
Journal of Sciences, Islamic Republic of Iran 31(4): 357 - 368 (2020) http://jsciences.ut.ac.ir 
University of Tehran, ISSN 1016-1104 
 

357 

In vivo and In vitro Biocompatibility Study of Fe3O4@ZnO 
and Fe3O4@SiO2 as Photosensitizer for Targeted Breast 

Cancer Drug Delivery 
 

E. Naderi1, M. Naseri2, H. Taimouri Rad3, R. Zolfaghari Emameh4,  
Gh. Farnoosh3, R. Ali Taheri1* 

 
1 Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Islamic 

Republic of Iran 
2 Department of Physics, Malayer University, Malayer, Islamic Republic of Iran 

3 Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Islamic 
Republic of Iran 

4 Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering 
and Biotechnology (NIGEB), 14965/161, Tehran, Islamic Republic of Iran 

 
Received: 25 August 2020    / Revised: 29 September 2020    / Accepted: 1 November 2020   

 
Abstract 

The present study aimed to prepare Fe3O4 nanocarriers (NCs) by a thermal treatment 
method. After the Fe3O4 (Fe) NCs was prepared, zinc oxide and silica nanoparticles 
were added to it as Photosensitizer. The structure, morphology, and magnetic properties 
of Fe3O4@ZnO (Fe@Zn) and Fe3O4@SiO2 (Fe@Si) NCs were determined by XRD, 
FT-IR, FESEM, and VSM. Then, the loading and drug release of Fe, Fe@Zn, and 
Fe@Si NCs were investigated. The curcumin (CUR) release of Fe@Zn+CUR and 
Fe@Si+CUR increased from 30% and 26% at pH 7.4 to 53% and 57% at pH 5.5, 
respectively. The cytotoxicity of Fe@Zn and Fe@Si NCs were determined by MTT 
assay, hemolysis test, acute toxicity, and lethal dose test. The results showed that 
Fe@Zn and Fe@Si were appropriate for Photodynamic Therapy (PDT) and in the next 
step, the effect of Fe@Zn, Fe@Si, Fe@Zn+CUR, and Fe@Si+CUR NCs on MCF-7 
cells under  visible light were studied. Finally, the ranking of the destruction of 
cancerous cells of MCF-7 using NCs under  visible light was: 
Fe@Zn+CUR>Fe@Zn>Fe@Si+CUR>Fe@Si. 
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Introduction 
Iron oxide nanoparticles are widely applicable in 

drug delivery, photodynamic therapy (PDT), magnetic 
hyperthermia, magnetic fluids, enzyme immobilization, 
Magnetic resonance imaging, magnetic bio-separation, 

nanoadsorption, and catalysis [1-5]. They are very 
useful in drug delivery because of improving targeting, 
having low toxicity, being bioavailable, and having 
suitable magnetic properties. Breast cancer is extremely 
dangerous and its treatment is a challenge for 
researchers because of tumors resistance to drug 
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absorption [6]. To treat this type of cancer, there are 
several ways (radiotherapy, chemotherapy, and surgery) 
that have numerous side effects. One of the novel and 
effective methods for cancer treatment is photodynamic 
therapy (PDT) that is a method of non-invasive with 
limited side effects. Photodynamic therapy involves the 
destruction of cancer cells through combining light and 
photosensitizer. The use of some nanoparticles in 
photodynamic therapy allows for maintaining the 
stability of the photosensitizer before reaching cancer 
cells and the targeted delivery of more photosensitizer 
molecules to the tumor area [7-11]. The combination of 
PDT with other methods can improve the effects of the 
PDT and also remove its side elects. Drug delivery is a 
useful method that can help the drug to be distributed 
more appropriately, be released under more control, be 
more stable, and more bioavailable [12-16]. In this 
research, iron oxide nanoparticles were prepared via the 
thermal-treatment method. This method is an easy and 
comfortable technique for fabrication of ferrite 
nanoparticles. Then, zinc oxide and silica nanoparticles 
were added to the Fe3O4 matrix. After adding curcumin 
(CUR) to Fe3O4@ZnO (Fe@Zn) and Fe3O4@SiO2 
(Fe@Si) as NCs (Fe@Si), rate of release, capacity of 
loading, biocompatibility. Also, their properties in drug 
delivery and PDT were checked. Finally, the effect of 
Fe@Zn, Fe@Si NCs as Photosensitizer in the presence 
and absence of drug on MCF-7 cells were investigated. 

 
 

Materials and Methods 
Materials  

1-(4, 5-Dimethylthiazol-2-yl)-3, 5-diphenyl formazan 
(Aldrich, St. Louis, USA, CAS. 57360-69-7), CUR 
(Merck, Art No. 820354), Deionized water was 
synthesized by an ultra-pure water system (Smart-2-
Pure, TKACO, Germany). PVP (Mw=29000), Fe 
(NO3)3.9H2O, Ca (NO3)2. 6H2O was provided by Sigma 
Aldrich. The other chemicals and solvents were also 
provided in purity grades by chemical lab.  

 
Preparation of Fe3O4 nanoparticles 

Iron oxide nanoparticles were prepared by a thermal-
treatment method [17]. 3.5g polyvinyl pyrrolidone 
(PVP) was dissolved in 100 ml of distilled water and 
then, 0.2 mmol of iron (III) nitrate and 0.1 mmol of iron 
(II) nitrate were added to the polymer solution at 80 ºC. 
The resulting solution was stirred for 2h by a magnetic 
stirrer in order to achieve a clear solution. Then, it was 
dried for 24h at 90 ºC in an oven. The predecessor of the 
dried solid was crushed and ground in a mortar to form 
a powder. Finally, the powder was calcined at 500 ºC 

for 3h.  
 

Preparation of Fe3O4@ZnO 
0.05g of prepared Fe3O4 nanoparticles were dispersed 

in 100 ml of distilled water. After ultrasonic mixing for 
30 min, 3.5 g of PVP was added to iron oxide 
nanoparticles suspension in turn under vigorous stirring 
at 80 °C. Then, 0.89g of zinc nitrate was added to the 
mixture while keeping the stirring speed. Then, the 
mixture was dried in an oven for 24 hours at 90 °C. The 
sample was milled and ground in a mortar to form a 
powder. Finally, the powder was calcined at 500 ºC for 
3h [18]. 

  
Preparation of Fe3O4@SiO2 

0.35g of prepared Fe3O4 nanoparticles were dispersed 
in 24 mL of ethanol and water solution by ultrasonic 
cleaning bath. After ultrasonic mixing for 30 min, 0.8 
ml of ammonia solution and 4 mL of tetraethyl 
orthosilicate (TEOS) were added to iron oxide in turn 
under vigorous stirring. The mixture was washed by 
ethanol and deionized water 4 times and finally dried at 
80 °C for 7 h in an oven to prepare Fe3O4@SiO2 [19]. 

 
Characterization 

XRD patterns were obtained through X-ray 
diffraction measurements (XRD; Philips X-pert type 
instrument, Germany) by Cu Kα radiation (kα=1.54059 
Å). The microstructure was characterized using a 
FESEM (Tescan Mira). Absorption modes of NCs were 
obtained using FT-IR spectra. The magnetic properties 
of the samples were checked by VSM (Lake Shore 
4700).  

 
 Drug loading 

Drug loading was done by a precipitation method. 10 
mg of NCs was dispersed in 25 mL of deionized water. 
Then 3 mg of CUR dispersed in 2 mL of acetone was 
drop-wisely added to it under vigorous stirring at room 
temperature. Eventually, the sample was washed four 
times and dried at room temperature [20]. Figure 1 
shows the schematic view of all steps of tumor 
destruction by Photosensitizer.  
 
 Preparation of release and drug loading  

1 mg of drug-loaded NCs were immersed in acetone 
and then the amount of the drug loading and 
encapsulation efficiency in the supernatant solutions 
was measured by UV-Vis spectrophotometer 
(GENESYSTM 10S, λmax =420 nm).  The drug loading 
(DL %) and drug adsorption (DA %) are calculated 
using equations (1) and (2), respectively:  
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Furthermore, the changing of the mice  weight were 
checked out for one week because changing of  weight 
is an important factor in to determine toxicity of 
nanocarriers [20]. 

 

Results and Discussion 
Structure and morphology of NCs 

The typical XRD pattern of Fe3O4 nanoparticles, 
Fe3O4@ZnO and Fe3O4@SiO2 NCs are shown in Figure 
2. The structure of the cubic spinel of ferrite iron 
corresoponded with the standard pattern (ICDD PDF: 
00-039-0238, Ie3m space group) (Fig.2a). The 
diffraction planes of (200), (104), (110), (321) and (224) 
corresponded to the phase formed Fe3O4 (magnetite) 
and the diffraction planes (024), (116) and (300) were 
related to the α-Fe2O3 phase (hematite). Hematite phase 
presence in iron oxide nanoparticles is caused by the 
thermal-treatment method. The presence of ZnO 
nanoparticles in the sample is confirmed because of the 
accordance of the XRD pattern of zinc oxide (Reference 
Code: 01-080-007, P63mc space group) with a 
hexagonal phase (Fig.2b). Reduction of the intensity of 
X-ray diffraction in Figure 2c was assigned to the 
amorphous silica (Reference code: 01-086-2326), 

indicating the formation of Fe3O4@SiO2 
nanocomposite. 

Figures 3a to 3d shows the FTIR spectrum of 
Fe@Zn, Fe@Zn+CUR, Fe@Si, Fe@Si+CUR 
nanocomposites, respectively. The absorption bands at 
434.28 and 548.54 cm-1 for Fe@Zn are attributed to 
Zn−O and Fe−O bonds (Figure .3a). These absorption 
bands shifted to 458.24 and 540.25 cm-1 for 
Fe@Zn+CUR [21]. The absorption peaks at 405.61 and 
589.09 cm-1 for Fe@Si are attributed to Fe−O and 
Si−O−Fe bonds (Figure .3c), peaks of which shifted to 
458.24 and 573.42 cm-1 for Fe@Si+CUR [22]. The 
absorption peak of 704.27 cm-1 was observed at both 
Fe@Zn and Fe@Si, that is related to C−N=O band 
which transferred from 704.27 to 712.56 cm-1 for 
Fe@Zn+CUR. The absorption peaks at 1088.51 and 
810.23 cm-1 for Fe@Si corresponded to the bending 
mode of Si–O–Si which transferred from 1088.51 to 
1096.8 cm-1 for Fe@Si+CUR. The absorption bands at 
850.7 (Fe@Zn+CUR) and 859.7 cm−1 (Fe@Si+CUR) 
are associated with the benzoate trans–CH. The 
absorption mode of 957.67 cm-1 at Fe@Zn+CUR and 
Fe@Si+CUR is related to the peak of the enol C-O 
which arises from the presence of curcumin [18]. The 
absorption mode of 1391.67 cm-1 at Fe@Zn, 
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Figure 2. XRD patterns of (a) Fe, (b) Fe@Zn, (c) Fe@Si 
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Fe@Zn+CUR and Fe@Si is related to C-H which 
transferred from 1391.67 to 1407.33 cm-1 for 
Fe@Si+CUR. The stretching vibration 1628.48 cm-1 at 
all samples is related to C=C. With the addition of 
curcumin, absorption bands of 1055.93 and 1596.23 cm-

1 were appeared at Fe@Zn+CUR and Fe@Si+CUR, 
respectively. The peaks 2839 to 2930 cm-1 in all 
samples (a to d) were resulted from the asymmetric 
C−H stretching. The bending vibrations at the range 
3395 to 3440 cm−1 are associated with O–H [23-25].  
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Figure 3. FT-IR spectra of (a) Fe@Zn, (b) Fe@Zn+CUR, (c) Fe@Si, (d) Fe@Si+CUR 
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Acute Toxicity  
All mice survived one week after the test. 

Furthermore, bodyweight change is directly related to 
the toxicity of NCs. After 24 h and one week, the mice 
weight increased normally, indicating the natural 
physical activity of all mice (Table 6). Therefore, it 

could be concluded that all NCs were safe.  
 

Conclusion 
The structure, morphology, and magnetic properties 

of zinc oxide and silica coated iron oxide NCs were 
studied. The results of VSM analysis showed that 

Table 5. Statistical analysis related to Figure 8 
Concentration (µg/mL) Tukey's multiple comparisons test Significant? Adjusted P Value 
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Table 6. Weight changes after oral administration of 550mg/kg NCs 

 Weight Changes after 24 h (%) Weight Changes after a Week (%) 
Control 2.0 ± 0.0 10.0 ± 0.0 
Fe@Zn 1.0 ± 1.7 0.0 ± 2.9 
Fe@Si 0.0 ± 0.0 4.8 ± 1.6 
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Fe, Fe@Zn, and Fe@Si NCs demonstrated 
ferromagnetic behaviors. The loading capacity of the 
drug increased with the addition of zinc oxide and silica 
nanoparticles to iron oxide matrix. The release of CUR 
was increased by decreasing pH from 7.4 to 5.5. The 
results of MTT assay, hemolysis test, lethal dose test 
and acute toxicity showed that the prepared Fe@Zn and 
Fe@Si are appropriate for Photodynamic Therapy 
(PDT). The ranking of the destruction of cancerous cells 
using Fe@Zn, Fe@Si, Fe@Zn+CUR, and Fe@Si+CUR 
NCs under light irradiation was known to be 

Fe@Zn+CUR>Fe@Zn>Fe@Si+CUR>Fe@Si 
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