
Journal of Chemical and Petroleum Engineering 2020, 54(2): 285-295 
DOI: 10.22059/jchpe.2020.299983.1309 

 

RESEARCH PAPER   

 

Liquid-Liquid Equilibrium for Ternary Systems Containing 

Biodiesel + Glycerol + Alcohol (Ethanol or Methanol): 

Thermodynamic Modeling 

Majid Mohadesi*  

Department of Chemical Engineering, Faculty of Energy, Kermanshah University of Technology, 

Kermanshah, Iran 

Received: 26 March 2020, Revised: 15 August 2020, Accepted: 18 August 2020 

© University of Tehran 2020 

Abstract  
Biodiesel is a substitute for fossil fuels which is produced through a 

transesterification reaction between vegetable oils or animal fats and light alcohols 

such as methanol or ethanol. In this reaction, along with the production of biodiesel, 

glycerol as a byproduct and non-reacted alcohol that reduces biodiesel quality is 

produced. Hence, many studies have been carried out on liquid-liquid equilibrium 

(LLE) for ternary systems containing biodiesel + glycerol + alcohol. Two phases 

are formed as 1-rich in biodiesel and 2-rich in glycerol; moreover, alcohol is 

distributed between these two phases. In this work, based on previous experimental 

data, the UNIQUAC and NRTL thermodynamic models were used to forecast the 

composition of the phases. The intermolecular interaction term for each of the 

models was considered as a linear function of the reverse temperature. In both 

models, there was no difference between the amount of biodiesel produced from 

different oils and obtained from the general interaction parameters. Based on the 

results, the percentage of absolute average deviation for NRTL and UNIQUAC 

models for biodiesel + glycerol + ethanol system were 1.24% and 2.13%, 

respectively, and for biodiesel + glycerol + methanol system was 1.13% and 1.71%, 

respectively. 
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Introduction 

Today, the largest source of energy consumption is crude oil, and the reduction in crude oil 

resources is of general anxiety. The use of fossil fuels not only increases greenhouse gas 

emissions but also restricts their limited resources. As a result, in the last years, many works 

have focused on biodiesel as an alternative source of energy [1]. Biodiesel has many advantages 

over petroleum fuels, most notably lower greenhouse gas emissions, favorable combustion 

profiles, easier storage, ease of transport, biodegradation, and non-toxicity [2-5]. 

When vegetable oils react with alcohol (ethanol or methanol) in the presence of a catalyst, it 

results in the production of fatty acid ethyl methyl or esters (FAME or FAEE), which is 

biodiesel. Biodiesel production reaction ends with an excess of alcohol. In this reaction, the 

final yield is contaminated with other impurities, such as glycerol as a byproduct and non-

reacted alcohol [6]. These impurities affect the performance of biodiesel as a fuel. Glycerol is 

deposited in engines or stored at the ends of reservoirs. Alcohol can reduce the biodiesel 

flashpoint [7]. 

The production of high-quality biodiesel depends on the purification of products obtained 

from a transesterification reaction. The separation of these products is facilitated by the 
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formation of two non-miscible liquid phases. The heavier phase mainly contains glycerol. On 

the other hand, the lighter phase mainly consists of biodiesel. Extra alcohol is distributed 

between the two phases [6,8]. As a result, many researchers have studied different ternary 

systems (containing fatty acid methyl esters + glycerol + methanol and fatty acid ethyl esters + 

glycerol + ethanol) to understand LLE. 

To forecast the final equilibrium composition of the phases, UNIFAC, UNIQUAC, Wilson, 

and NRTL models have been used in various studies [9-15]. In this study, using experimental 

data obtained from previous studies, UNIQUAC and NRTL thermodynamic models were used 

to forecast component equilibrium for ternary systems containing biodiesel + glycerol + ethanol 

or methanol [8,11,17,20,25-28]. In order to increase the accuracy of the models as well as the 

general ones, different oils, such as castor oil [16,17,27], coconut oil [12], cottonseed oil [18], 

crambe oil [19], Jatropha oil curcas [20], Macauba pulp oil [21], palm oil [22], soybean oil 

[14,15,23-25], sunflower oil [8,11,14], Brazil nut oil [26], canola oil [8,11], and waste fish oil 

[28] were used for biodiesel (FAEE or FAME) production. The number of collected data on 

biodiesel + ethanol + glycerol system was 176, and the temperature range was from 293.15 to 

343.15 K. Moreover, the number of data on biodiesel + methanol + glycerol system was 142, 

and the temperature ranged from 293.15 to 333.15 K.           

Thermodynamics Modelling  

This study used UNIQUAC (UNIversal QUAsi Chemical) [29] and NRTL (Non-Random Two-

Liquid) [30] models to calculate 𝛾𝑖. In the following sections the equations of each model are 

presented. 

UNIQUAC model 

Eqs. 1 to 4 have been used to calculate the activity coefficient of the UNIQUAC model: 
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
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where 𝑖, 𝑗, and 𝑘 represent each component; 𝛾 is the activity coefficient; 𝜏𝑖𝑗 and 𝜏𝑗𝑖 are 

interaction energies between the molecules 𝑖 and 𝑗; 𝑥 is the mole fraction; 𝐴𝑖𝑗 and 𝐵𝑖𝑗 are the 

binary interaction parameters, and 𝑇 is the absolute temperature. Also, 
𝑖
 is the volume fraction 

of 𝑖 component, 𝜃𝑖 is the surface fraction of 𝑖 component, 𝜃𝑖
′ is the interaction surface fraction 

of 𝑖 component, 𝑟𝑖 is the 𝑖 molecule volume, 𝑞𝑖 is the 𝑖 molecule surface, 𝑞𝑖
′ is the 𝑖 molecule 

interaction surface (fluids other than water or lower alcohols style 𝑞𝑖 = 𝑞𝑖
′), and 𝑧 is the 

coordination number (set at 10) [29]. Table 1 presents 𝑟𝑖, 𝑞𝑖, and 𝑞𝑖
′ values of ethanol, methanol, 

glycerol, FAEE, and FAME. According to the data at different temperatures, temperature 

dependence is intended for model interaction parameters. 

NRTL model 

Eqs. 5 to 7 were used for calculating NRTL activity coefficient model. 
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ln 𝛾𝑖 =
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𝐵𝑖𝑗
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           (𝜏𝑖𝑗 ≠ 𝜏𝑗𝑖 and 𝜏𝑖𝑖 = 0) (6) 

𝐺𝑖𝑗 = exp(−𝛼𝑖𝑗𝜏𝑖𝑗)                 (𝛼𝑖𝑗 = 𝛼𝑗𝑖  and  𝛼𝑖𝑖 = 0) (7) 

where 𝑖, 𝑗, and 𝑘 represent each component; 𝛾 is the activity coefficient; 𝜏𝑖𝑗 and 𝜏𝑗𝑖 are the 

interaction energies between the molecules 𝑖 and 𝑗; 𝑥 is the mole fraction; 𝐴𝑖𝑗 and 𝐵𝑖𝑗 are the 

binary interaction parameters, and 𝑇 is the absolute temperature. 𝛼𝑖𝑗 is non-random parameter 

which is set at 0.2 [31]. 

Table 1. Parameters 𝑟𝑖, 𝑞𝑖 and 𝑞𝑖
′ for the focused systems 

Component 𝒓𝒊 𝒒𝒊 𝒒𝒊
′ Ref. 

Biodiesel (ethyl ester) 13.72 11.28 11.28 [25] 

Biodiesel (methyl ester) 13.17 10.78 10.78 [25] 

Ethanol 2.11 1.97 0.92 [30] 

Methanol 1.43 1.43 0.96 [30] 

Glycerin 4.8 4.91 4.91 [11] 

 

Liquid-Liquid Equilibrium Phase Calculations and Parameters Estimation 

Binary interaction parameters of the UNIQUAC and NRTL models are obtained by minimizing 

the difference between measured and calculated mass fractions. The objective function is 

presented in the following equation: 

OF = 100 ×
1
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2
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𝑁
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𝑀
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𝐷
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 (8) 

where 𝐷 is the total number of references in the database; 𝑀 is the total number of tie lines in 

reference 𝑘; 𝑁 is the total number of components in the data group; 𝑖, 𝑗, and 𝑘 are the 

components, tie lines, and groups number, respectively; exp. and calc. are the measured and 

calculated values. Moreover, 𝐵 and 𝐺 are biodiesel-rich phase and glycerol-rich phase, 

respectively. 

In this study, the absolute average deviation (AAD %) was used to compare the accuracy of the 

proposed models, which is presented in the following equation: 

AAD % = 100 ×
1
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𝑁
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 (9) 

Calculation Algorithm 

The equilibrium relations for different components in the biodiesel-rich phase and glycerol-rich 

phase are presented below: 

𝑤𝑖
B𝛾𝑖

B(𝑤1
B, 𝑤2

B, 𝑤3
B) = 𝑤𝑖

G𝛾𝑖
G(𝑤1

G, 𝑤2
G, 𝑤3

G)   ; 𝑖 = 1, 2, 3 (10) 

𝐾𝑖 =
𝛾𝑖

B

𝛾𝑖
G

=
𝑤𝑖

G

𝑤𝑖
B

  ; 𝑖 = 1, 2, 3 (11) 

where 𝐾𝑖 is the constant of equilibrium between the two phases for 𝑖 component. Mass balance 

for the system is presented as follows: 
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𝐹 = 𝐵 + 𝐺 = 1 (12) 

𝑍𝑖𝐹 = 𝑤𝑖
B𝐵 + 𝑤𝑖

G𝐺  ; 𝑖 = 1, 2, 3 (13) 

where 𝐹, 𝐵, and 𝐺 are feed mass, biodiesel-rich phase mass, and glycerol-rich phase mass, 

respectively. Also, 𝑍𝑖 is the mass fraction of component 𝑖 in the feed. With merging Eqs. 11, 

12, and 13, the following equations are obtained. 

𝑤𝑖
B =

𝑍𝑖

1 + (𝐾𝑖 − 1)𝐺
  ; 𝑖 = 1, 2, 3 (14) 

𝑤𝑖
G =

𝐾𝑖𝑍𝑖

1 + (𝐾𝑖 − 1)𝐺
  ; 𝑖 = 1, 2, 3 (15) 

Sum of the mass fraction of all components in biodiesel-rich phase and glycerol-rich phase are 

equal to 1, so ∑ 𝑤𝑖
B − ∑ 𝑤𝑖

G = 0, and: 

(16) ∑
𝑍𝑖(𝐾𝑖 − 1)

1 + (𝐾𝑖 − 1)𝐺

3

𝑖=1

= 0 

The equilibrium calculation algorithm is as follows: 

1. Input the components mass fraction (𝑍𝑖) and temperature (𝑇). 

2. Guess values of the interaction parameters between different molecules (𝐴𝑖𝑗 and 𝐵𝑖𝑗). 

3. Guess initial values for the components mass fraction of biodiesel-rich phase (𝑤𝑖
B) and 

glycerol-rich phase (𝑤𝑖
G). 

4. Calculate the activity coefficients of components in different phases. 

5. Calculate 𝐾𝑖 values for different components using Eq. 11. 

6. Solve Eq. 16 using the Newton - Raphson method and determine 𝐺. 

7. Solve 𝑤𝑖
B and 𝑤𝑖

G values using Eqs. 14 and 15. 

8. Check the objective function; if OF < 𝜀 go to the end, otherwise go to step 2. 

Results and Discussion 

Intermolecular Interaction Parameters 

Of all the experimental data described in the materials and methods section (section 2), 70% 

was used to determine the intermolecular interaction parameters of the presented models. Using 

the aforementioned algorithm, we obtained the intermolecular interaction parameters of the 

UNIQUAC and NRTL models. Table 2 presents the values of interaction parameters between 

molecules of biodiesel + glycerol + ethanol (𝐴𝑖𝑗 and 𝐵𝑖𝑗) for different thermodynamic models. 

Moreover, Table 3 presents the same items for the biodiesel+ glycerol+ methanol ternary 

system. The value of the objective function (Eq. 8) for biodiesel+ glycerol+ ethanol system 

obtained using UNIQUAC and NRTL models were 0.088 and 0.037, respectively. Moreover, 

this value for biodiesel+ glycerol+ methanol systems was 0.087 and 0.052, respectively (for 

two ternary systems the accuracy of NRTL > UNIQUAC). 

Comparison of Different Models 

Using the thermodynamic models presented in this study on all databases were obtained to be 

of good thermodynamic models. Tables 4 and 5 show the average absolute deviation (AAD%) 

of models for each reference separately (Table 4 for equilibrium systems of biodiesel + glycerol 

+ ethanol and Table 5 for equilibrium systems of biodiesel + glycerol + methanol). As shown 
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in these tables, it is clear that the NRTL model has minimum errors, and the UNIQUAC model 

has maximum errors. 

Table 2. UNIQUAC and NRTL interaction parameters between biodiesel, glycerol, and ethanol obtained from 

global temperature fit 

Pair 𝒊𝒋 𝑨𝒊𝒋 𝑨𝒋𝒊 𝑩𝒊𝒋 (K) 𝑩𝒋𝒊 (K) 

UNIQUAC 

Biodiesel-Ethanol -0.113 1.375 9.669 0.403 

Biodiesel-Glycerol -0.800 1.015 -3.506 -4.284 

Ethanol-Glycerol 0.980 1.523 0.191 -5.778 

 NRTL 

Biodiesel-Ethanol -0.863 -1.711 -12.063 5.979 

Biodiesel-Glycerol -2.218 -1.756 -1.077 10.065 

Ethanol-Glycerol -0.891 0.326 6.124 -0.841 

Table 3. UNIQUAC and NRTL interaction parameters between biodiesel, glycerol, and methanol obtained from 

global temperature fit 

Pair 𝒊𝒋 𝑨𝒊𝒋 𝑨𝒋𝒊 𝑩𝒊𝒋 (K) 𝑩𝒋𝒊 (K) 

UNIQUAC 

Biodiesel-Methanol -1.142 1.142 5.745 -3.958 

Biodiesel-Glycerol -3.389 3.680 -2.926 8.125 

Methanol-Glycerol -2.299 0.281 0.423 0.868 

NRTL 

Biodiesel-Methanol -0.089 -2.260 -26.430 -5.172 

Biodiesel-Glycerol -2.250 -1.892 -12.718 11.725 

Methanol-Glycerol 0.326 0.726 14.770 -18.257 

 

Fig. 1 shows the predicted ethanol mass fraction values by models in biodiesel-rich phase 

and glycerin-rich phase and compares them with their counterpart experimental values. 

Moreover, Fig. 2 shows these values for methanol in biodiesel-rich and glycerol-rich phases. 

As shown in these two figures (Figs. 1 and 2) it is clear that both models accurately predicted 

the amount of ethanol and methanol in the glycerol-rich phase which was higher than the 

biodiesel-rich phase. This can be due to the same biodiesel consideration despite using different 

oils. 

Table 4. LLE data of the systems of biodiesel + glycerol + ethanol and accuracy of the UNIQUAC and NRTL 

models 

No. System 𝑻 (K) NDP 
AAD % 

Ref. 
UNIQUAC NRTL 

1 Castor oil biodiesel+ Glycerol+ Ethanol 298.15 6 3.13 1.26 [16] 

2  303.15 5 2.14 1.18 [17] 

3  318.15 5 1.65 0.68 [17] 

4  333.15 5 2.09 1.00 [17] 

5  333.15 7 3.27 1.56 [16] 

6 Coconut oil biodiesel+ Glycerol+ Ethanol 293.15 6 1.61 1.42 [12] 

7  323.15 5 2.11 1.78 [12] 

8 Cottonseed oil biodiesel+ Glycerol+ Ethanol 293.15 6 1.04 0.67 [18] 

9  313.15 6 0.98 0.58 [18] 

10  333.15 6 1.61 1.24 [18] 

11 Crambe oil biodiesel+ Glycerol+ Ethanol 298.15 6 2.36 1.09 [19] 

12  318.15 6 2.34 0.92 [19] 

13  338.15 6 2.40 0.85 [19] 

14 Jatropha curcas oil biodiesel+ Glycerol+ Ethanol 303.15 4 1.66 1.23 [20] 

15  318.15 4 1.75 1.38 [20] 

16  333.15 4 1.71 1.49 [20] 

17 Macauba pulp oil biodiesel+ Glycerol+ Ethanol 298.15 6 5.78 6.37 [21] 

18 Palm  oil biodiesel+ Glycerol+ Ethanol 298.15 7 1.64 0.85 [22] 
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Table 4. Continued 

19  323.15 8 1.83 0.71 [22] 

20 Soybean oil  biodiesel+ Glycerol+ Ethanol 293.15 5 1.11 0.40 [14] 

21  298.15 4 1.19 0.84 [15] 

22  298.15 6 2.38 1.04 [23] 

23  300.15 5 2.17 1.30 [24] 

24  303.15 6 3.37 1.24 [25] 

25  318.15 4 2.41 1.06 [25] 

26  323.15 5 1.37 1.11 [24] 

27  323.15 5 2.44 1.59 [14] 

28  333.15 6 1.30 1.14 [25] 

29  333.15 5 3.03 0.95 [15] 

30  343.15 5 2.36 1.10 [24] 

31 Sunflower oil biodiesel+ Glycerol+ Ethanol 298.15 6 1.47 1.10 [14] 

32  313.15 6 1.49 0.56 [14] 

Table 5. LLE data of the systems of biodiesel + glycerol + methanol and accuracy of the UNIQUAC and NRTL 

models 

No. System 𝑻 (K) NDP 
AAD % 

Ref. 
UNIQUAC NRTL 

1 Brazil nut oil biodiesel+ Glycerol+ Methanol 303.15 5 2.75 1.14 [26] 

2  323.15 5 2.28 1.10 [26] 

3 Canola oil biodiesel+ Glycerol+ Methanol 293.15 5 0.79 1.02 [11] 

4  303.15 4 1.38 1.02 [8] 

5  303.15 5 1.12 0.60 [11] 

6  313.15 4 0.92 1.00 [8] 

7  313.15 5 1.05 0.62 [11] 

8  323.15 4 1.07 1.17 [8] 

9 Castor oil biodiesel+ Glycerol+ Methanol 298.15 7 3.90 3.49 [27] 

10  303.15 5 2.13 1.27 [17] 

11  318.15 5 2.82 1.61 [17] 

12  333.15 5 2.06 1.59 [17] 

13 Jatropha curcas oil biodiesel+ Glycerol+ Methanol 303.15 6 1.48 1.01 [20] 

14  318.15 6 1.90 0.97 [20] 

15  333.15 5 1.56 1.32 [20] 

16 Soybean oil biodiesel+ Glycerol+ Methanol 303.15 7 1.24 0.55 [25] 

17  318.15 6 1.57 0.51 [25] 

18  333.15 6 3.52 2.90 [25] 

19 Sunflower oil biodiesel+ Glycerol+ Methanol 293.15 5 0.80 0.75 [11] 

20  303.15 4 0.89 1.07 [8] 

21  303.15 5 0.92 0.71 [11] 

22  313.15 4 1.39 1.00 [8] 

23  313.15 5 0.86 0.59 [11] 

24  323.15 4 1.10 0.96 [8] 

25 Waste fish oil biodiesel+ Glycerol+ Methanol 298.15 6 1.52 0.98 [28] 

26  313.15 7 1.92 1.24 [28] 

27  328.15 7 1.28 0.72 [28] 

Furthermore, Figs. 3 and 4 present the accuracy of the UNIQUAC and NRTL 

thermodynamic models for predicting systems composition (Fig. 3 for equilibrium system of 

biodiesel + glycerol + ethanol and Fig. 4 for equilibrium system of biodiesel + glycerol + 

methanol). In these figures, it is clear that both models had the highest AAD% for predicting 

Macauba pulp oil biodiesel + Glycerol + Ethanol system composition. In this study, the 

differences between biodiesels produced from different oils have not been considered for 

determining interaction parameters. Therefore, the thermodynamic models have less adaptation 

with experimental data when the biodiesel compositions are more different from the others. 
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Fig. 1. Adjustment of the calculated and experimental ethanol mass fraction (𝑤2) for the LLE a) biodiesel-rich 

phase; b) glycerol-rich phase 

Besides, the accuracy of each model is generally shown in Figs. 3 and 4. AAD% of the 

UNIQUAC and NRTL models for biodiesel + glycerol + ethanol system was 2.13% and 1.24%, 

respectively, and for biodiesel + glycerol + methanol system was 1.71% and 1.17%, 

respectively. The accuracy of different models is as follows: NRTL>UNIQUAC. The accuracy 

of the UNIQUAC model was lower than the other model which might be due to taking average 

values for 𝑟𝑖, 𝑞𝑖, and  𝑞𝑖
′ for the biodiesel produced from different oils. 
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Fig. 2. Adjustment of the calculated and experimental methanol mass fraction (𝑤2) for the LLE.  a) biodiesel-

rich phase; b) glycerol-rich phase 
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Fig. 3. Adjustment of the accuracy of thermodynamic models for calculating the composition of the components 

of biodiesel + glycerol + ethanol ternary systems 

 

 
Fig. 4. Adjustment the accuracy of thermodynamic models for calculating the composition of the components of 

biodiesel + glycerol + methanol ternary systems 

Conclusion 

The LLE for ternary systems containing biodiesel (FAEE or FAME) + glycerol + alcohol (ethanol or 

methanol) was studied to examine two thermodynamic models (UNIQUAC and NRTL). In these 

models, the intermolecular interaction parameters for all biodiesels produced (regardless of the type of 

oil used for producing biodiesel) were considered the same. These parameters were considered as a two-

term function of the inverse temperature. The outcomes showed the high accuracy of the two models. 
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The results also showed that the NRTL model was more accurate than the UNIQUAC model for 

predicting the composition of the liquid-liquid equilibrium of biodiesel + glycerol + alcohol system. 
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