تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,506 |
تعداد مشاهده مقاله | 124,125,085 |
تعداد دریافت فایل اصل مقاله | 97,233,612 |
Physiological and Growth Responses to Pollutant-Induced Biochemical Changes in Plants: A Review | ||
Pollution | ||
دوره 6، شماره 4، اسفند 2020، صفحه 827-848 اصل مقاله (356.31 K) | ||
نوع مقاله: Review Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2020.303151.821 | ||
نویسندگان | ||
C. Mulenga* 1؛ C. Clarke2؛ M. Meincken3 | ||
1Department of Forest and Wood Science, Stellenbosch University, Bag X1 Matieland 7602, Stellenbosch, South Africa Department of Biomaterials Science and Technology, Copperbelt University, P. O. Box 21692, Kitwe, Zambia | ||
2Department of Soil Science, Stellenbosch University, Bag X1 Matieland 7602, Stellenbosch, South Africa | ||
3Department of Forest and Wood Science, Stellenbosch University, Bag X1 Matieland 7602, Stellenbosch, South Africa | ||
چکیده | ||
Industrial activities compromise the ambient air quality at a local, regional and global level through gaseous and dust emissions. This study reviews uptake mechanisms and the associated phytotoxicity of pollutants in plants, focusing on heavy metals and SO2. It further describes detoxification mechanisms and the resultant biochemical and physiological changes in plants. Finally, the morpho-physiological and growth responses to stress-induced biochemical changes are discussed. Heavy metals and SO2 enter the plant tissue through the stomata, cuticular layers, lenticels and root hairs. In the plant cells, SO2 converts to SO32- or SO42- ions upon reacting with water molecules, which in excess are toxic to plants. However, the detoxification process of SO32- increases the production of reactive oxygen species (ROS). ROS are toxic to plants and damages biomolecules such as lipids, proteins, carbohydrates and DNA. On the other hand, heavy metals, such as Cu and Fe catalyse the Fenton/Haber-Weiss reactions, breaking down H2O2 into OH•. Additionally, Pb and Zn inhibit the activities of ROS-detoxifying enzymes, while other heavy metals bind to cellular layers making them rigid, thereby reducing cell division. Therefore, pollutant toxicity in plants affects biochemical parameters damaging organic molecules and limiting cambial activity. Damaged biomolecules inhibit the plant's capacity to carry out physiological functions, such as photosynthesis, stomatal functions, transpiration and respiration while impaired cambial activity reduces cell division and elongation resulting in reduced plant growth and productivity. | ||
کلیدواژهها | ||
Heavy metals؛ SO2؛ biomolecule damage؛ physiological functions؛ cambial activity | ||
مراجع | ||
Abbas, G., Murtaza, B., Bibi, I., Shahid, M., Niazi, N. K. and Khan, M. I. (2018). Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. Int. J. Environ. Res. Public Health., 15(59); 1-45. Achary, M. M. V., Patnaik, A. R. and Panda, B. B. (2012). Oxidative biomarkers in leaf tissue of barley seedlings in response to aluminium stress. Ecotoxicol. Environ. Saf., 75(1); 16–26. Addison, P., Malhotra, S. and Khan, A. (1984). Effects of sulphur dioxide on woody boreal forest species grown on native soils and tailings. J. Environ. Qual., 13(3); 333–336. Adriano, D. C. (2001). Trace elements in terrestrial environments: Biogeochemistry, bioavailability and risks of metals. (New York: Springer) Ahmad, P., Sarwat, M., Bhat, N. A., Wani, M. R., Kazi, A. G. and Tran, L.S. P. (2015). Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss.) by calcium application involves various physiological and biochemical strategies. PloS One., 10(1); 1-17. Ahmad, S. H., Reshi, Z., Ahmad, J. and Iqbal, M. (2005). Morpho-anatomical responses of Trigonella foenum graecum Linn. to induced cadmium and lead stress. J. Plant Biol., 48(1); 64–84. Ahmed, N. B. E. N., Elloumi, C., Athar, N. and Noreen, H. R. (2016). Morpho-anatomical and physiological changes in grapevine leave exposed to atmospheric fluoride and sulphur dioxide pollution. Appl. Ecol. Environ. Res., 14(5); 77–89. Akter, K. F., Owens, G., Davey, D. E. and Naidu, R. (2006). Arsenic speciation and toxicity in biological systems. Rev. Environ. Contam. Toxicol., 184(1); 97-149. Ali, B., Gill, R. A., Yang, S., Gill, M. B., Farooq, M. A., Liu, D. and Zhou, W. (2015). Regulation of cadmium-induced proteomic and metabolic changes by 5-aminolevulinic acid in leaves of Brassica napus L. PLoS One., 10(4); 1-23. Amari, T., Ghnaya, T. and Abdelly, C. (2017). Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction. S. Afr. J. Bot., 111(2017); 99–110. Anjum, S. A., Xie, X. yu, Wang, L. chang, Saleem, M. F., Man, C. and Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res., 6(9); 2026–2032. Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol., 141(2006); 391–396. Ashraf, M. and Harris, P. J. C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica., 51(2); 163-190. Assadi, A., Pirbalouti, A. G., Malekpoor, F., Teimori, N. and Assadi, L. (2011). Impact of air pollution on physiological and morphological characteristics of Eucalyptus camaldulensis Den. J. Food. Agric. Environ., 9(2); 676–679. Aydinalp, C. and Marinova, S. (2009). The effects of heavy metals on seed germination and plant growth on alfalfa plant (Medicago sativa). Bulg. J. Agric. Sci., 15(4); 347–350. Baran, A. (2013). Assessment of Zea mays sensitivity to toxic content of zinc in soil. Pol. J. Environ. Stud., 22(1); 77–83. Barbosa, J. S., Cabral, T. M., Ferreira, D. N., Agnez-Lima, L. F. and Batistuzzo de Medeiros, S. R. (2010). Genotoxicity assessment in an aquatic environment impacted by the presence of heavy metals. Ecotoxicol. Environ. Saf., 73(3); 320–325. Barceló, A. R. and Gómez Ros, L. V. (2009). Reactive oxygen species in plant cell walls. (In A. Puppo & L. A. Río (Eds.), Reactive oxygen species in plant signalling (pp. 73–93). Berlin: Springer). Batista, M. F., Moscheta, I. S., Bonato, C. M., Batista, M. A., Almeida, O. J. G. and Inoue, T. T. (2013). Aluminium in corn plants: influence on growth and morpho-anatomy of root and leaf. Rev. Bras. Ciênc. Solo., 37(1); 177–187. Battipaglia, G., Marzaioli, F., Lubritto, C., Altieri, S., Strumia, S., Cherubini, P. and Cotrufo, M. F. (2010). Traffic pollution affects tree-ring width and isotopic composition of Pinus pinea. Sci. Total Environ., 408(3); 586–593. Bernal-Salazar, S., Terrazas, T. and Alvarado, D. (2004). Impact of air pollution on ring width and tracheid dimensions in Abies Religiosa of the Mexico City basin. IAWA J., 25(2); 205–215. Bielen, A., Remans, T., Vangronsveld, J. and Cuypers, A. (2013). The influence of metal stress Pollution, 6(4): 827-848, Autumn 2020 843 on the availability and redox state of ascorbate, and possible interference with its cellular functions. Int. J. Mol. Sci., 14(3); 6382–6413. Bienert, G. P., Møller, A. L. B., Kristiansen, K. A., Schulz, A., Møller, I. M., Schjoerring, J. K. and Jahn, T. P. (2007). Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem., 282(2); 1183–1192. Breckle, S. W. and Kahle, H. (1992). Effects of toxic heavy metals (Cd, Pb) on growth and mineral nutrition of beech (Fagus sylvatica L.). Vegetatio., 101(1); 43–53. Brychkova, G., Xia, Z., Yang, G., Yesbergenova, Z., Zhang, Z., Davydov, O. and Sagi, M. (2007). Sulfite oxidase protects plants against sulfur dioxide toxicity. Plant J., 50(4); 696–709. Cassiani, M., Stohl, A. and Eckhardt, S. (2013). The dispersion characteristics of air pollution from the world’s megacities. Atmos. Chem. Phys., 13(2013); 9975–9996. Chaurasia, S., Karwariya, A. and Gupta, A. D. (2013). Effect of cement industry pollution on chlorophyll content of some crops at Kodinar, Gujarat, India. Proc. Int. Acad. Ecol. Environ. Sci., 3(4); 288–295. Choudhury, S., Panda, P., Sahoo, L. and Panda, S. K. (2013). Reactive oxygen species signalling in plants under abiotic stress. Plant Signal. Behav., 8(4); 1-6. Chukwuka, K. S. and Uka, U. N. (2014). Effects of air pollution on morphological characteristics of Manihot esculanta Crantz. Pollut. Res., 33(4); 13–18. Cullis, C. F. and Hirschler, M. M. (1980). Atmospheric sulphur: Natural and man-made sources. Atmos. Environ., 14(11); 1263–1278. Cun, P., Sarrobert, C., Richaud, P., Chevalier, A., Soreau, P., Auroy, P. and Vavasseur, A. (2014). Modulation of Zn/Cd P1B2-ATPase activities in Arabidopsis impacts differently on Zn and Cd contents in shoots and seeds. Metallomics., 6(11); 2109–2116. Das, K. and Roychoudhury, A. (2014). Reactive oxygen species (ROS) and the response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci., 2(2014); 1–13. Debona, D., Rodrigues, F. A. and Datnoff, L. E. (2017). Silicon’s role in abiotic and biotic plant stresses. Annu. Rev. Phytopathol., 55(1); 85–107. Dhanyalakshmi, H. K., Soolanayakanahally, Y. R., Rahman, T., Tanino, K. K. and Nataraja, N. K. (2019). Leaf cuticular wax, a trait for multiple stress resistance in crop plants. (In A. D. Oliveira (Ed.), Abiotic and biotic stress in plants (pp. 1-29 ). Rijeka: Intech). Dmuchowski, W., Bytnerowicz, A. and Kurczyn, E. U. (1997). The influence of air pollutants on needles and stems of scots pine ( Pinus sylvestris L.) trees. Environ. Pollut., 98(3); 325-334. Dogra, V. and Kim, C. (2020). Singlet oxygen metabolism: from genesis to signalling. Front. Plant Sci., 8(1640); 1-10. Dumčius, A., Paliulis, D. and Kozlovska-Kȩdziora, J. (2011). Selection of investigation methods for heavy metal pollution on soil and sediments of water basins and river bottoms: A review. Ekologija., 57(1); 30–38. Eichert, T., Kurtz, A., Steiner, U. and Goldbach, H. E. (2008). Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol. Plant., 134(1); 151–160. Emamverdian, A., Ding, Y., Mokhberdoran, F. and Xie, Y. (2015). Heavy metal stress and some mechanisms of plant defense response. Scientific World Journal., 1 (2015); 1–18. Enete, I. C., Chukwudeluzu, V. U. and Okolie, A. O. (2013). Evaluation of air pollution tolerance index of plants and ornamental shrubs in Enugu City : implications for urban heat island effect. World Environ., 3(3); 108–115. Etienne, P., Diquelou, S., Prudent, M., Salon, C., Maillard, A. and Ourry, A. (2018). Macro and micronutrient storage in plants and their remobilisation when facing scarcity: The case of drought. Agriculture., 8(14); 1-17. Fernández, V. and Brown, P. H. (2013). From plant surface to plant metabolism: the uncertain fate of foliar-applied nutrients. Front. Plant Sci., 4(289); 1-5. Fourcroy, P., Sisó-Terraza, P., Sudre, D., Savirón, M., Reyt, G., Gaymard, F. and Briat, J. F. (2014). Involvement of the ABCG37 transporter in the secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Physiol., 201(1); 155–167. Fox, C. A., Kincaid, W. B., Nash III, T. H., Young, D. L. and Fritts, H. C. (1986). Tree-ring variation in western larch ( Larix occidentalis ) exposed to sulfur dioxide emissions. Can. J. For. Res., 16(2); 283–292. Friend, J. P. (1973). The global sulfur cycle. (In S. I. Rasool (Ed.), Chemistry of the lower atmosphere (pp. 177–201). New York: Plenum Press). Mulenga, C. et al. 844 Gheorghe, I. F. and Ion, B. (2011). The effects of air pollutants on vegetation and the role of vegetation in reducing atmospheric pollution. (In M. Khallaf (Ed.), The impact of air pollution on health, economy, environment and agricultural sources (pp. 241-280). Rijeka: InTech). Gill, S. S. and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 48(12); 909–930. Gupta, A. and Sarkar, S. (2016). Biological monitoring of cement factory emissions in Badarpur, Assam, India using Mangifera indica L. Indian J. Appl. Res., 6(7); 391–393. Gupta, D. K., Huang, H. G., Yang, X. E., Razafindrabe, B. H. N. and Inouhe, M. (2010). The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J. Hazard. Mater, 177(3); 437–444. Gupta, M. C. and Iqbal, M. (2005). Ontogenetic histological changes in the wood of mango (Mangifera indica L . cv Deshi ) exposed to coal-smoke pollution. Environ. Exp. Bot., 54 (2005); 248–255. Gurda, D., Kietrys, A. M., Szopa, A. and Twardowski, T. (2012). Life with oxidative stress. Chem. Eng. Process., 33(4); 509–528. Halliwell, B. (2006). Reactive species and antioxidants: Redox biology is a fundamental theme of aerobic life. Plant Physiol., 141(2); 312-322. Harrington, C. A. and Carlson, W. C. (2015). Morphology and accumulation of epicuticular wax on needles of Douglas-fir ( Pseudotsuga menziesii var. menziesii ). Northwest Sci., 89(4); 401–408. He, J., Qin, J., Long, L., Ma, Y., Li, H., Li, K. and Luo, Z. Bin. (2011). Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus × canescens. Physiol. Plant., 143(1); 50–63. Hirata, A., Corcoran, G. B. and Hirata, F. (2011). Carcinogenic heavy metals, As3+ and Cr6+, increase the affinity of nuclear mono-ubiquitinated annexin A1 for DNA containing 8-oxo-guanosine and promote translesion DNA synthesis. Toxicol. Appl. Pharm., 252(2); 159–164. Hossain, M. A., Bhattacharjee, S., Armin, S. M., Qian, P., Xin, W., Li, H. Y. and Tran, L. S. P. (2015). Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: Insights from ROS detoxification and scavenging. Front. Plant Sci., 6(420); 1-19. Husen, A. and Iqbal, M. (1999). Structural, functional and biochemical responses of Datura innoxia Mill. to coal-smoke pollution. Proc. of Acad. Environ. Biol., 8(1); 61-72. Iqbal, M., Aref, I. M., Khan, P. R., Iqbal, M., Aref, I. M. and Khan, P. R. (2010). Behavioural responses of leaves and vascular cambium of Prosopis cineraria (L.) Druce to different regimes of coal-smoke pollution. J. Plant Interact., 5(2); 117-113 Joseph, T., Dubey, B. and McBean, E. A. (2015). Human health risk assessment from arsenic exposures in Bangladesh. Sci. Total Environ., 527(528); 552–560. Joshi, N., Chauhan, A. and Joshi, P. C. (2009). Impact of industrial air pollutants on some biochemical parameters and yield in wheat and mustard plants. Environmentalist., 29(4); 398–404. Joshi, P. C. and Swami, A. (2007). Physiological responses of some tree species under roadside automobile pollution stress around the city of Haridwar, India. Environmentalist., 27(3); 365–374. Jozefczak, M., Remans, T., Vangronsveld, J. and Cuypers, A. (2012). Glutathione is a key player in metal-induced oxidative stress defences. Int. J. Mol. Sci., 13(3); 3145–3175. Kameswaran, S., Gunavathi, Y. and Krishna, P. G. (2019). Dust pollution and its influence on vegetation-a critical analysis. Res. J. Life Sci. Bioinform. Pharm. Chem. Sci., 5(341); 341–363. Khan, M. R. and Khan, M. M. (2011). Plants response to diseases in sulphur dioxide stressed environment. Plant Pathol. J., 10(1); 1–12. Kim, Y. Y., Choi, H., Segami, S., Cho, H. T., Martinoia, E., Maeshima, M. and Lee, Y. (2009). AtHMA1 contributes to the detoxification of excess Zn(II) in Arabidopsis. Plant J., 58(5); 737–753. Kincaid, W. B. and Nash, T. H. (1988). Detection of a sulfur dioxide signal in a tree-ring record: A case study from Trail, British Columbia, Canada. GeoJournal. , 17(2); 189–192. Kováčik, J., Klejdus, B., Hedbavny, J.and Bačkor, M. (2010). Effect of copper and salicylic acid on phenolic metabolites and free amino acids in Scenedesmus quadricauda (Chlorophyceae). Plant Sci., 178(3); 307–311. Kováčik, J., Klejdus, B., Štork, F. Š. and Hedbavny, J. (2012). Physiological responses of Tillandsia albida (Bromeliaceae) to long-term foliar metal application. J. Hazard. Mater., 239–240(2012); 175–182. Kozhevnikova, A. D., Seregin, I. V., Erlikh, N. T., Shevyreva, T. A., Andreev, I. M., Verweij, R. and Schat, H. (2014). Histidine-mediated xylem loading Pollution, 6(4): 827-848, Autumn 2020 845 of zinc is a species-wide character in Noccaea caerulescens. New Phytol., 203(2); 508–519. Koziol, M. J. and Whatley, F. R. (1984). Gaseous air pollutants and plant metabolism. (London: Mid-County Press) Kozlov, M. V, Zvereva, E. L. and Niemela, P. (1999). Effects of soil quality and air pollution on the rooting and survival of Salix borealis cuttings. Boreal Environ. Res. , 4(1999); 67–76. Kuddus, M., Kumari, R. and Ramteke, P. W. (2011). Studies on air pollution tolerance of selected plants in Allahabad city, India. JERM. , 2(3); 042–046. Kulshrestha, U. and Saxena, P. (Eds.) (2016). Plant responses to air pollution. (Singapore: Springer). Kumar, M., Bijo, A. J., Baghel, R. S., Reddy, C. R. K. and Jha, B. (2012). Selenium and spermine alleviate cadmium-induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation. Plant Physiol. Biochem., 51 (2012); 129-138 Lee, H. K., Khaine, I., Kwak, M. J., Jang, J. H., Lee, T. Y., Lee, J. K. and Woo, S. Y. (2017). The relationship between SO2 exposure and plant physiology: A mini-review. Hortic. Environ. Biote., 58(6); 523–529. Leghari, S. K. and Zaidi, M. A. (2013). Effect of air pollution on the leaf morphology of common plant species of Quetta city. Pak. J. Bot., 45(1); 447–454. Li, L., Zhang, K., Gill, R. A., Islam, F., Farooq, M. A., Wang, J. and Zhou, W. (2018). Ecotoxicological and interactive effects of copper and chromium on physiochemical, ultrastructural, and molecular profiling in Brassica napus L. Biomed Res. Int., 1(2018); 1-17. Li, Q., Chen, L. S., Jiang, H. X., Tang, N., Yang, L. T., Lin, Z. H. and Yang, G. H. (2010). Effects of manganese-excess on CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport of leaves, and antioxidant systems of leaves and roots in Citrus grandis seedlings. BMC Plant Biol., 10(42); 1–16. Lin, Y. F., Hassan, Z., Talukdar, S., Schat, H. and Aarts, M. G. M. (2016). Expression of the Znt1 zinc transporter from the metal hyperaccumulator Noccaea caerulescens confers enhanced zinc and cadmium tolerance and accumulation to Arabidopsis thaliana. PLoS One., 11(3); 1–30. Lombi, E., Tearall, K. L., Howarth, J. R., Zhao, F. J., Hawkesford, M. J. and McGrath, S. P. (2002). Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol., 128(4); 1359–1367. Luo, Z. Bin, He, J., Polle, A. and Rennenberg, H. (2016). Heavy metal accumulation and signal transduction in herbaceous and woody plants: Paving the way for enhancing phytoremediation efficiency. Biotechnol. Adv., 34(6); 1131–1148. Mahmooduzzafar, N. A., Hegazy, S. S., Aref, I. M. and Iqbal, M. (2010). Anatomical changes in the wood of Syzygium cumini exposed to coal-smoke pollution. J.Food Agric. Environ., 8(3); 959–964. Manzano, R., Moreno-Jiménez, E. and Esteban, E. (2015). Arsenic in the soil–plant system: phytotoxicity and phytoremediation. (In N. Chakrabarty (Ed.), Arsenic toxicity: prevention and treatment (pp. 219–234). Boca Raton: CRC Press) Miller, J. E. (1988). Effects on photosynthesis, carbon allocation, and plant growth associated with air pollutant stress. (In W. W. Heck, O. C Taylor, & D. T. Tingey (Eds.), Assessment of crop loss from air pollutants (pp.287–314). New York: ELSEVIER). Milner, J. M., Seamon, J., Craft, E. and Kochian, V. L. (2013). Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J. Exp. Bot., 64(1); 369–381. Milner, M. J., Mitani-Ueno, N., Yamaji, N., Yokosho, K., Craft, E., Fei, Z. and Kochian, L. V. (2014). Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation. Plant J., 78(3); 398–410. Mohan, D. and Pittman, C. U. (2007). Arsenic removal from water/wastewater using adsorbents-A critical review. J. Hazard. Mater., 142(1); 1–53. Møller, I. M., Jensen, P. E. and Hansson, A. (2007). Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol., 58(1); 459–481. Mullineaux, P. M. and Rausch, T. (2005). Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth. Res., 86(3); 459–474. Ncube, E., Banda, C. and Mundike, J. (2014). Air pollution on the Copperbelt Province of Zambia : Effects of sulphur dioxide on vegetation and humans. Nat. Env. Sci., 3(1); 34–41. Nel, A., Xia, T., Mädler, L. and Li, N. (2006). Toxic potential of materials at the nanolevel. J. Sci., 311(5761); 622–627. Nicholls, A. M. and Mal, T. K. (2003). Effects of lead and copper exposure on the growth of an Mulenga, C. et al. 846 invasive weed, Lythrum salicaria L. (Purple Loosestrife). Ohio J Sci., 103(5); 129–133. Noctor, G., De Paepe, R. and Foyer, C. H. (2007). Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci., 12(3); 125-134. Omasa, K., Saji, H., Youssefian, S. and Kondo, N. (Eds.) (2008). Air pollution and plant biotechnology: Prospects for phyto-monitoring and phytoremediation. (Tokyo: Springer). Omasa, K., Saji, H., Youssefian, S. and Kondo, N. (Eds.) (2002). Air pollution and plant biotechnology : Prospects for phyto-monitoring and phytoremediation. (Tokyo: Springer) Opdenakker, K., Remans, T., Vangronsveld, J. and Cuypers, A. (2012). Mitogen-Activated Protein (MAP) kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses. Int. J. Mol. Sci, 13(6); 7828–7853. Page, V. and Feller, U. (2015). Heavy metals in crop plants: transport and redistribution processes on the whole plant level. Agron. J., 5(3); 447–463. Page, V., Weisskopf, L. and Feller, U. (2006). Heavy metals in white lupin: uptake, root-to-shoot transfer and redistribution within the plant. New Phytol., 171(2); 329–341. Pastore, D., Trono, D., Laus, M. N., Di Fonzo, N. and Flagella, Z. (2007). Possible plant mitochondria involvement in cell adaptation to drought stress. A case study: durum wheat mitochondria. J. Exp. Bot., 58(2); 195–210. Perone, A., Cocozza, C., Cherubini, P., Bachmann, O., Guillong, M., Lasserre, B. and Tognetti, R. (2018). Oak tree-rings record spatial-temporal pollution trends from different sources in Terni (Central Italy). Environ. Pollut., 233(2018); 278–289. Pinto, E., Sigaud-kutner, T. C. S., Leitao, M. A. S., Okamoto, O. K., Morse, D. and Colepicolo, P. (2003). Heavy metal-induced oxidative stress in algae. J. of Phycol., 39(6); 1008–1018. Pourkhabbaz, A., Rastin, N., Olbrich, A., Langenfeld-Heyser, R. and Polle, A. (2010). Influence of environmental pollution on Leaf properties of urban plane trees, Platanus orientalis L. B. Environ. Contam. Tox., 85(3); 251–255. Pourrut, B., Shahid, M., Douay, F., Dumat, C. and Pinelli, E. (2013). Molecular mechanisms involved in lead uptake, toxicity and detoxification in higher plants. (In D. K. Gupta, F. J. Corpas, & J. M. Palma (Eds.), Heavy metal stress in plants (pp. 121–147). London: Springer). Pourrut, Bertrand, Shahid, M., Dumat, C., Winterton, P. and Pinelli, E. (2011). Lead uptake, toxicity and detoxification in plants. Rev. Environ. Contam. T., 213(2011); 113–136. Prajapati, S. K. and Tripathi, B. D. (2008). Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution. J. Environ. Qual., 37(3); 865–870. Pucciariello, C., Banti, V. and Perata, P. (2012). ROS signalling as a common element in low oxygen and heat stresses. Plant Physiol. Biochem., 59(2012); 3–10. Rajput, K. S. and Rao, K. S. (2005). Cambial periodicity and formation of wood in Ailanthus excelsa growing under the influence of combined air pollutants. Phyton-Ann. Rei Bot., 45(1); 51–64. Rajput, K. S., Rao, K. S. and Kim, Y. S. (2008). Cambial activity and wood anatomy in Prosopis spicigera (Mimosaceae) affected by combined air pollutants. IAWA J., 29(2); 209–219. Richau, K. H., Kozhevnikova, A. D., Seregin, I. V., Vooijs, R., Koevoets, P. L. M., Smith, J. A. C. and Schat, H. (2009). Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens. New Phytol., 183(1); 106–116. o, . A. and Puppo, A. ( ds.) (2009). Reactive oxygen species in plant signalling. (Berlin: Springer). Roberts, D., Nachtegaal, M. and Sparks, D. L. (2005). Speciation of metals in soils. (In L. Al-Amoodi, W. A. Dick, D. L. Sparks, & M. A. Tabatabai (Eds.), Chemical processes in soils (pp. 619–654). Madison: Soil Science Society of America, Inc.). Safdari, V., Ahmed, M., Devall, M. S. and Bayramzadeh, V. (2012). Effects of air pollution on morphological and anatomical characteristics of Pinus eldarica wood. Fuuast. J. Biol., 2(2); 5–12. Salam, M. M. A., Kaipiainen, E., Mohsin, M., Villa, A., Kuittinen, S., Pulkkinen, P. and Pappinen, A. (2016). Effects of contaminated soil on the growth performance of young Salix (Salix schwerinii E. L. Wolf) and the potential for phytoremediation of heavy metals. J. Environ. Manage., 183(3); 467–477. Saleem, M. H., Fahad, S., Khan, S. U., Ahmar, S., Khan, M. H. U., Rehman, M., Maqbool, Z. and Liu, L. (2019). Morpho-physiological traits, gaseous exchange attributes, and phytoremediation potential of Jute (Corchorus capsularis L.) grown in different concentrations of copper-contaminated soil. Ecotoxicol. Environ. Saf., xxx(xxxx); xxxx. Seftigen, K., Moldan, F. and Linderholm, H. W. Pollution, 6(4): 827-848, Autumn 2020 847 (2013). Radial growth of Norway spruce and Scots pine: effects of nitrogen deposition experiments. Eur. J. For. Res., 132(1); 83–92. Sen, A., Khan, I., Kundu, D., Das, K. and Datta, J. K. (2017). Ecophysiological evaluation of tree species for biomonitoring of air quality and identification of air pollution-tolerant species. Environ. Monit. Assess., 189(262); 1-15. Seyyednejad, S. M., Niknejad, M. and Koochak, H. (2011). A review of some different effects of air pollution on plants. Res. J. Environ. Sci., 5(4); 302–309. Seyyedneja, S. M., Niknejad, M. and Yusefi, M. (2009). The effect of air pollution on some morphological and biochemical factors of Callistemon citrinus in a petrochemical zone in South of Iran. Asian J. Plant Sci., 8(8); 562–565. Seyyednejad, M. S. and Koochak, H. (2011). A study on air pollution effects on Eucalyptus camaldulensis. IPCBEE., 16(2011); 98-101. Seyyednejad, S. M., Niknejad, M. and Yusefi, M. (2009). Study of air pollution effects on some physiology and morphology factors of Albizia lebbeck in a high-temperature condition in Khuzestan. J. Plant Sci., 4(4); 122–126. Seyyednejad, S. M. and Koochak, H. (2013). Some morphological and biochemical responses due to industrial air pollution in Prosopis juliflora (Swartz) DC plant. Afr. J. Agric. Res., 8(18); 1968–1974. Seyyednjad, S. M., Majdian, K., Koochak, H. and Niknejad, M. (2011). Air pollution tolerance indices of some plants around the industrial zone in South of Iran. Asian J. Biol. Sci., 4(3); 300-305. Shahid, M., Pourrut, B., Dumat, C., Nadeem, M., Aslam, M. and Pinelli, E. (2014). Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev. Environ. Contam. T., 232(2014); 1–44. Shahid, M., Schreck, E., Xiong, T., Khalid, S., Niazi, N. K. and Dumat, C. (2016). Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater., 325(2016); 36–58. Shanker, A. K., Cervantes, C., Loza-Tavera, H. and Avudainayagam, S. (2005). Chromium toxicity in plants. Environ. Int., 31(5); 739–753. Sharma, I. (2012). Arsenic induced oxidative stress in plants. Biologia., 67(3); 447–453. Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage and antioxidative defense mechanism in plants under stressful conditions. J. Bot., 2012(1); 1-26. Shen, Y., Zhang, Y., Chen, J., Lin, H., Zhao, M., Peng, H. and Pan, G. (2012). Genome expression profile analysis reveals important transcripts in maize roots responding to the stress of heavy metal Pb. Physiol. Plant., 147(3); 270–282. Sheng, H., Zeng, J., Yan, F., Wang, X., Wang, Y., Kang, H. and Zhou, Y. (2015). Effect of exogenous salicylic acid on manganese toxicity, mineral nutrients translocation and antioxidative system in polish wheat (Triticum polonicum L.). Acta Physiol. Plant., 37(32); 1-11. Shepherd, T. and Wynne, G. D. (2006). The effects of stress on plant cuticular waxes. New Phytol., 171(3); 469–499. Shi, W., Zhang, Y., Luo, Z. Bin, Chen, S. and Polle, A. (2019). Physiological and molecular mechanisms of heavy metal accumulation in nonmycorrhizal versus mycorrhizal plants. Plant Cell Environ., 42(4); 1087-1103. Singh, A., Prasad, S. M., Singh, S. and Singh, M. (2016). Phytoremediation potential of weed plants’ oxidative biomarker and antioxidant responses. Chem Ecol., 32(7); 684–706. Singh, N. Y., Kashyap, P. Y., Prasad, H. Y., Jefferson, T. Y., Singh, N., Kashyap, P. and Jefferson, T. (2017). Air pollution tolerance index (APTI) of tree species: A review. Int. J. Chem. Stud., 5(4); 716–720. Singh, L. P., Gill, S. S., Gill, R. and Tuteja, N. (2012). Mechanism of sulfur dioxide toxicity and tolerance in crop plants. (In N. Tuteja, S. S. Gill, A. F Tiburcio, & N. Tuteja (Eds.), Improving crop resistance to abiotic stress (pp. 133–163). Weinheim: Wiley-Blackwell) Smirnoff, N. and Wheeler, G. L. (2000). Ascorbic acid in plants: biosynthesis and function. Crit. Rev. Biochem. Mol., 35(4); 291-314 Steiner, F., Zoz, T., Junior, A. S. P., Castagnara, D. D. and Dranski, J. A. L. (2012). Effects of aluminium on plant growth and nutrient uptake in young physic nut plants. Semin. Cienc. Agrar., 33(5); 1779–1788. Sukumaran, D. (2014). Effect of Air pollution on the anatomy of some tropical plants. Appl. Ecol. Environ. Sci., 2(1); 32–36. Sun, L. N., Zhang, Y. F., He, L. Y., Chen, Z. J., Wang, Q. Y., Qian, M. and Sheng, X. F. (2010). Genetic diversity and characterisation of heavy metal-resistant-endophytic bacteria from two Mulenga, C. et al. Pollution is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)" 848 copper-tolerant plant species on copper mine wasteland. Bioresour. Technol., 101(2); 501–509. Talukdar, D. (2013). Arsenic-induced changes in growth and antioxidant metabolism of fenugreek. Russ. J. Plant Physiol.., 60(5); 652–660. Tangahu, B. V., Sheikh Abdullah, S. R., Basri, H., Idris, M., Anuar, N. and Mukhlisin, M. (2011). A Review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng., 2011(1); 1–31. Tankha, K. and Gupta, R. K. (1992). Effect of water deficit and sulphur dioxide on total soluble proteins, nitrate reductase activity and free proline content in sunflower leaves. Biol. Plantarum., 34(4); 305–310. Tanou, G., Molassiotis, A. and Diamantidis, G. (2009). Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environ. Exp. Bot, 65(3); 270–281. Taylor, G. E. (1978). Plant and leaf resistance to gaseous air pollution stress. New Phytol., 80(3); 523–534. Thakar, B. and Mishra, P. C. (2010). Dust collection potential and air pollution tolerance index of tree vegetation around a Vedanta Aluminium Limited, Jharsuguda. Int. J. Life Sci., 3; 603–612. Thomas, M. D., Hendricks, R. H., Collier, T. R. and Hill, G. R. (1943). The utilisation of sulphur dioxide for the sulphur nutrition of Alfalfa. Plant Physiol., 18(3); 345–371. Thompson, M. A. (1981). Tree rings and air pollution: A case study of Pinus monophylla growing in east-central Nevada. Environ. Pollut. A., 26(4); 251–266. Tiwari, S., Agrawal, M. and Marshall, F. M. (2006). Evaluation of ambient air pollution impact on carrot plants at suburban site using open-top chambers. Environ. Monit. Assess., 119(3); 15–30. Trevizan, C. B., Magalhães, H. M. and Souza, S. G. H. (2018). Growth and anatomical alterations in leaves of popcorn induced by abiotic stresses. J. Agric. Sci., 10(11); 349. Tripathi, D. K., Singh, S., Singh, S., Mishra, S., Chauhan, D. K. and Dubey, N. K. (2015). Micronutrients and their diverse role in agricultural crops: advances and future prospective. Acta Physiol. Plant., 37(7); 1–14. Valko, M., Morris, H. and Cronin, M. (2005). Metals, toxicity and oxidative stress. Curr. Med. Chem., 12(10); 1161–1208. Wali, B., Iqbal, M. and Mahmooduzzafar. (2007). Anatomical and functional responses of Calendula officinalis L. to SO2 stress as observed at different stages of plant development. Flora., 202(4); 268–280. Wang, F., Zeng, B., Sun, Z., & Zhu, C. (2009). Relationship between proline and Hg2+-induced oxidative stress in a tolerant rice mutant. Arch. Environ. Con. Tox., 56(4); 723–731. Wani, B. A. and Khan, A. (2010). Effect of cement dust pollution on the vascular cambium of Juglans regia (L.). J. Ecol. Nat., 2(10); 225–229. Weigel, H. J., Halbwachs, G. and Jäger, H. J. (1989). The effects of air pollutants on forest trees from a plant physiological view. J. Plant Dis. Protect., 96(2); 2013–2017. Winner, W. E. and Atkinson, C. J. (1986). Absorption of air pollution by plants, and consequences for growth. Trends Ecol. Evol., 1(1); 15–18. Woodward, A. J. and Bennett, I. J. (2005). The effect of salt stress and abscisic acid on proline production, chlorophyll content and growth of in vitro propagated shoots of Eucalyptus camaldulensis. Plant Cell Tiss. Org., 82(2); 189–200. Wrzaczek, M., P., J., Gauthier, A., Overmyer, K. and Kangasjarvi, J. (2011). Reactive oxygen in abiotic stress perception - From genes to proteins. (In A. Shanker, & B. Venkateswarlu (Eds.), Abiotic stress response in plants: Physiological, biochemical and genetic perspectives (pp. 27-54). Rijeka: InTech) Xiao, S. and Chye, M. (2011). Progress in lipid research new roles for acyl-CoA-binding proteins ( ACBPs ) in plant development, stress responses and lipid metabolism. Prog. Lipid Res., 50(2011); 141–151. Yadav, S. K. (2010). Heavy metals toxicity in plants: An overview of the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S. Afr. J. Bot., 76 (2010); 167–179 Zimmermann, M. H. (1983). Xylem Structure and the Ascent of Sap. (Heidelberg: Springer) | ||
آمار تعداد مشاهده مقاله: 974 تعداد دریافت فایل اصل مقاله: 526 |