle of virtual work stated in Eq. (8) is employed to 

derive the governing equations associate with the present unified 
beam theory. 
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where 0

xxN  is the axial force along the neutral axis and 

perpendicular to cross-section (b×h). Integrating Eq. (8) by parts, 

collecting the coefficients of 
0 0u , w ,    and setting them equal 

to zero, one can obtain the following governing differential 
equations associated with the present unified beam theory.  
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The boundary conditions at x = 0, and x = L are of the form 

Either 0c

xN   or 
0 0u   

Either 0s c

x xM M   or 
0 0w / x  
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xM   or 0    

 

Using Eq. (7) and Eq. (9), the following governing equations in 
terms of unknown variables are derived. 
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where various stiffness coefficients are defined as follows:  
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4. The Navier solution  

Critical buckling load factors for the simply supported FG 
sandwich beams are obtained using the Navier’s solution 

technique. The following are the boundary conditions for the 
simply supported ends: 

0 at  0 andc s

x xw M M x x L                                   (14) 

FG sandwich beam is subjected to axial compressive force 

 0

0xxN N  only (see Fig. 4); the transverse load is assumed as 

zero (q = 0). 

 
Figure 4. FG sandwich beams subjected to the axial compressive 

force  
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The governing equations and the boundary conditions of the 

present unified beam theory will be satisfied with the following 

form of unknowns (
0 0u , w ,   ):  
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                                                      (15) 

where m / a   and m is the half-wave number along the x-

direction. , andm m mu w   are the unknown coefficients to be 

determined. Substituting values of the unknown from Eq. (15) into 

the set of governing equations (10)-(12) yields the following 
equations from which one can obtained critical buckling load 

factors for the simply supported FG sandwich beam.  
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                                (17) 

From a non-trivial solution of Eq. (16), one can obtain the critical 
buckling loads factors for the FG sandwich beam.  

5. Numerical results and discussion  

In this section, buckling analysis for four types of symmetric F

G sandwich beams is presented using unified beam theory. Th

e beam is taken to be made of alumina and aluminum with the 

following properties. 

Ceramic (Alumina, Al2O3): Ec=380 GPa, µ=0.3 
Metal (Aluminum, Al): Em=70 GPa, µ=0.3 

The four types of layer configurations (LC) are considered for 

the detailed numerical study (see Table 1).  
 

Table 1. Thickness coordinates of four types of FG sandwich 

beams. 
LC Thickness coordinates 

1-0-1 h1 = -h/2, h2=0, h3=0 and h4=h/2 

2-1-2 h1 = -h/2, h2=-h/10, h3=h/10 and h4=h/2 

1-1-1 h1 = -h/2, h2=-h/6, h3=h/6 and h4=h/2 

1-2-1 h1 = -h/2, h2=-h/4, h3=h/4 and h4=h/2 

 

The following non-dimensional forms are used to present the  

critical buckling load factors. 
2

0

3

12
cr

m

N a
N

E h
                                                                           (18) 

In this study, critical buckling load factors are obtained for FG 
sandwich beams subjected to axial compressive force as shown in 

Fig. 4. Four types of layer configurations (1-0-1, 2-1-2, 1-1-1 and 
1-2-1) with a homogenous softcore and hardcore have been 

solved. Effects of power law coefficients (p=0,1,2,5,10), face-

core-face ratios and aspect ratios (L/h=5,10,20,50,100) have been 
studied. Numerical results are presented in Tables 2 and 5. The 

present results are compared with previous solutions available in 
the literature such as Vo et al. [32, 33], Nguyen et al. [35] and 

Kahya and Turan [40]. Examination of Tables 2 and 3 reveals that 

non-dimensional critical buckling load factors obtained by using 
all the present models (PSDT, TSDT, HSDT, ESDT) are in 

excellent agreement with reference solutions, whereas FSDT and 
CPT overestimate the same for all layer configurations and power 

law coefficients. Also, it is observed that the non-dimensional 
critical buckling load factors are found to increase with an increase 

in the values of power law coefficients for homogenous softcore 
whereas it is found to decrease with an increase in the values of 

power law coefficients for homogenous hardcore. Similar relation 
can be observed between the thickness of the core and the non-

dimensional critical buckling load factors. In the case of hardcore, 
an increase in the thickness of the core increases the values of 

critical buckling load factors, i.e. minimum for 1-0-1 and 
maximum for 1-2-1. Whereas, in the case of softcore, an increase 

in the thickness of core decreases the values of critical buckling 
load factors, i.e. (maximum for 1-0-1 and minimum for 1-2-1). 

Figs. 5 and 6 show the effect of power-law coefficients on the 
critical buckling load factors using the present models as well as 

reference solutions.  
Tables 4 and 5 summarize the effect of L/h ratios on the critical 

buckling load factors. The numerical results are presented for 
L/h=5,10,20,50,100. Table 4 represent critical buckling load 

factors for Type B sandwich beams whereas Table 5 represent 
critical buckling load factors for Type A sandwich beams. The 

numerical results are presented for four types of symmetric FG 
sandwich beams. It is pointed out from these tables that the non-

dimensional critical buckling load factor is minimum for thick 
beam and maximum for a thin beam.    
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Figure 5. Effects of the power law coefficients on the non-
dimensional critical buckling load factor (Ncr) of FG sandwich 

beams (Type A: Hardcore, L/h= 5). 

 

 

 

 

Figure 6. Effects of the power law coefficients on the non-

dimensional critical buckling load factor (Ncr) of FG sandwich 
beams (Type B: Softcore, L/h= 5) 
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Table 2. Non-dimensional critical buckling load factor (Ncr) for a hardcore FG sandwich beam (Type A, L/h=5). 
  Present Models  Reference Solution 

LC p PBT TBT HBT EBT FBT CBT  Ref. [32] Ref. [33] Ref. [35] Ref. [40] 

1-0-1 0 48.595 48.603 48.628 48.683 48.590 53.577  48.595 49.590 49.597 48.590 

 1 19.652 19.661 19.651 19.673 19.692 20.796  19.652 20.742 20.089 19.485 

 2 13.580 13.590 13.579 13.601 13.564 14.240  13.580 13.883 13.885 13.436 

 5 10.145 10.158 10.144 10.172 10.113 10.650  10.146 10.367 10.370 10.012 

 10 9.4515 9.4654 9.4503 9.4810 9.4380 10.022  9.4515 9.6535 9.6573 9.3292 

2-1-2 0 48.595 48.603 48.628 48.683 48.590 53.577  48.595 49.590 49.597 48.590 

 1 22.210 22.218 22.210 22.228 22.266 23.506  22.210 22.706 22.706 22.017 

 2 15.915 15.923 15.914 15.933 15.905 16.653  15.915 16.276 16.276 15.762 

 5 11.667 11.677 11.666 11.688 11.624 12.117  11.667 11.930 11.932 11.517 

 10 10.534 10.546 10.533 10.558 10.483 10.933  10.534 10.768 10.771 10.354 

1-1-1 0 48.595 48.603 48.628 48.683 48.590 53.577  48.595 49.590 49.597 48.590 

 1 24.559 24.564 24.559 24.571 24.649 26.057  24.559 25.107 25.106 24.326 

 2 18.358 18.364 18.358 18.371 18.373 19.258  18.358 18.777 18.775 18.190 

 5 13.721 13.728 13.720 13.736 13.693 14.263  13.721 14.035 14.035 13.583 

 10 12.260 12.269 12.259 12.278 12.220 12.711  12.260 12.539 12.540 12.112 

1-2-1 0 48.595 48.603 48.628 48.683 48.590 53.577  48.595 49.590 49.597 48.590 

 1 28.444 28.442 28.444 28.445 28.616 30.357  28.444 29.075 29.072 28.142 

 2 22.786 22.785 22.786 22.786 22.868 24.074  22.786 23.304 23.300 22.571 

 5 18.091 18.092 18.091 18.095 18.113 18.943  18.091 18.509 18.505 17.941 

 10 16.378 16.381 16.378 16.384 16.380 17.090  16.378 16.757 16.755 16.244 

 

Table 3. Non-dimensional critical buckling load factor (Ncr) for a softcore FG sandwich beam (Type B, L/h=5). 
  Present Models  Reference Solution 

LC p PBT TBT HBT EBT FBT CBT  Vo et al. [32] 

1-0-1 0 8.9519 8.9533 8.9579 8.9681 8.9508 9.8696  8.9519 

 1 36.210 36.091 35.624 35.985 38.252 42.650  36.210 

 2 42.450 42.326 41.293 42.213 44.415 49.207  42.450 

 5 46.650 46.574 45.022 46.509 48.105 52.797  46.650 

 10 47.782 47.743 46.043 47.717 48.918 53.425  47.782 

2-1-2 0 8.9519 8.9533 8.9579 8.9681 8.9508 9.8696  8.9519 

 1 32.897 32.717 32.914 32.547 35.506 39.940  32.897 

 2 38.858 38.615 38.881 38.375 41.757 46.794  38.858 

 5 43.533 43.295 43.555 43.053 46.137 51.330  43.533 

 10 45.114 44.909 45.132 44.701 47.403 52.514  45.114 

1-1-1 0 8.9519 8.9533 8.9579 8.9681 8.9508 9.8696  8.9519 

 1 30.245 30.064 30.262 29.900 33.063 37.389  30.244 

 2 35.705 35.420 35.732 35.143 39.139 44.188  35.705 

 5 40.323 39.980 40.354 39.631 43.790 49.184  40.323 

 10 42.069 41.733 42.098 41.386 45.326 50.736  42.069 

1-2-1 0 8.9519 8.9533 8.9579 8.9681 8.9508 9.8696  8.9519 

 1 26.480 26.369 26.491 26.286 29.126 33.089  26.480 

 2 31.015 30.793 31.036 30.603 34.604 39.372  31.015 

 5 35.035 34.693 35.067 34.372 39.192 44.504  35.035 

 10 36.687 36.302 36.722 35.930 40.903 46.356  36.687 

 

Table 4. Non-dimensional critical buckling load factor (Ncr) for 

a softcore FG sandwich beam for different aspect ratios (Type 

B, p=2). 
  Present Models 

LC L/h PBT TBT HBT EBT FBT CBT 

1-0-1 5 42.450 42.326 41.293 42.213 44.415 49.207 

 10 47.321 47.282 46.938 47.246 47.915 49.207 

 20 48.722 48.711 48.618 48.702 48.879 49.207 

 50 49.124 49.126 49.112 49.123 49.146 49.207 

 100 49.170 49.195 49.183 49.187 49.178 49.207 

2-1-2 5 38.858 38.615 38.881 38.375 41.757 46.794 

 10 44.518 44.437 44.525 44.356 45.424 46.794 

 20 46.203 46.181 46.205 46.159 46.444 46.794 

 50 46.700 46.695 46.699 46.692 46.739 46.794 

 100 46.776 46.766 46.770 46.765 46.781 46.794 

1-1-1 5 35.705 35.420 35.732 35.143 39.139 44.188 

 10 41.707 41.608 41.716 41.510 42.808 44.188 

 20 43.540 43.514 43.543 43.487 43.835 44.188 

 50 44.084 44.079 44.084 44.074 44.127 44.188 

 100 44.167 44.154 44.162 44.162 44.168 44.188 

1-2-1 5 31.015 30.793 31.036 30.603 34.604 39.372 

 10 36.884 36.804 36.891 36.734 38.061 39.372 

 20 38.719 38.697 38.721 38.678 39.036 39.372 

 50 39.266 39.262 39.267 39.259 39.316 39.372 

 100 39.339 39.341 39.346 39.346 39.344 39.372 

 

 

Table 5. Non-dimensional critical buckling load factor (Ncr) for 

a hardcore FG sandwich beam for different aspect ratios (Type 

A, p=2). 
  Present Models 

LC L/h PBT TBT HBT EBT FBT CBT 

1-0-1 5 13.580 13.590 13.579 13.601 13.564 14.240 

 10 14.069 14.072 14.069 14.075 14.065 14.240 

 20 14.197 14.198 14.197 14.199 14.196 14.240 

 50 14.234 14.231 14.234 14.228 14.233 14.240 

 100 14.241 14.241 14.239 14.236 14.236 14.240 

2-1-2 5 15.915 15.923 15.914 15.933 15.905 16.653 

 10 16.462 16.464 16.462 16.467 16.459 16.653 

 20 16.605 16.605 16.605 16.606 16.605 16.653 

 50 16.645 16.643 16.645 16.643 16.649 16.653 

 100 16.656 16.647 16.651 16.641 16.670 16.653 

1-1-1 5 18.358 18.364 18.358 18.371 18.373 19.258 

 10 19.025 19.026 19.025 19.029 19.029 19.258 

 20 19.200 19.199 19.200 19.201 19.201 19.258 

 50 19.246 19.249 19.249 19.245 19.251 19.258 

 100 19.255 19.243 19.256 19.239 19.272 19.258 

1-2-1 5 22.786 22.785 22.786 22.786 22.868 24.074 

 10 23.739 23.739 23.739 23.739 23.761 24.074 

 20 23.989 23.990 23.990 23.989 23.995 24.074 

 50 24.057 24.058 24.061 24.054 24.065 24.074 

 100 24.050 24.054 24.071 24.053 24.079 24.074 
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6. Conclusions  

Analytical solutions for the buckling analysis of two types of FG 

sandwich beams are presented in this paper using a unified beam 
theory. Various higher order beam theories can be recovered using 

the proposed theory. The effects of power-law coefficient, span-
to-depth ratio and face-core-face thickness ratios on the critical 

buckling load factors are discussed. Based on the comparison of 

numerical results with previously published results, it is concluded 
that all the models recovered from the present unified theory are 

accurate and efficient in predicting the buckling behaviors of the 
FG sandwich beams with both soft as well as hard cores. 
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