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ABSTRACT 

Synthetic aperture radar (SAR) sensors are microwave active systems which represent a major tool for 

Earth observation. The completed information lying in the polarimetric channels represents a possibility 

for better detecting changes in different applications. In the literature, the log-ratio operator is applied to 

the original SAR image. In this paper, due to the use of full polarimetric images, first the coherency 

matrix, polarimetric decomposition, segmentation and data analysis features are extracted respectively, 

then the log-ratio and difference operators are applied to the extracted features. The use of decomposition 

increases the detection power due to extraction of single, double and volume bounce components. The aim 

of this work is proposing a framework for change detection in multi-temporal multi-polarization SAR data. 

In the novel representation, multi-temporal SAR images are employed to compute log-ratio polarimetric 

features. After pre-processing data, the coherency matrix, polarimetric decomposition, segmentation, and 

data analysis features are extracted. Then, the log-ratio and difference operators are applied to the features 

and create change maps using two unsupervised classification methods. The input of unsupervised 

classification is a stack of log-ratio features. Finally, the t1t2 (changes from epoch1 to epoch 2) and t2t1 

(changes from epoch 2 to epoch 1) change maps, that are classification outputs, are fused. This 

representation is employed to design a novel unsupervised change detection approach for separating an 

unchanged class and two changed classes. The proposed approach is validated on a pair of UAVSAR data 

(L-band) acquired in Oakland, California, between the period 2010 to 2017. In the both groups of changes, 

the t1t2 and t2t1, coherency based feature combination achieves the best result with an overall accuracy of 

87% and Kappa of 74%. Considering all changes (both t1t2 and t2t1), coherency based feature combination 

yields the best result with an overall accuracy of 86% and Kappa of 79%. As is clear from the evaluation 

results, the log-ratio operator has shown far better results among the two log-ratio and difference 

operators. However, the best option is the simultaneous use of the both operators so that the noise and 

error of the log-ratio operator can be reduced using the difference operator. According to the final results, 

it can be concluded that the coherence matrix is a better feature for detecting changes compared to other 

features. 
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1. Introduction 

toremote sensinga process inChange detection is

identify changes. To identify land cover changes, two 

remote sensing images captured over the same geographical 

region and they are analyzed at different dates (Sharma & 

Mathur, 2004). Synthetic aperture radar (SAR) is a 

dependable and valuable data to obtain change information. 

SAR imaging is of great benefit when it comes to 

undesirable weather conditions. It can be used properly 

under almost any atmospheric conditions (Ulaby et al., 

1986; Al-Sharif et al., 2013). There is a direct link between 

the decomposition algorithm and the effectiveness and 

consistency of change detection, the results of change 

detection are determined by the status of decomposition 
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(Schmitt & Brisco, 2013). Over the past few years, in order 

to obtain information about the scattering mechanism, 

polarimetric target decomposition methods have been 

evolved (Arai & Wang, 2007). As a result of extracting 

single, double and volume bounce scattering by target 

decompositions, different features such as city, road and 

forest can accurately be identified. In recent years, the 

accessibility of polarimetric SAR data has been growing 

owing to new satellite sensors such as UAVSAR, Sentinel-1 

and ALOS-2 PALSAR-2. One of the major data sources of 

applications of Earth observation is Airborne SAR which is 

applied because of the privilege of not being reliant on 

meteorological conditions. Hence, SAR images are broadly 

employed in change detection applications such as damage 

assessment, crop monitoring, urban growth, etc. in order to 

perform multi-temporal analysis (Pirrone et al., 2016).  

In 2012 and 2015 different techniques in change detection 

were analyzed for data fusion contests arranged by the 

IEEE Data Fusion Technical Committee (Berger et al., 

2013), using various remote sensing data such as  optical 

(Ahmed et al., 2016; Zhong et al., 2016), LiDAR (Zhang & 

Glennie, 2014), hyperspectral (Yang & Sun, 2015) and 

SAR data (Aghababaee et al., 2012). Since, change 

detection using SAR images is more challenging than 

optical ones due to the existence of multiplicative speckle 

noise (Jia et al., 2015).  It is crucial to obtain a robust SAR 

image change detection method which works properly 

despite the speckle noise. In contrast to the recent studies 

(Bazi et al., 2005; Bovolo & Bruzzone, 2005; Bazi et al., 

2006; Carincotte et al., 2006; Ma et al., 2012; Gao et al., 

2014; Hou et al., 2014) which the log-ratio operator is 

applied to the original SAR image, in this paper, due to the 

use of full polarimetric images, the coherency matrix (T), 

polarimetric decomposition, segmentation and data analysis 

features are extracted, and log-ratio and difference 

operators are applied to the features. The use of 

decompositions increases the detection power due to 

extraction of single, double and volume bounce 

components. Since the log-ratio operator is derived to be 

robust to calibration and radiometric errors, the log-ratio 

operator is the most widely used method (Bazi et al., 2005; 

Gao et al., 2014; Hou et al., 2014). Therefore, it can 

somewhat reduce the effect of speckle noise. However, 

difference images are generated by the log-ratio operator 

have noisy regions. The researchers (Gao et al., 2014; Hou 

et al., 2014; Zheng et al., 2014) proposed several improved 

log-ratio operators to solve the problem.
 

The pixels in DI (Difference Image) are classified into 

changed and unchanged classes. The reason for applying 

the DI classification step is to avoid the disadvantages of 

thresholding approaches. Several algorithms have been 

proposed for DI classification. For example, apply  a 

reformulated fuzzy C-means (FCM) clustering algorithm to 

classify DI (Gong et al., 2012) or design a two-level 

clustering algorithm in order to discriminate changed and 

unchanged pixels (Li et al., 2015). The DI clustering 

methods can suppress the influence of speckle noise to a 

certain level. However, some information may be lost. 

further improvement can be achieved If more extracted 

features are utilized (Gao et al., 2016). In recent years, 

because of the increasing interest to the features of 

polarimetric channels, some works have been accomplished 

for CD (Change Detection) applications using PolSAR data 

(Borghys et al., 2007; Al-Sharif et al., 2013; Pirrone et al., 

2016; Zhao et al., 2017). UAVSAR data is among 

appropriate data due to having full polarimetric channels 

and high spatial resolution. In these works, analysis focuses 

on the use of the likelihood ratio, analysis of features from 

polarimetric decompositions and stack of the log ratio based 

on features. The change detection is based on both the 

statistical model of different classes and unsupervised 

classification methods. In the classification step, the pixels 

in the log-ratio are classified into changed and unchanged 

classes.  

The log-ratio operator is applied to the coherency matrix 

(T) and polarimetric decomposition, and also the log-ratio 

and difference operators are compared and fused. In the 

feature extraction step, the up-to-date and recent 

decompositions such as Unified Huynen (Li & Zhang, 

2016) are implemented. In this paper, the Kernel K-means 

algorithm is applied. Kernel k-means is an extension of the 

standard k-means clustering algorithm that identifies 

nonlinearly separable clusters. The algorithm does not 

depend on cluster initialization, identifies nonlinearly 

separable clusters, and due to its incremental nature and 

search procedure, locates near optimal solutions by 

avoiding poor local minima. In order to different nature of 

the used operators, decision level fusion should be applied.  

Based on this representation, we derive an unsupervised 

CD approach for the detection of different kinds of changes 

in the scene. This paper presents a change detection 

algorithm based on the log-ratio decomposition feature and 

classification DI, which is divided into four parts. Section 

2.1 describes the pre-processing SAR data. Section 2.2 

describes the extracting features using the coherency matrix 

(T), polarimetric decomposition, segmentation, and data 

analysis. Section 2.3 describes the DI generation by the log-

ratio and difference operator. Section 2.4 describes the 

classification of the log-ratio feature using an unsupervised 

method. 

2. The Proposed Method 

After acquiring and pre-processing data, the coherency 

matrix (T), polarimetric decomposition, segmentation, and 

data analysis features are extracted. Then, the log-ratio and 

difference operators are applied to the features. After 

preparing DI, the unsupervised classification method, i.e. 
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kernel K-means, is employed to generate change maps. 

Figure 1 shows the main framework to generate change 

maps. 

2.1. Data acquisition and preprocessing 

UAVSAR data is L-band. L-band data are less affected 

by temporal decorrelation due to changes in the surface 

conditions over time. First, images are obtained at two 

different dates and then are preprocessed. The both images 

are ground-range detected (GRD), meaning that pre-

processes such as radiometric calibration (conversion of 

intensity to surface reflectance) and multilooking along 

with topographic correction are applied to the images. Thus, 

the images do not need geometric correction, and it is only 

required to reduce speckle noise in them. 

The Refined Lee filter is specifically designed to preserve 

spatial resolution, it also minimize or even avoid mixture in 

scattering classes (Foucher & López-Martínez, 2014). In 

addition, The Refined Lee approach improves the 

observation of the building edges so this filter is suitable 

choice as speckle filter. The both images are pre-processed 

using the Refined Lee filter (Yommy et al., 2015) to 

remove some speckle noise, and a number of images were 

co-registered by selecting proper GCPs (image to image). 

 

 
 

Figure 1.  The proposed framework of the change detection algorithm 
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2.2. Feature extraction 

     In this study, in order to improve change detection, 

features are extracted using the coherency matrix (T), 

polarimetric decomposition, segmentation, and data 

analysis. Several methods are examined such as (a) 

decompositions: Singh (Singh et al., 2013), An & Yang (An 

et al., 2010), Freeman (Freeman & Durden, 1998), 

Yamaguchi (Yamaguchi et al., 2005), Krogager (Krogager, 

1990), H/A/Alpha (Hajnsek et al., 2003), Unified Huynen 

(Li & Zhang, 2016), (b) segmentation: Wishart, H/A/Alpha 

(Ferro-Famil et al., 2001) and (c) data analysis: texture 

analysis (Kandaswamy et al., 2005). 

To select appropriate features, a small area is selected and 

the proposed method is implemented on different 

decompositions. Then, the accuracy of the results is 

estimated with ground truth, and appropriate features are 

selected based on accuracy. 

In accordance with  the model-based decomposition 

technique, the decomposition of a target matrix into a 

mixture of physical scattering mechanisms, which 

corresponds to the surface (PS), double-bounce (PD), 

volume (PV), and helix scattering (PC) mechanisms is 

possible (Yamaguchi et al., 2005). This type of 

decomposition is based on simple scattering models that 

results in an easy-to-interpret scatter type discrimination. 

2.2.1. The Singh four-component scattering power 

decomposition 

In this method, the measured coherency matrix is rotated 

around the line of sight (Arii et al., 2011), and then to force 

T23 = 0 for different expressions of the scattering model, a 

unitary transformation is applied on the rotated coherency 

matrix. The steps and equations for calculating component 

scattering are given below: 

 
11 12 13

†
21 22 23

31 32 33

1 n

p p

T T T

T T T T k k
n

T T T

 
 

 
 
  

                          (1) 

The Pauli vector kp is defined as: 

1

2
2

HH VV

p HH VV

HV

S S

k S S

S

 
 

 
 
  

                                                (2) 

The rotation of around radar line of sight: 

       
†
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                               (3) 
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                                             (4) 
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 
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  

                                 (5) 

Helix scattering power                                 

 232 ImcP T                                                              (6) 

Volume scattering power                             

 332v cP a T P                                                     (7) 

The coefficient "a" is determined by the conditions. 

Table 1 lists the singh decomposition equations. The 

coefficient b is determined by the conditions. 

After applying double unitary transformations, the T23 of 

the obtained rotated coherency matrix is completely 

removed. The Singh decomposition consists of seven 

parameters except the seven independent polarimetric 

parameters contained in the coherency matrix. It is found 

that the double bounce component is increased in urban 

areas (Singh et al., 2013). 

Table 1. The Singh decomposition equations 

In surface scattering dominant In double bounce dominant                               

     11

1

2
vS T P                                                                 (8) 11S T                                                                      (13) 

v cD TP P P S                                                        (9)
     

 
v cD TP P P S                                                      (14) 

   12 13 vC T T bP                                                (10)    12 13 vC T T bP                                                (15) 

2

s

C
P S

S
      surface scattering                             (11) 

2

d

C
P D

D
      double bounce scattering               (16) 

2

d

C
P D

S
      double bounce scattering               (12) 

2

s

C
P S

D
      surface scattering                             (17) 

2.2.2. The An & Yang three-component model-based 

decomposition 

Since the identity matrix can model pure volume 

scattering and be effective to decrease the volume scattering 

over urban areas, so this scattering matrix is appropriate for 

urban area decomposition.  Comparing with freeman 

decomposition, the An & Yang decomposition contains 

three extra steps. The first step before decomposition is the 

deorientation processing of the coherency matrix. The other 

two steps contain corresponding processes in order to 

prevent the emergence of negative powers. The steps and 

equations for calculating component scattering are given 
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below: 

After calculating [T(θ)] using the Eq. (2), if T11(θ) ≤ 

T33(θ): 

       11 22 33 113 , 0, 2v s dP T P P T T T       
     (18) 

And if T11(θ) ≥ T33(θ) : 

         33 11 11 33 22 22 333 , ,vP T x T T x T T        
  (19) 

Table 2 lists the An & Yang decomposition equations. 

Adjacent urban and forested areas are clearly divided by 

applying the An & Yang method. Some areas sometimes 

show similar volume scattering characteristics such as these 

areas, and the outcome is not match with the real scattering 

mechanism. This method is consistent with both real 

scattering mechanisms and the physical meaning of power, 

because pixels with negative power are completely omitted 

(An et al., 2010). 

Table 2. The An & Yang decomposition equations 
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2.2.3. The Huynen decomposition 

This decomposition introduces the SDoP for surface 

(SDoPs), dihedral (SDoPd), and volume scatterer (SDoPv) as 

follows: 
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The three parameters can be quickly obtained because 

they directly relate to each column of T. 

2 2 2

3

s d v

s d v

SDoP SDoP SDoP
SDoP

SDoP SDoP SDoP

 


 
                             (23) 

For single target the parameter SDoP3 is 1, also for noisy 
target it is 1/3, and it resides between 1/3 and 1 for other 

targets. High SDoP3 means a target has low randomness. 
Hence, it can measure target randomly.  

The related research has demonstrated that there is no 
unique decomposition but rather infinity. Only when a 

certain aspect is preferred, Unique occur. Each 
decomposition cannot provide all information about target 

scattering but it has its own advantages. Therefore, for an 
united understanding of target decompositions, we need to 

merge all the decompositions (Li & Zhang, 2016). 

2.3. Feature change generation 

In this research, the log-ratio operator is applied to 

provide a difference image. Apart from making the changes 

well, the operator can reduce the influence of speckle noise. 

In addition to the log-ratio operator, the difference operator 

is also examined and in some cases provides acceptable 

results. Feature change images from the log-ratio operator 

are far better than those from the difference operator. At the 

end, the feature change images are selected with an 

appropriate accuracy, comparing to the ground truth image. 

A block scheme of the DI generation is depicted in Fig. 2. 

A multi-temporal comparison of the two PolSAR images 

is computed by defining a multi-dimensional log-ratio 

polarimetric feature image known as XLR. 
 

, , & ,, , ,...LR LR Singh LR An Yang LR SDoPX X X X            (24) 

Here, XLR has the same number of polarimetric features as 

input images, and it is defined as: 

2

2 1

1

log log log
LR

X
X X X

X

 
   

 
                           (25) 

Where X1 and X2 are the extracted features of the date 1 and 

date 2, respectively, and are defined as: 

, , & ,, , ,... ,i 1,2i i Singh i An Yang i SDoPX X X X          (26) 
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Figure 2. The block scheme of DI generation 

2.4. Classification 

By classifying the difference images, three classes are 

achieved: change t1t2, change t2t1 and no-change. The 

defining of change t1t2 (changes from epoch1 to epoch2) is 

new objects that added to the area such as new buildings 

and also change t2t1 (changes from epoch2 to epoch1) 

means objects that removed from area such as destroyed 

buildings and deforestation. 

In this paper, change detection is performed 

unsupervised, and thus unsupervised classification methods 

are used. Among the unsupervised classification methods, 

the kernel K-means method is applied in this study. The 

kernel k-means clustering algorithm applies the same 

method as k-means with the difference that in the 

calculation of distance, the kernel method is used instead of 

the Euclidean distance. 

Compute the distance of each data point and the cluster 

center in the transformed space using: 

    
2

1
1 i c

k
k

c i cc
c a

D a m


 


 

                                    (27) 

where  
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 
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 

 






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





    (28) 

   The cth cluster is denoted by πc. 

   ‘mc’ denotes the mean of the cluster πc. 

   ‘Ф(ai)’ denotes the data point ai in transformed space. 

       Ф(ai). Ф(aj) = exp
-

 (||ai 
-

 aj||)*q for a Gaussian kernel. 

                        = (c + ai.aj)^d for a polynomial kernel.   

 

2.5. Fusion 

The reason for fusing the produced change maps is to 

improve the results and reduce noise from radar data and 

change detection. To fuse the change maps, the majority 

voting and weighted majority voting algorithms are 

employed (i.e., weighing is performed using the accuracy of 

the results). Finally, to compare the results, the t1t2 and t2t1 

change maps for each method are combined, and a change 

map is made for all changes. 

Suppose that for a certain change detection problem, we 

have three different change maps m1(X), m2(X) and m3(X). 

We can combine these three maps in such a way as to 

produce a classifier that is superior to any of the individual 

maps. A common way to combine these maps is applying a 

majority voting algorithm. 

        1 2 3mode , ,C X m X m X m X                     (29) 

In other words, at each value, X is classified to the change 

class that receives the largest number of votes (James, 

1998). 

3. Dataset Description 

For a preliminary validation of the proposed CD strategy, 

we investigate a dataset from Oakland in California, as 

indicated in Fig. 3. between the period 2010 to 2017, the 

region was affected by urban expansion, deforestation and 

changing land use. We consider the pair of SAR data 

acquired by the UAVSAR satellite mission over the region 

in 2010 and 2017, respectively, as the input dataset. The 

both images contain a spatial resolution of 6.2m and full 

polarimetric channels (i.e., VV, HH, HV and VH). Table 3 

lists the data specification such as acquisition date (before 

and after changes), band, polarization and spatial resolution. 

Table 3.  SAR Data specification 

Sensor Acquisition date 

(before changes) 

Acquisition date 

(after changes) 
Band 

Spatial resolution 

(m) 

UAVSAR 23/04/2010 03/04/2017 L-Band (Fully 

polarimetric) 
6.2 x 6.2 (GRD) 

     

     

Comparison 
Operator 

Polarimetric Feature 

1t –Image  

  
DIs 

Polarimetric Feature 
Image – t2 

Feature change 

generation 
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Figure 3. The case study 

Table 4. Google Earth images specification 

Dataset 
Acquisition date 

(before changes) 

Acquisition date 

(after changes) 
Band 

Spatial 

resolution (m) 

QuickBird 06/06/2010 12/03/2017 R, G, B 0.75 × 0.6 

 

 
Figure 4. Ground truth 
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As the reference data, we consider Google Earth images 

as ground truth as well as training and testing data, 

representing the change map of the region between the 

period 2010 to 2017 (cf. Fig. 4). Table 4 lists the images 

specification such as acquisition date (before and after 

changes), band and spatial resolution. 

 

 4. Experimental Results 

After preprocessing the data, the Pauli target 

decomposition is used to better represent the image. 

 

 

(a) 

 

(b) 

Figure 5.  Color composition (Pauli RGB) for the years (a) 2010 and (b) 2017 

By preparing different feature descriptors and evaluating 

them, the features that show different variations and 

coverages are selected. The selected features distinguish the 

ground cover better than the other features, e.g., the Cloude 

decomposition feature distinguishes urban areas well in 

comparison to the other land covers such as tree plants. The 

selected features at this step are Cloude, Singh, An & Yang, 

H / u / v classification, Unified Huynen classification, 

coherence matrix, and some texture features (including 

Dissimilarity, Homogeneity, Contrast, Entropy, Uniformity, 

Direction) . Figure 6 shows the selected features. 

 

(a) 

 

(b) 

Figure 6.  The selected features: Cloude (a), Singh (b), H / u / v classification (c), An & Yang (d), Unified Huynen 

classification (e), Dissimilarity of T33 (f), Dissimilarity of T22 (g), Pauli RGB of the coherence matrix (h)  
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(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 6.  Continued.  

In decompositions such as Cloude and H / u / v 

classification, urban areas can be identified with more 

accuracy. High-rise and low-rise building compartments as 

well as city green spaces can be extracted. In fact, low-

density building areas can be distinguished by vegetation. 

After selecting appropriate features, two operators, i.e. 
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log-ratio and difference, are used to generate DI. The results 

of the log-ratio operator show the changes much better. In

 the log-ratio operator, the feature ratios for both 2010 to 

2017 and 2017 to 2010 period show changes from both 

2010 to 2017 and 2017 to 2010, respectively. The best DIs 

are related to the application of the log-ratio operator on 

Singh, An & Yang, Unified Huynen classification and 

coherency matrices. 

The selected DIs are stacked together and used as inputs 

to the classification method. The classification methods of 

kernel K-means are employed to classify the DIs. Different 

stacks of the DIs are used as inputs for the classification 

methods. The results are named as "the group of changes 

feature combination". Table 5 lists the utilized feature 

combinations. 

The two groups of changes are considered as: 𝐶ℎ𝑡1𝑡2as 

changes from 2010 to 2017 and 𝐶ℎ𝑡2𝑡1 as changes from 

2017 to 2010. A change map depends on the classification 

input DIs to detect both the "change t1t2" and "change t2t1" 

classes. Because of the mathematical basis of the logarithm, 

when the ratio value in front of the log is zero, the log-ratio 

value will be –INF. Therefore, for decompositions, both 
𝑡1

𝑡2
  

and 
𝑡2

𝑡1
 are separately calculated due to the pixels with near 

zero values and –INF for the log ratio. While the coherency 

matrix has close values, the ratio of the two dates is not 

zero. Thus, by using only one ratio, the both groups of 

changes can be extracted. Results for change maps are 

indicated in Fig. 7.

 
Table 1.  Feature combination 

Feature 

Combination 
Stacked DIs 

FC1 
Singh_Dbl, An&Yang_Dbl, SDoPd_R, 

SDoPd_B 

FC2 Singh_Dbl, An&Yang_Dbl, SDoPd_B 

FC3 Singh_Dbl, An&Yang_Dbl 

FC4 T11(Using log-ratio and difference) 

FC5 T11,T22,T33 

FC6 
T11,T22,T33 (Using log-ratio and 

difference) 

The three maps (a), (c), and (e) of the t2t1 group, which 

show better accuracy (as shown in charts) than other maps, 

are fused. Moreover, the three maps (b), (d), and (f) of the 

t1t2 group are fused. Then, the fusion results are combined 

and the final change map is obtained. This process is 

performed for the majority voting and weighted majority 

voting algorithms. The two FC4 maps with the highest 

accuracy are also combined. Results are indicated in Fig. 8. 

 

(b) 

 

(a) 

Figure 7.  Change maps: 𝐶ℎ𝑡2𝑡1_FC3 (a), 𝐶ℎ𝑡1𝑡2_FC3 (b), 𝐶ℎ𝑡2𝑡1_FC4 (c), 𝐶ℎ𝑡1𝑡2_FC4 (d), 𝐶ℎ𝑡2𝑡1_FC2 (e), 

𝐶ℎ𝑡1𝑡2_FC2 (f), Chs_FC5 (g), Chs_FC6 (h) 
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(d) 

 

(c) 

 

(f) 

 

(e) 

 

(h) 

 

(g) 

Figure 7.  Continued.  



Salehian et al, 2020 
 

77 
 

 

 

  (b) 

 

(a) 

 

(c) 

Figure 8. Change maps: AND_MV (a), AND_WMV (b), AND_FC4 (c) 

 

By comparing the fused change map and the change maps 

developed in the previous step, noise reduction in the fused 

map can be observed (Fig. 8). 

The results are evaluated using ground truth from Google 

Earth images with two criteria: overall accuracy (OA) and 

Kappa coefficients. The evaluation of the final results of 

change t1t2 and t2t1 can be observed in Tables. 6 and 7, 

respectively. Accordingly, the best accuracy is related to the 

change map "𝐶ℎ𝑡1𝑡2_FC4" with an overall accuracy of 

87.58% and Kappa of 0.7407 for 𝐶ℎ𝑡1𝑡2 and also for the 

change map "𝐶ℎ𝑡2𝑡1_FC4" with an overall accuracy of 

87.74% and Kappa of 0.7457 for 𝐶ℎ𝑡2𝑡1 . 

 

Table 6. Evaluation of the change t1t2 results 

Change results Overall Accuracy Kappa 

Cht1t2_FC1 70.16 54.8 

Cht1t2_FC2 73.12 59.28 

Cht1t2_FC3 85.65 70.92 

Cht1t2_FC4 87.58 74.07 
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Table 7. Evaluation of the change t2t1 results 

Change results Overall Accuracy Kappa 

Cht2t1_FC1 77.3 51.21 

Cht2t1_FC2 80.28 65.32 

Cht2t1_FC3 86.35 71.69 

Cht2t1_FC4 87.74 74.57 

 

The evaluation of the final results of changes can be 

observed in Table 8. As indicated, fusion with the MV and 

WMV algorithms does not improve the results, but the 

weighting algorithm yields better results as compared to the 

unweighted algorithm. The FC4 combined map shows a 

good result, but FC5 and FC6 are more accurate due to the 

use of the three features T11, T22 and T33. Further, FC6 

achieves the best result due to the use of both the difference 

and log-ratio operators. According to the chart, the best 

accuracy is related to the change map of "Chs_FC6" with 

an overall accuracy of 86.27% and Kappa of 0.7922 for the 

both groups. 

Table 8. Evaluation of the changes results 

Change results Overall Accuracy Kappa 

Chs_FC5 84.89 77.27 

Chs_FC6 86.27 79.22 

AND_MV 77.96 65.72 

AND_WMV 79.03 67.45 

AND_FC4 81.88 72.21 

 

As shown in the charts, the log-ratio operator has far 

better results in comparison to the difference operator. 

However, the optimum option is the simultaneous use of 

both the operators so that the noise and error of the log-ratio 

operator can be reduced using the difference operator. 

According to the final results, it can be concluded that the 

coherence matrix is a better feature for detecting changes 

than other features. 

5. Conclusions 

The world intends to carry out projects without human 

intervention and we seek to research and advance 

knowledge in this area. Therefore supervised methods may 

be more accurate; but we attempt to improve unsupervised 

methods. In this paper, we proposed an unsupervised 

change detection approach for SAR image pairs. Our 

proposed algorithm can be divided into the following main 

steps: (1) we used several method to provide features using 

the coherency matrix (T), polarimetric decomposition, 

segmentation and data analysis; (2) we use the two different 

operators of log-ratio and difference to produce difference 

images; (3) we apply two unsupervised classification 

methods to obtain final change maps; (4) we apply a 

majority voting algorithm to fuse change maps and combine 

the t1t2 and t2t1 change maps. 

The existing SAR image change detection methods first 

generate a DI and then use clustering methods to classify 

the pixels of the DI into changed and unchanged classes. 

Using the proposed features to provide more accurate DI 

and ultimately achieving more accurate change maps will 

result in the superiority of the proposed algorithm. 

Since the reference (Pirrone et al., 2016) uses only 

intensity as a log-ratio input, scattering mechanisms that 

have an effective role in identifying different coverings 

cannot be used and thus less change classes can be 

identified. Due to the use of the polarimetric feature, the 

probability of change detection error is reduced in the 

proposed method. Additionally, by using the difference 

operator, the noise of the change map is reduced. 

In the presented automatic multi-class CD strategy, FC4 

achieves the best result with an overall accuracy of 87% 

and Kappa of 74% in the both groups of changes, i.e. t1t2 

and t2t1. Considering all changes (both t1t2 and t2t1), FC6 

yields the best results with an overall accuracy of 86% and 

Kappa of 79%. 

The log-ratio operator shows far better results than the 

difference operator. However, the best option is to use both 

the operators simultaneously so the noise and error of the 

log-ratio operator can be reduced using the difference 

operator. According to the final results, it can be concluded 

that the coherence matrix is a better feature for detecting 

changes, as compared to other features.  

According to experimental results, the false detection rate 

decreases and the accuracy of change detection is improved 

in this suggested algorithm. In addition, the investigation of 

the proposed method will be continued to discover the 

expansion of urban regions over time. Likewise, in our 

future research work, the fusion of optics and SAR data will 

be used to provide better results in identifying different 

coverings and detecting changes. We will also seek to 

distinguish the physical meaning of changes and organize 

the "from-to" map. 
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