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Abstract 

Due to the limitation that the classical beam theories have in representing transversal shear 

stress fields, new theories, called high order, have been emerging. In this work, the principal 

high order theories are unified in single kinematics and applied to the Equivalent Single Layer 

Theory. The governing equations and the boundary conditions for laminated beams are 

consistent variational obtained. From the equilibrium equations, the high order spectral finite 

element model was developed using the polynomial functions of Hermite and Lagrange, with 

interpolants in the zeros of Lobatto's polynomials. Finally, to demonstrate the finite element 

model's outstanding efficiency, numerical results (static and dynamic) are shown and 

compared with the elasticity theory solution. 
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1. Introduction 

In recent years, composite material beams have achieved great prominence in civil, 

aeronautical, naval, and mechanical engineering. This applicability of composite materials is 

due to the better mechanical properties of these materials, such as strength, stiffness, weight, 

and thermal conductivity. However, shear deformation's effects become more pronounced in 

composite structures due to the low transverse shear modules compared to longitudinal, when 

subjected to transverse loads. Two approaches to construction of beam theories are commonly 

found in the literature: only from the displacement field and others from both the 

displacement and stress fields, thus named mixed theories        [1, 2]. 

Among the theories coming from a displacement field, we highlight the classical Euler-

Bernoulli Theory (EBT), the First Shear-Deformation Theory (FSDT), or Timoshenko 

Theory, and the High Order shear Deformation Theories (HSDT). Initially, these theories 

were developed for isotropic beams and with only one layer; however, through the equivalent 

Single-Layer Theories (ESL), it is possible to extend such models to orthotropic and 

laminated beams [1, 3]. EBT developed in the 18th century is considered the simplest model, 

as it does not adopt deformation due to shear in its displacement field. The FSDT theory, 

developed at the beginning of the 20th century by Timoshenko [4], considers the constant 

field for shear deformation. However, FSDT does not admit the nullity of the shear stress at 

the upper and lower edges of the beam, causing the need to use correction factors for better 

efficiency of results. From the middle of the 20th century, High Order Theories emerged with 

the primary objective of overcoming the existing limitation in the FSDT. 
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The high-order models (HSDT) describe the beam displacement field using polynomial, 

trigonometric, exponential, and hyperbolic functions [5-12] that guarantee the possibility of 

nulling the shear stress at the upper and lower edges of the beam. Sayyad and Ghugal [13] 

present some high-order theories and conclude that approaches that consider parabolic 

variation for the transverse shear stress do not need the shear correction factor. Moreover, 

they state that models with polynomial, trigonometric, hyperbolic, and exponential functions 

in the in-plane displacement fields give excellent values for displacements and stresses. 

Finally, they state that the modular ratio increase provides lower values for axial and 

transverse displacements and higher values for stresses. 

It is also important to highlight that the Equivalent Layer Theories (ESL) provide accurate 

transverse displacement, free vibration, and buckling and are not very precise for the stress 

field [14, 15]. This deficiency occurs due to the adoption of a Class C1 displacement field that 

provides a continuous stress field, in which they should be discontinuous when there are 

different values of the transversal shear module for adjacent layers. One way to get around 

this inconvenience is to obtain the shear stress field from the elasticity equilibrium equations 

[15]. 

To solve varying complexity problems, the computational implementation of beam theories 

using the Finite Element Method is typical. In this sense, Heyliger and Reddy[16] present a 

finite element to describe the static and dynamic behavior of beams, with a rectangular cross-

section, using Reddy's variational consistent approach [5]. The model developed in [16] was 

compared with the elasticity theory's analytical solutions and achieved satisfactory results. 

One way to accelerate the convergence of results in the FEM-models is to increase the 

interpolation order with the interpolating points (nodal points) at the positions of the zeros of 

the orthogonal polynomials, thus constituting the High Order Spectral Finite Element Method 

(SFEM). It is common in solid mechanics to use this method for wave propagation problems 

[17, 18]. However, its application in static problems is still little explored due to increased 

mathematical complexity and computational cost [19]. Thus, the present work's objective is to 

investigate the advantages of implementing high order beam (ESL) theories, via SFEM with 

any order approximation. For this, the general finite element model was developed by 

applying high-order interpolation to the nodal base formed by the zeros of Lobatto's 

orthogonal polynomials. Finally, the static and free vibration analysis results are compared 

with the results obtained in Pagano [20] and Giunta et al. [21]. 

2. Governing equations 

2.1. Kinematics 

Consider a beam of thickness equal to h composed of N orthotropic layers with the principal 

material coordinates 1 3( , , )k k k

xx x x  of the kth lamina oriented at an angle k  about the x 

coordinate. The kth layer is located between points kz z  and 1kz z   in the thickness (see 

Figure 1). 
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Figure 1. Geometry description of a laminated composite beam. 

The unified displacement field is shown in 

Eq.(1) [13] to cover several refined 

theories' 

kinematics:
( , , ) ( )
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(1) 

where ( , , )u x z t , ( , )w x t , and ( , )x t  represent, respectively, axial displacement, transversal 

displacement, and the cross-section rotation due to the shear. Moreover, ( )f z is a function that 

describes the shear theory presented in Table 1. 

The strain field is given by:  
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Using the constitutive laws for orthotropic materials [15] is possible to obtain the stress 

field presented in Eq.(4) e Eq.(5): 
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Moreover, ijE and ijG (i,j=x,y) are longitudinal and transversal elasticity modules, 

respectively, concerning the principal axes;  is the angle between the fiber and the beam's 

principal axis.  

In free vibration analysis, the Hamilton principle [22] is used to obtain the equations of 

motion for the displacement field given by Eq.(1). Thus, the equations that describe the 

problem and its boundary conditions are presented in Eq.(8), Eq.(9) and Eq.(10), respectively. 
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such that: 
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Moreover, b, h, N,   and q represent the cross-section's width and height, the number of 

layers present in the laminated beam, its mass density, and the distributed load, respectively. 

Furthermore, ˆ
xV , xyM , and ˆ

xyM  represent the high-order shear, bending moment, and high-

order moment, respectively. 
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Table 1. Shear theory present in the displacement field. 

Model Author ( )f z  

Model 1 Reddy [5]  ( ) 1 4 ² / 3 ²f z z z h   

Model 2 Shi -Voyiadjis [6]  ( ) 5 / 4 1 4 ² / 3 ²f z z z h   

Model 3 
Ambartsumyan 

[7] 
 ( ) / 2 ² / 4 ² / 3f z z h z   

Model 4 Touratier [8]  ( ) / sin /f z h z h    

Model 5 Soldatos [9]    ( ) cosh 0.5 sinh /f z z h z h      

Model 6 Karama et al. [10]  
2

( ) exp 2 /f z z z h  
 

 

Model 7 Akavci [11]    2( ) 3 / 2 tanh / sec 0.5f z h z h z    
 

Model 8 Thai et al. [12]  1( ) tan 2 /f z h z h z   
 

 

In dynamic analysis, Eq.(8) and Eq.(9) is formulated as an eigenvalue problem to determine 

natural frequencies. Thus, Eq.(15) and Eq.(16) represent the periodic movement of the beam 

under free vibration [22]: 

( , ) ( ) i tw x t W x e  , (15) 

( , ) ( ) i tx t S x e   .  (16) 

Where   is the natural frequency of the transverse displacement;  W x and  S x  are the 

transverse movement's mode shape. Imposing 0q   and replacing Eq.(15) and Eq.(16) in 

Eq.(8) and Eq.(9), one writes: 
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2.2. Shear stress 

In order to circumvent the deficiency in the description of the interlaminate shear stress 

field, caused by the adoption of a class C1 displacement field, in this work, the interlaminar 

stresses are obtained using the two-dimensional elasticity equilibrium equation given [15]: 
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For each layer ( 1k kz z z   ), Eq. (19) can be integrated concerning the height variable, z, 

to obtain the interlaminar stresses. Thus, the xz  shear stress is given by: 
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where ( )kG  is an integration constant, which can be obtained by imposing the shear stress 

nullity on the upper and lower edges of the beam and imposing the interlaminar continuity 

condition. 

3. Spectral Finite Element Method 

This section discusses developing the high-order Spectral Finite Element Method applied to 

the equivalent layer theory (ESL) for laminated beams. In this work, Hermite's interpolation is 

used to describe the deflection, which depends on both the nodal deflection and its derivative. 

For the ( , )x t  rotation field, Lagrange's interpolation is used. Both in the Hermite and 

Lagrange approximations, the interpolating nodes are positioned at the zeros of Lobatto's 

polynomials, since this nodal positioning is shown to be quite efficient in modeling problems 

of the mechanics of solids [19]. 

3.1. Weak Formulation 

From the weighting of Eq.17 and Eq.18 respectively, by ( , )x t  and ( , )x t , and integrating 

it in the ( , )e

a bx x   wing domain, the following equations are obtained:  
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where parameters ( , )x t  and ( , )x t  are homogeneous when essential boundary conditions 

( w , w x   and  ) are prescribed. 

3.2. Interpolations functions 
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Through Eq.(21) and Eq.(22), it is possible to observe the requirement to approximate w  

and   by function with at least classes C1 and C0, respectively. Thus, w  and /w x   variables 

are approximated by Hermite's spectral polynomials of any order, while Lagrange's spectral 

polynomials of any order approximate  . 

Lagrange shape functions, for each element, are constructed by 

1
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
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where Ln  is the number of Lagrange's nodes present in the element; the points kx  with 

0, , 1Lk n   represent the nodal coordinates in the element, which are determined by the 

approximate base. Thus, the   function is approximated by 
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The j  parameters are the nodal values referring to the   rotation.  

Using the    ( ) ( )
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constraints, it is possible to construct the Hermite's polynomials ( )

,

H

w i and  ( )

/ ,

H

w x i   of any order, 

see Eq. (25), from the Lagrange's polynomials ( )L

i , also of any order [23]. However, one 

emphasizes that the Lagrange's polynomial used in Eq. (25) does not necessarily have the 

same degree of approximation used for the rotation  . 
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For 0,1,..., 1Hi n  , with Hn  being the number of Hermite nodes and the ix  points are the 

elements nodal coordinates. Thus, the deflection's approximation, called by w , is described as 

follows (see Figure 2):  
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where ( )iw t  are the nodal values of the deflection,  iw t are the nodal values of the rotation 

/w x    and 

 

( ), if  is odd
( )
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w t
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
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In order that the approximation gave in Eq. (24) is one degree less than the approximation 

in Eq. (25), it is possible to relate the Lagrange nodes ( )Ln  with the Hermite ( )Hn  nodes by 
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2( 1) 1L Hn n     (28) 

 
Figure 1. Interdependent interpolation for variables w , /w x  e  . 

In the numerical calculation automation, regardless of size and degree of the element, the 

dimensionless space 1 1     is given by:  

2
( ) 1ie
x x

L
    ,  (29) 

where eL is the element length.  

This parametric mapping, see Eq. (29), for both coordinates and mechanics variables is 

used in SFEM for the generation of the interpolation functions. 

 

3.3. Equidistant nodal base 

The set of uniform dimensionless points    ; 1 1k k       is obtained through [19]: 

 1 1k r k     ,  (30) 

where  1, , 1k m    is the partition of the interval  1,1 , 1 1   (the starting point), 

2 /r m  is the ratio of arithmetic progression, and m  is the order of interpolation. 

3.4. Lobatto's spectral base 

In this work, the spectral expansions are constructed from the nodal base formed by 

dimensionless located in Lobatto's orthogonal polynomials' zeros. This spectral base ensures 

uniform convergence and prevents the appearance of the Runge phenomenon, both for the 

geometric approximation and for the problem's physical variables, as the approximation 

function's order is high [19]. 

The recurrence formula for Lobatto's polynomials is given by [23]: 
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1
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with, iP  and 1iP , Legendre's polynomials described by the following recurrence formula 
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where 1 1    ,  0 1P    and  1P    . 
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3.5. SFEM-1D formulation 

The high-order spectral finite element model for a ( , )e

a bx x   domain is developed by 

replacing the Eq. (24) and Eq. (25) in the weak formulation (Eq. (21) and Eq. (22)) and using 

the Galerkin Method ( ( )H

i iw  and ( )L

i i   ) to obtain Eq. (33). 
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4. Numerical Results 

In this section, the efficiency of any order spectral finite element method coupled with the 

ESL theory (SFEM-ESL) is analyzed when laminated beams in static or dynamic behavior are 

considered. 

In the static case, displacement fields (transverse and longitudinal) and stress fields (Normal 

and shear) for a beam subjected to a sinusoidal load (Figure 3a) is analyzed. The beam has 

three layers with a stacking configuration equal to  0º / 90º / 0º, referring to the angle that the 

fibers form with the beam's axis. Moderately thick beams with an L / h = 4 ratio were 

considered since, in this situation, the effects of shear are prominent concerning those of 

bending. In this static analysis, the results obtained by SFEM-ESL are compared with the 

analytical ones developed by Pagano [20]. 

For the static analysis, a rapidly increasing intensity for the load (Figure 3b), described by 

function 2 2( ) / 25( 2 )²q x L L L x     , was imposed on the structure, and the deflection was 

analyzed. In this case, the loading function is approximated both by the equally spaced base 

and by the Lobatto's base. 

For the dynamic analysis, the beam in Figure 3a is subjected to free vibration, with a 

stacking configuration equal to 0º / 90º / 0º and L / h ratio varying from 100, 10, and 5. The 

results obtained by SFEM-ESL are compared to those obtained by the three-dimensional FEM 

[21]. 

In all examples, the graphite-epoxy material was considered, whose elasticity modulus and 

Poisson's coefficients are: 

25 0.5 1

0.2 0.25

x xy y

yz xy yz

E MPa G MPa E MPa

G MPa v v

  
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                                                                               (37) 

 

 

Figure 3. Simply supported beam subjected to load a) sinusoidal b) with increasing behavior. 

In order to present the results independently of the geometric and loading parameters, the 

dimensionless response fields are written as follows: 
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  (38) 

where u  is the longitudinal displacement of the cross-section, w  is the deflection, x is the 

Normal stress, xz is the Shear stress, all of these parameters are dimensionless; Furthermore, 
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0q is the amplitude of the load and   is the natural frequency of the first mode of vibration. 

The following L2 norm was used to calculate the relative error: 

1 1

2

1

( )² ... ( )²
error (%) 100%

( )² ... ( )²

n n

L

n

VR VC VR VC

VR VR

   
 

 
. (39) 

The iVR  and iVC  ( 1,2... )i n  terms are called reference values and calculated values, 

respectively. 

4.1. Static Analysis 

The results presented in Figure 4a - 4d were obtained through the formulation SFEM-ESL, 

with only a single element having five Hermite's nodes for approximate w , and nine 

Lagrange's nodes for function  . Although the ESL theory recovers its maximum value for 

axial displacement, the kinematic models, coupled with the ESL theory, do not show the 

expected zig-zag behavior (see Figure 4a). Regarding the stresses, the ESL theory had not 

recovered the reference values in the interlaminar region [15]. This problem is due to the class 

C1 displacement field, thus providing continuity in the shear strain field and discontinuity for 

the shear stress field. Therefore, to overcome this obstacle, the shear stress was obtained 

through the equilibrium equations of elasticity (Eq. 12), allowing continuity in the shear stress 

(see Figure 4d). 

In Figure 5, the error in the L2 norm for the analyzed response fields is shown. It is 

observed that the parabolic theories of Reddy [5], Shi-Voyiadjis [6], and Ambartsumyan [7] 

present the same error for stresses and displacements and differing only in the behavior of the 

  rotation. Unlike the previous example, the ESL models by Karama et al. [10] and Thai et al. 

[12] present the best results. While using the Thai et al. model [12], errors of less than 20%, 

12.5%, 4%, and 1% were obtained for the fields of longitudinal displacement, longitudinal 

stress, deflection, and shear stress, respectively. On the other hand, parabolic and 

trigonometric theories had errors for the same response fields above less than 32%, 21%, 6%, 

and 5%, respectively. 

In the next example, the response fields for a simply supported beam, subjected, on the 

surface z = −h / 2, to a distributed load described by the equation 2 2( ) / 25( 2 )²q x L L L x     , 

as shown in Figure 3b, are analyzed. The beam consists of epoxy graphite, whose properties 

have already been presented, with stacking configuration 0°/ 90°/ 0°  and geometric 

parameters S = 4 and thickness b = 1m.  

As the different cinematics results were similar in this example, only the results obtained by 

Reddy's theory [5] are presented for simplicity. In numerical approach was considered a 

single element of seven Hermite's nodes, to approximate the deflection and its derivative, and 

thirteen Lagrange's nodes, to approximate  . The loading was modeled by a single element 

and approximated by Lagrange's polynomial, both at the base of Lobatto (Figure 6a) and the 

equally spaced base (Figure 6b). In both approaches, the degree of approximation was varied. 

For the reference solution, the classic SFEM is considered with twenty elements. Each 

element is containing two Hermite's nodes and three Lagrange's nodes to describe the domain. 

Still in the reference solution, the loading was approximated by twenty Lagrange's quadratic 

elements. 

In Figure 6, the deflection is shown both considering the equally spaced base (Figure  6b) 

and considering the Lobatto's base (Figure 6a), as the degree of loading approach is increased. 

From these graphs, it is observed that the SFEM-ESL that use the equally spaced nodes 
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provide results that diverge from the referential and which uses the Lobatto nodes lead to 

convergent results. The convergence of SFEM-ESL, when using Lobatto's nodes, and 

divergence, when using the equally spaced base, is evidenced in the analysis of the relative 

error for maximum deflection, shown in Figure 7. 

4.2. Free vibration analysis 

In this work, the natural frequency is obtained by solving the eigenvalue problem presented 

in the Eq.(17) and Eq.(18), via the Spectral Finite Element Method. Thus, the approximation 

for the vibration modes W(x) and S(x) is given by: 

  ( ) ( )

1 1

, ( ) ( ),   ( , ) ( ) ( ),
m n

H L

i i j j

i j

W x t W t x S x t S t x
 

       (40) 

where ( )H

j  and ( )L

j  are Hermite's and Lagrange's interpolating functions, respectively. When 

replacing Eq. (40) in the Eq. (17) and Eq. (18) , the finite element model is developed:  

 

 

 

Figure 4. Description via SFEM-ESL, with 5 Hermite's nodes and with stacked layers (00 / 

900/ 00), for (a) longitudinal displacement, (b) normal stress, (c) deflection along the beam, 

and (d) shear stress. 
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Figure 5. The relative error for a) longitudinal displacement, b) normal stress, c) deflection, 

and d) shear stress as the number of Hermite's nodes (NHN) is increased for laminated beam 

(00/ 900/ 00). 
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To show the efficiency of the model proposed (Eq. 41), it is considered a beam simply 

supported subject to free vibration, stacking configuration 00/ 900/ 00, and parameter S(=L/h) 

varying in 100, 10, and 5. A single element with three Hermite's nodes and five Lagrange's 

nodes were used in the discretization. 

Table 2 shows the comparison between SFEM-ESL (three Hermite's nodes) and the three-

dimensional numerical solution obtained in Giunta et al. [21] for the dimensionless natural 

frequency, according to Eq. (38). From Table 2, it is observed that all theories present good 

efficiency in obtaining natural frequency  , with relative errors less than 4.3%. Among the 

models analyzed, that of Thai et al. [12] obtained a maximum error of less than 2.7% for all 

cases examined, while the parabolic theories showed maximum errors of more than 4%. 

Finally, it is observed that the values of natural frequency obtained by SFEM become less 

consistent with the reference values as the value of parameter S decreases, that is, as the beam 

becomes thick. 
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Figure 6. Deflection obtained by SFEM-ESL for laminated beam (00/ 900/ 00). Approximate 

loading by Lobatto's base (a) and equally spaced base (b). 

 
Figure 7. The relative error for maximum deflection in the laminated beam (00/ 900/ 00). 

Table 2. The natural frequency   for (00/900/00) simply supported beam. 

Author l S=100      S=10      S=10 

Reddy [5] 13,957 
10,683 

7,182 

Shi -Voyiadjis [6] 13,957 
10,683 

7,182 

Ambartsumyan [7] 13,957 
10,683 

7,182 

Touratier [8] 13,956 
10,636 7,142 

Soldatos [9] 13,957 
10,687 7,186 

Karama et al. [10] 13,955 
10,593 7,107 

Akavci [11] 13,956 
10,649 

7,152 

Thai et al. [12] 13,953 
10,546 7,071 

FEM 3D [21] 13,932 
10,334 6,888 
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5. Conclusions 

In this work, a Spectral Finite Element Model (SFEM) was developed for the unified high-

order beam theories applied to the analysis of laminated beams. In the variationally consistent 

formulation, the governing equation and its primary and secondary boundary conditions were 

constructed.  

In static analysis, the primary variables referring to deflection and its derivative were 

approximated by Hermite's polynomial, due to their dependence. Moreover, the rotation 

variable was approximated by Lagrange's polynomial due to its independence from the other 

variables. The Hermite's polynomials were constructed from the Lagrange's polynomials, 

according to Eq. (25). Both the Hermite and Lagrange's polynomials used the nodal points in 

the zeros of the Lobatto's polynomials in the spectral approach. To circumvent the shear 

locking problem, the degree of approximation of the rotation variable is once less than the 

degree of approximation for deflection. 

In the dynamic approach, in addition to the static variables, the  W x  and  S x  vibration 

modes were approximated by Hermite and Lagrange's polynomials, respectively. In both 

approaches, nodal points (or interpolators) were used in the zeros of Lobatto's polynomials, 

characterizing the spectral approach. 

Figure 4 and Figure 5 show that both for the displacement field and the stress field, all 

kinematic models decrease the error concerning the reference solution, as the approximation's 

degrees increase, highlighting the Thai model. It is noteworthy that the shear stress had errors 

of less than 5% for any model used. However, to achieve this error, the shear stress field was 

determined using the two-dimensional elasticity equilibrium equation. It emphasizes that 

longitudinal displacement  u  presents maximum values in agreement with Pagano's solution 

[20], in all models. 

Additionally, the problem of a simply supported laminated beam subjected to a load with 

rapidly increasing behavior was analyzed. This problem was modeled by finite elements, with 

an equally spaced nodal base called FEM and Lobatto's spectral base called SFEM. It was 

observed in Figure 6, and Figure 7 that the FEM model diverged from the reference value as 

the degree of approximation of loading was varied. Conversely, results convergent to the 

reference ones were obtained when using the SFEM model. 

Given the results presented, we can see that SFEM-ESL is significantly efficient in 

analyzing laminated beams, especially when beams are subjected to loads with rapidly 

increasing behavior. 
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