تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,124,714 |
تعداد دریافت فایل اصل مقاله | 97,233,313 |
Phytoremediation of soil Contaminated by Heavy Metals within a Technical Landfill Center Vicinity: Algerian Case Study | ||
Pollution | ||
دوره 6، شماره 4، اسفند 2020، صفحه 811-826 اصل مقاله (710.69 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2020.301691.792 | ||
نویسندگان | ||
Kh. Boukaka* ؛ B. Mayache | ||
1. Biotechnology, Environment and Health laboratory, Mohammed Seddik Ben Yahia University, Algeria 2. Department of environmental sciences and agronomic sciences, Mohamed Seddik Ben Yahia university , Jijel, Algeria | ||
چکیده | ||
The contamination of environment with heavy metals has become a serious problem which can affect the human health. Three heavy metals (Zn, Cd and Pb) were determined in soil and plants for below and aboveground parts along landfill Demina center, located in the wilaya of Jijel, Algeria to evaluate their behavior and uptake by Ditrichia viscosa, Juncus effusus and Solanum nigrum. In our research we tried to study the capacity of these spontaneous plants to accumulate and to translocate heavy metals from soil to their tissues during three years. The heavy metals examined in the soils of the study area showed variations in concentrations, the study area may be practically unpolluted with Zn and Pb (CF; 0.45 and 0.98 successively) and very contaminated with Cd (CF; 8.53). According to the results obtained, the soil is uncontaminated with lead (Igeo=-0.60) and zinc (Igeo= -1.42) but it is heavily contaminated with cadmium (Igeo=2.5) along the study area. Overall the BCFS (bioconcentration factors) are superior to 1, for the all heavy metals and species. However, BCFs follow the following order; BCFZn>BCFPb>BCFCd for Ditrichia viscosa, the following order BCFPb>BCFZn>BCFCd for Juncus effuses and follow the following order; BCFZn>BCFCd>BCFPb for Solanum nigrum. The TFs (translocation factor) of the present study showed that Solanum nigrum can translocate the three of the metals into their aboveground parts. | ||
کلیدواژهها | ||
Ditrichia viscosa؛ Solanum nigrum؛ Juncus effusus؛ bioconcentration factor؛ contamination factor؛ geoaccumulation factor | ||
مراجع | ||
Adamcová, D., Vaverková, M.D., Bartoň, S., Havlícek, Z. and Břoušková, E. (2016). Soil contamination in landfills: a case study of a landfill in Czech Republic. Solid Earth., 7;239–247. Aydi, A. (2015). Assessment of heavy metal contamination risk in soils of landfill of Bizerte (Tunisia) with a focus on application of pollution. Environ.Earth.Sci, 4332-8. Bakan, G. and Balkas, T.I. (1999). Enrichment of metals in the surface sediments of Sapanca Lake.WaterEnvironmentResearch, 71;71-74. Belabed, S. (2018). Contribution à l’Etude de la Pollution Métallique du Sol et de la Végétation au Niveau des Décharges publiques non Contrôlées à Mostaganem. Thèse de Doctorat en Sciences, Université Abdelhamid Ibn Badis Mostaganem, Algeria. Belabed, S., BrahimLotmani, B. and Romane, A. (2014). Assessment of metal pollution in soil and in vegetation near the wild garbage dumps at Mostaganem region. J. Mater. Environ. Sci. 5., (5); 1551-1556. Benhaddya & Hadjel. (2014).Spatial distribution and contamination assessment of heavy metals in surface soils of HassiMessaoud, Algeria. Environ .Earth .Sci., 71;1473–1486. Bialowiec, A. and Randerson, P. F. (2010). Phytotoxicity of landfill leachate on willow – SalixamygdalinaL.Waste Management., 30;1587–1593. Breza-Boruta, B., Lemanowicz, J. and Bartkowiak, A. (2016). Variation in biological and physicochemical parameters of the soil affected by uncontrolled landfill sites. Environ.Earth Sci.,75;201. Carmo, D.L.D,Lima, L.B.D. and Silva, C.A.(2016). Soil Fertility and Electrical Conductivity Affected by Organic Waste Rates and Nutrient Inputs. Rev .Bras. Cienc .Solo., 40;150-152. Centofanti, T. (2014). Chapter:environmental sustainability. (in T.Centofanti.Phytoextraction of traces metals: principles and applications), Springer India. Chandra Kisku, G., Pandey, P., Pratap, M., Negi, S. and Misra, V. (2011). Uptake and accumulation of potentially toxic metals (Zn, Cu and Pb) in soils and plants of Durgapur industrial belt. J. Environ. Biol.,32;831-838. Chaplygin, V., Minkina, T., Mandzhieva, S., Burachevskaya, M., Sushkova, S., Poluektov, E., Antonenko, E and Kumacheva, V. (2018). The effect of technogenic emissions on the heavy metals accumulation by herbaceous plants. Environ.Monit.Assess.,190- 124. Chatzistathis, T., Alifragis, D. and Papaioannou, A. (2015).The influence of liming on soil chemical properties and on the alleviation of manganese and copper toxicity in Juglansregia Robinia pseudoacacia, Eucalyptussp. And Populussp. Plantations.J.Environ.Manag., 150; 149–156. Chehregani, A., Nouri, M. and Lariyazdi, H. (2009). Phytoremediation of heavy- metal-polluted soils: screening of new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Ecotox. Environ .Saf., 72, (5) ;1349. Clément, M and Pieltain, F. (2003). Les analyses chimiques du sol, Tec et Doc Lavoisier. Corwin, D. L and Lesch, S. M. (2005). Apparent soil electrical conductivity measurements in agriculture. Comput.Elect.Agric.,46 (1-3);11–43. Fernández, S., Poschenrieder, C., Marcenò, C., Gallego, JR., Jiménez-Gámez, D., Bueno, A and Afif, E. (2017). Phytoremediation capability of native plant species living on Pb-Zn and Hg-As mining wastes in the Cantabrian range, north of Spain. J. Geochem.Explor.,174;10-20. Fernández, S ., Poschenrieder, C ., Marcenò, C ., Gallego,J.R ., Jiménez-Gámez ., Bueno, A .and Afif ,E. (2016). Phytoremediation capability of native plant species living on Pb‐Zn and Hg‐As mining wastes in the Cantabrian range, north of Spain. J. Geoch.Expl. Forján, R., Rodríguez-Vila, A., Cerqueira, B., F and Covelo, E. (2018). Effects of compost and technosol amendments on metal concentrations in a mine soil planted with Brassica juncea L. Environ.Sci.Pol.Res ., 25; 19713–19727. Boukaka, Kh. and Mayache, B. 824 Förstner, U., Ahlf, W and Calmono, W. (1993). Sediment quality objectives and criteria development in Germany. Wat.Sci.Tech.,28; 307-16. Foufou, A., Djorfia, S., Haiedb, N., Kechiched, R., Azlaouib, M. and Hani, A. (2017). Water pollution diagnosis and risk assessment of WadiZied plain aquifer caused by the leachates of Annaba landfill (N-E Algeria).Ener.Proc., 119;393-406. Gonzáles-Macías, C., Schifter, I., Lluch-Cota, D.B. Méndez-Rodríguez, L, Hernández and Vázquez, S. (2006). Distribution, enrichment and accumulation of heavy metals in coastal sediments of Salina Cruz Bay, Mexico. Environ.Monit.Assess., 118; 211–230. Gworek, B., Dmuchowski, W., Koda, E., Marecka, M., Baczewska, A.H., Brągoszewska, P., Sieczka, A and Osiński, P. (2016).Impact of the Municipal Solid Waste Łubna Landfill on Environmental Pollution by Heavy Metals. Water., 8(10)470. Hassaan, M.A., El Nemr, A., Fedekar, F and Madkour. (2016). Environmental Assessment of Heavy Metal Pollution and Human Health Risk. American J.Water Sc.Eng., 2 (3)14-19. Hassani, A.H., Nouri, J., Mehregan, I., Moattar, F and SadeghiBenis, M.R. (2015). Phytoremediation of Soils Contaminated with Heavy Metals Resulting from Acidic Sludge of Eshtehard Industrial Town using Native Pasture Plants. J.Environ. and Earth Sci., 5(2)2224-3216. Hoening, M. and Thomas, P. (2012). Préparation d’échantillons de l’environnement pour analyse minérale. Centre français d’exploitation. Ibne Kamal, A.K., Islam, R., Hassan, M., Ahmed, F., Rahman, M. and Moniruzzaman, M., (2016).Bioaccumulation of Trace Metals in Selected Plants within Amin Bazar Landfill Site, Dhaka, Bangladesh. Springer science business media. Indicators, Environ Earth Sci. Irfan Dar, M.and Ahmed Khan, F. (2015).Roles of Brassicaceae in phytoremediation of metals and metalloids. Springer International Publishing., 201-215. Jamali, M. K., Kazi T. G., Arain M. B., Afridi H. I., Jalbani N., and Adil R. S. (2005). The correlation of total and extractable heavy metals from soil and domestic sewage sludge and their transfer to maize (Zeamays L.) plants. Toxi.Environ.Chemi., 88( 4);619–632. Kabata-Pendias, A and Pendias, H., (1992). Trace elements in soils and plants, CRC press, Boca Raton. FL.,365. Khan, A., Waqas, M., Ullah, I., Khan, A.L., Khan, M.A., Lee, I and Shin, J. (2016).Culturableendophytic fungal diversity in the cadmium hyperaccumulator Solanum nigrum L. and their role in enhancing phytoremediation.Environ.Exp.Botany. Khan, K.S., Lone, M.I and Huang, C.Y. (1999). Influence of Cadmium and Zinc on the growth and metal content in Ryegrass. Pakistan.j.boil.sci., 2(1);83-87. Koda, E., Sieczka, A. and Osiński, P. (2016). Ammonium Concentration and Migration in Groundwater in the Vicinity of Waste Management Site Located in the Neighborhood of Protected Areas of Warsaw, Poland. Sustainability.,8(11);1253. Konkolewska,A., Piechalak, A., Ciszewska,L., Antos-Krzemińska,N., Skrzypczak,T., Hanć,A., Sitko,K., Małkowski,E., Barałkiewicz, D. and Małecka, A. (2020). Combined use of companion planting and PGPR for the assisted phytoextraction of trace metals (Zn, Pb, Cd). Envi.Sci.Pol.Res, 27 ;13809–13825. Koopmans, G., Romkens, P. and Fokkema, M.J. (2008). Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Environ.Pol., 156;905–914. Kyu Kwon, H. and JIN OH, S. (2015).Phytoremediation by benthic microalgae (BMA) and light emitting diode (LED) in eutrophic coactalsediments. Ocean science journal, 50, 1, 87-96. Liu, N., Dai, J., Tian, H., He, H. and Zhu, Y. (2019). Effect of ethylenediaminetetraacetic acid and biochar on Cu accumulation and subcellular partitioning in Amaranthus retroflexus L. Environ.Sci.Pol.Res. Lo, K. S. L., Yang, W. F. and Lin, Y. C. (1991). Effects of Organic Matter on the Specific Adsorption of Heavy Metals by Soil. Toxi.Environ.Chem., 34;139-153. Loska, K., Wiechuła, D., and Korus, I. (2004). Metal contamination of farming soils affected by industry. Environ.Intern., 30(2);159–165. Mikac N., Cosocic B., Ahel M., Andreis S. and Toncic, Z. (1998). Assessement of groundwater of municipal solidwaste landfill (Zagreb, Croatia). Wat. Sci. Tech., 37(8);37-44. Min Lim, J., Salido, A. and Butcher, D. (2004). Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics. Microch.J.,76; 3–9. Mouhoun-Chouaki, S., Derridj, A., Tazdaït, D. and Rym Salah-Tazda, R. (2019). A Study of the Impact of Municipal Solid Waste on Some Soil Physicochemical Properties: The Case of the Pollution, 6(4): 811-826, Autumn 2020 825 Landfill of Ain-El-Hammam Municipality, Algeria. Ap.Environ.S.Sci., 1-8. Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal.,2;108–18. Nyika J. M., Onyari E. K., Dinka M. O. and Mishra, S. B. (2019). Heavy Metal Pollution and Mobility in Soils within a Landfill Vicinity: A South African Case Study. Orient. J. Chem.,35( 4 );1286-1296. Oumar, B., Ekengele, N.L and Balla, O.A.D. (2014).Évaluation du niveau de pollution par les métaux lourds des lacs Bini et Dang, Région de l’Adamaoua, Cameroun. Afrique.sci., 10( 2) ; 184 – 198. Ramanlal,D.B., Kumar,R.N., Kumar,N.and Thakkar,R.(2020). Assessing potential of weeds (Acalypha indica and Amaranthus viridis) in phytoremediating soil contaminated with heavy metals‑rich effluent.springer.Nat.J, 2; 1063. Ramos, F.T, Dores, D.C., Eliana, F.G., Weber, D.S., Oscarlina, L, Daniel, C.B, Campelo José, H., Maia,D.S and João, C. (2018). Soil organic matter doubles the cation exchange capacity of tropical soil under no-till farming in Brazil. J.Sci.Food and Agricultur., 1. Rana, V and Kumar Maiti, S. (2018). Metal Accumulation Strategies of Emergent Plants in Natural Wetland Ecosystems Contaminated with Coke-Oven Effluent. Bul.Environ.Cont.Toxi., 101;55–60. Rebele, F and Lehmann, C. (2011). Phytoextraction of Cadmium and Phytostabilisation with Mugwort (Artemisia vulgaris). Wat. Air .Soil .Pollut., 216, 93-103. Ross, S. M., 1994. Toxic Metal in Soil-Plant Systems.Wiley and Sons Ltd. Chichester., 469. Sahnoune, R and Moussaceb, K. (2019). Treatment and remediation by the stabilization/solidification process based on hydraulic binders of soil contaminated by heavy metals.Nova .Biotechnol.Chim., 18(2);166-178. Saifullah, E., Meers, M., Qadir, P., Tack, F.M.G., Laing. D and Zia, M.H., (2009). EDTA-assisted Pb phytoextraction. Chemosphere., 74;1279–1291. Sekabira1, K., Oryem–Origa, H., Mutumba, G., Kakudidi, E and Basamba, T. A. (2011). Heavy metal phytoremediation by Commelinabenghalensis (L) and Cynodondactylon (L) growing in Urban stream sediments. Intern.J.plant phys. Biochem., 3(8); 133-142. Singh, A.K and Hasnain, S.I. (1999). Environmental geochemistry of Damodar River basin, east coast of India.Enviro.Geol., 37(1-2);124-136. Singh, S., Raju, J and Nazneen, S. (2015). Environmental risk of heavy metal pollution and contamination sources using multivariate analysis in the soil of Varahasi environs, India. Environ.Mon..Asst., 187(6);4577. Sreve, P.M and Fang-Jie, Z. (2003).Phytoextraction of metals and metalloids from contaminated soils. Environ.biotec., 14;277–282. Sri Lakshmisunitha, M., Prashant, S., Anil kumar, S., Rao, S., Lakshminarasu, M and Kavikishor, P.B. (2013). Cellular and molecular mechanisms of heavy metal tolerance in plants: a brief overview of transgenic plants over expressing phytochelatin synthase and Metallothionein genes. Plant cell biotechnology and molecular biology., 14 (1-2); 33-48. Srivastava,A.,Chahar,V., Sharma,V., Swain, K.K., Hoyler, F., Murthy,G.S., Scherer, U.W., Rupp,H., Knolle,F., Maekawa, M.,and Schnug, E. (2019). Study of Toxic Elements in River Water and Wetland Using Water Hyacinth (Eichhorniacrassipes) as Pollution Monitor.GlobalChallenges., 3;1800087. Swati, G.P., Tanay, D. M., and Thaku, I. S., (2014).In vitro toxicity evaluation of organic extract of landfill soil and its detoxification by indigenous pyrene-degrading Bacillussp. ISTPY.Int. Biodeter.Biodeg, 90; 145–151. Tabat, M. (2001). Types de traitement des déchets solides urbains: évaluation des couts et impacts sur l’environnement.Rev. Energ. Ren., 97-102. Thongchai, A., Meeinkuirt, W., Taeprayoon, P and Pichtel, J. (2019). Soil amendments for cadmium phytostabilization by five marigold cultivars. Environ.Sci. Pol.Res. Tokalioglu, S.; Kartal, S and Gültekin, A.(2006. Investigation of heavy-metal uptake by vegetables growing incontaminated soils using the modified BCR sequential extraction method. Int. J. Environ. Anal. Chem., 86(6);417-430. Tong, Y., Kneer, R and Zhu, Y.(2004). Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. Trends .plant. sci., 9; 1. Tonon, G., Sohi, S., Francioso, O., Ferrari, E., Montecchio, D., Gioacchini, P., Ciavatta, C., Panzacchi, P and Powlson, D.(2010). Effect of soil pH on the chemical composition of organic matter in physically separated soil fractions in two broadleaf woodland sites at Rothamsted, UK. Eur .J .Soil .Sci., 61(6);970–979. Boukaka, Kh. and Mayache, B. Pollution is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)" 826 Turekian, K and Wedepohl, K.H. (1961). Distribution of the Elements in Some Major Units of the Earth's Crust. Ullah, N., Ghulam, J., Shafaqat, A., Muhammad, S., Ling, X and Weijun, Z.(2011). Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. J. Haz.Mat.,186;565–574. United States Department of Agriculture. Heavy Metal Soil Contamination, soil quality – urban technical note. (2000). Vaverková M. D., Zloch J., Radziemska M and Adamcová D. (2017). Environmental Impact of Landfill on Soils – The Example of the Czech Republic. Polish.J.Soil. Sci., 0079-2985. Vera Tomé, F., Blanco Rodríguez, P and Lozano, J.C. (2 0 0 8). Elimination of natural uranium and 226Ra from contaminated waters by rhizofiltration using Helianthus annuusL. Sci.Tot.Environ., 3 9 3;3 5 1 – 3 5 7. Waheshi, Y.A.A., El-GammalM.I., Ibrahim, M.S and Okbah, M.A.A. (2017). Distribution and Assessment of Heavy Metal Levels Using Geoaccumulation Index and Pollution Load Index in Lake Edku Sediments, Egypt. Int.J.Envirn.Monit.Analysis., 5, (1);1-8. Wang, Y.F., Tang, C.X, Wu, J.J., Liu, X.M., X.U, J.M. (2013).Impact of organic matter addition on pH change of paddy soils. J.Soil.Sediment., 13 ; 12–23. Wang, H., Nie, L., Xu, Y., Li, M and Lu, Y. (2018). Traffic-emitted metal status and uptake by Carex meyeriana Kunth and Thelypteris palustris var. pubescens Fernald growing in roadside turfy swamp in the Chinghai Mountain area, China. Environ.Sci.Pollution Res., 25; 18498–18509. Weldegebriel, Y., Chandravanshi, B and Wondimu, T. (2012). Concentration levels of metals in vegetables grown in soils irrigated with river water in Addis Ababa, Ethiopia. Ecotox. Environ.Safety., 57–63. Wong, H.Q., Zhao, Q., Zeng, D.H., Hu, Y.L., and Yu, Z.Y.(2015). Remediation of a magnesium-contaminated soil by chemical amendments and leaching. Land Degrad. Dev., 26; 613–619. Wuana, R. A., Okieimen, F. E., and Imborvungu, J. A. (2010). Removal of heavy metals from a contaminated soil using organic chelating acids.Int. J. Environ. Sci. Tech., 7(3); 485-496. Yanqun, Z., Yuan, L., Schvartz, C., Langlade, L. and Fan, L. (2004). Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead–zinc mine area, China.Environ.Intern.,30;567– 576. Zhang, H. B., Luo, Y. M., Wong, M. H., Zhao, Q. G. and Zhang, G. L. (2007). Defining the geochemical baseline: a case study of Hong Kong soils. Environ.Geol., 52; 843-851. Zhang, H., Cui, B., Xiao, R. and Zhao, H. (2010). Heavy metals in water, soils and plants in riparian wetlands in Pearl River estuary, south China. Procedia environ.sci., 2(5); 1344-1354. Zhuang, P., Yang, Q.W., Wang, H. B. and Shu, W. S. (2007). Phytoextraction of Heavy Metals by Eight Plant Species in the Field. Wat.Air .Soil .Pollut, 184; 235–242. Zovko, M. and Romić, M., (2011).Soil Contamination by Trace Metals: Geochemical Behaviour as an Element of Risk Assessment. Earth.Environ.Sci. Zuzanna, M. and Monica, G. (2015). Phytoremediation and environment factors Phytoremediation: Management of Environmental Contaminants. Springer International Publishing Switzerland., 1; 45. | ||
آمار تعداد مشاهده مقاله: 581 تعداد دریافت فایل اصل مقاله: 547 |