

Bustamante et al. []

.

Fenves and Chopra [] [] Chopra Lotfi et al.

•

Bouaanani et al. []

Email: Navayi_b@Yahoo.com : : : _ _ , ,

: $M\ddot{u} + C\dot{u} + Ku = F(t)$. () K C Mu ü ü Feneves and Chopra [] . F(t)

 \ddot{u}_{g} $F(t) = -M\{r\}\ddot{u}_g$ Lotfi and Tassoulas []. *n*×1 n r

Medina et al. [] . []. $n \times 2$ r Kucukarslan

. K C M.

_ : $P = -K_B e$ ()

 $K_{\scriptscriptstyle B}$ е Р . ()

Wilson & Khalvati [] : $K_w = \int_V B^T D_w B \,\mathrm{dv}$ ()

В :[] $D_{w} = \begin{bmatrix} K_{B} & 0\\ 0 & 100 * K_{B} \end{bmatrix}$.

> () $100 * K_{B}$

 D_w

.

 $E = E_1 + E_2; \qquad E_1 = \frac{1}{C_w^2} \int_{\Gamma} N^T N \, d\Gamma$ $E_2 = \frac{1}{g} \int_{s_3} N^T N \, ds \; ; \quad A = A_1 + A_2$ $A_1 = \frac{1}{C_w} \int_{s_1} N^T N \, ds \; ; \quad A_2 = \frac{1}{\beta \cdot C_w} \int_{s_2} N^T N \, ds$

.

.

.

$$\rho = 1000 \ kg \ / \ m^3$$

 $K_{\rm B} = 2.07 \times 10^9 \ N/m^2$

.[]

 $\rho = 2400 kg / m^2 \qquad E = 2.275 \times 10^{10} N / m^2$ $\xi = 5\% \qquad \upsilon = 0.2$

.

		۰L]							
		Relative error								
т	ω	H=50	,m	H=100,m						
Ľ	rad / sec	Lagrangian	Eulerian	Lagrangian	Eulerian					
		method	method	method	method					
Н	10	-36.7	14.7	-33.7	11					
2H	10	-8.1	3	-8.5	1.9					
3Н	10	1.4	2.14	-2	-0.036					
Н	20	-33.6	9.7	-40.1	-13.5					
2H	20	-8.8	1.1	-11.9	-3.6					
3H	20	0.05	0.25	-3.8	0.5					

:

г л

Lagrangian Eulerian — Westergard –

Pine Flat :

 $L_V L_H$

.

•

.

.

E_V E_H - 1 1 1

 $E_{VP} = E_{HP} L_{VP} L_{HP}$ [] Taft 1952
. -///

 $\begin{array}{c} () & \beta \\ . & () & \beta = 9 \end{array}$

Pain Flat

Slope of reservoir bed (%)	$L_H(mm)$	L_{HP} (%)	$E_{H}(mm)$	$E_{HP}(\%)$	$L_V(mm)$	L_{vp} (%)	$E_v(mm)$	$E_{\nu p}$ (%)
0	39.2	0	36.9	0	15.9	0	14.3	0
4	36.1	-7.8	34.0	-7.9	15.5	-2.2	14.4	1.1
8	35.7	-8.9	33.4	-9.3	16.3	-2.8	14.7	3.3

Pain Flat

•

•

()

Slope of upstream face of dam (%)	$L_H(mm)$	L_{HP} (%)	$E_{H}(mm)$	$E_{HP}(\%)$	$L_V(mm)$	$L_{\scriptscriptstyle VP}(\%)$	$E_V(mm)$	$E_{\scriptscriptstyle VP}(\%)$
Vertical	65.9	0	61.0	0	16.8	0	16.6	0
5	33.5	-49.2	31.6	-48.2	13.6	-18.9	13.3	-19.5
10	28.6	-56.6	27.2	-55.3	15.8	-5.8	15.7	-5.5
15	28.3	-57.0	27.9	-54.3	15.0	-10.5	14.6	-12.2

.

Pain Flat

()

Slope of upstream face of dam (%)	$L_H(mm)$	$L_{HP}(\%)$	$E_H(mm)$	$E_{HP}(\%)$	$L_{V}(mm)$	L_{VP} (%)	$E_V(mm)$	E_{VP} (%)
Vertical	65.7	0	60.7	0	16.9	0	16.7	0
5	53.1	-19.2	48.6	-19.9	16.1	-4.9	16.4	-1.8
10	42.8	-34.7	40.0	-34.2	15.9	-5.7	15.8	-5.6
15	35.8	-45.4	33.8	-44.3	14.8	-12.6	14.7	-11.8

Pain Flat

.

Reservoir depth	Earthquake component acceleration	Maximum displacement of dam crest in Lagrangian method	Different w.r.t. the full reservoir in Lagrangian method (percent)	Maximum displacement of dam crest in Lagrangian method	Different w.r.t. the full reservoir in Eulerian method (percent)
Full		39.2	0	36.9	0
2/3		35.7	-8.9	35.1	-4.7
1/3	Horizontal	30.9	-21.0	30.9	-16.2
0		30.6	-21.9	30.6	-17.1
Full		14.5	0	14.3	0
2/3		3.7	-74.6	3.6	-74.7
1/3	Vertical	4.1	-71.6	4.1	-71.0
0		5.1	-65.1	5.1	-64.5

:

:

:

:

(b)

(c)

(a)

.

Elcentro 1940

:

Н

.

Н

.

.

Pine Flat

) (

.(

)

2 - Zangar, C. N. and Haefei, R. J. (1952). *Electric analog indicates effects of horizontal earthquake shock on dams*. Civil Eng., PP.54-55.

PineFlat

- 3 Zienkiewicz, O. C. and Nath, B. (1963). "Earthquake hydrodynamic pressure on arch dams an electric analog solution." *Proc. Inst. Civil. Eng.*, Vol. 25, PP.165-176.
- 4 Kotsubo, S. (1961). "External forces on arch dams during earthquakes." *Memories Faculty of Engineering,* Kyushu University, Fukuoka, Japan, Vol. 20, No. 4.
- 5 Bustamante, J. I., Rosenblueth, E., Herrera, I., and Flores, A. (1963). "Presion hidrodynamica en presas y depositos" *Boletin Sociedad Mexicana de Ingenieria Sismica*, Vol. 1, No. 2.
- 6 Chopra, A. K. (1967). "Hydrodynamic pressure on dams during earthquakes." Proc., ASCE , EM6.
- 7 Chopra, A. K. (1968). "Earthquake behavior of dam-reservoir system." J. Eng. Mech., ASCE 94, PP.1475-1499.
- 8 Saint John, C. M. (1972). "Finite element analysis of two and three-dimension jointed structures-computer programs." *Rock Mechanics Research Report No.13*, Imperial College, London, United Kingdom.

- 9 Chopra, A. K., Chakrabarti, P. (1981). "Earthquake analysis of concrete gravity dams including dam-fluid-foundation rock interaction." *Earthquake Engineering and Structural Dynamics*, Vol. 9, PP.363-383.
- Hall, J. F. and Chopra, A. K. (1982). "Two dimensional dynamic analysis of concrete gravity and embankment dams including hydrodynamic effects." *Earthquake Engineering and Structural Dynamics*, Vol. 10, PP.305-332.
- 11 Feneves, G., Chopra, A. K. (1985). "Effects of reservoir bottom absorption and dam-water-foundation rock interaction on frequency response functions for concrete gravity dams." *Earthquake Engineering and Structural Dynamics*, Vol. 13, PP.13-31.
- 12 Lotfi, et al. (1987). "A technique for the analysis of the response of dams to earthquakes." *Earthquake Engineering and Structural Dynamics*, Vol. 15, PP.463-490.
- 13 Bouaanani, et al. (2003). "A closed-form formulation for earthquake-induced hydrodynamic pressure on gravity dams." *J. Sound and Vibration*, Vol. 261, PP.573-582.
- 14 Feneves, G. and Chopra, A. K. (1984). "Earthquake analysis of concrete gravity dams including bottom absorption dam-water-foundation rock interaction." *Earthquake Engineering and Structural Dynamics*, Vol. 12, PP.663-683.
- 15 Lotfi, V. and Tassoulas, J. L. (1986). *Analysis of the response of dams to earthquakes*. Report GR86-2, The University of Texas, Austin.
- 16- Medina, at el., (1990). "On the response of dams to earthquakes including the effects of sediments." *J. Struct. Eng.*, Vol. 116, PP.3108-3121.
- 17- Kucukarslan, S. (2003). "Dam-Reservoir interaction including the reservoir bottom effects in time domain." *Proc.*, *16th ASCE Eng. Mech. Conference*, University of Washington, Seattle.
- 18- Wilson, E. L. and Khalvati, M. (1983). "Finite elements for dynamic analysis of fluid-solid systems." *Int. J. Num. Meth. Eng.*, Vol. 19.
- 19 Navayineya, B. and Ahmadei, M. T. "Hydrodynamic analysis of dam and reservoir using Lagrangian method." *I. J. of Eng. Science and Industrial University*, Vol. 6, No.1
- 20 Alijamshidi, D. (2004). Assessment of Lagrangian and Eulerian methods for determination of hydrodynamics pressures on concrete gravity dams under seismic effect. M.Sc. thesis, Civil Engineering Dept., Mazandaran University (in Persian).
- 21- Beer, G. (1985). "An isoparametric joint/interface element for finite elements analysis." *Int. J. Num. Eng.*, Vol. 21.
- 22 Vaseghi, Amiri, J. (1997). Nonlinear dynamic analysis of tensile-shear failure in gravity dams including hydrodynamic interaction due to seismic loads. PhD thesis, Tarbiyate Modares University (in Persian).
- 23 Bathe, K. J. (1996). Finite Element Procedures in Eng. Analysis. Prentice Hall.
- 24 Chopra, A. K., Chakrabarti, P. and Gupta, S. (1980). *Earthquake Response of Concrete Gravity Dams including Hydrodynamic and Foundation rock interaction Effects*. Report No. UCB/EERC-80/01 January 1980.