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ABSTRACT: In this paper, the artificial intelligence is employed to design a Fault-Tolerant 

Controller (FTC) for structural vibrations. The FTC is designed to reduce the probability of 

damage considering sensor fault. For this purpose, Neural Networks (NNs) are used as fault 

detection and accommodation and fuzzy logic is used as a controller. This control strategy 

requires two groups of neural networks. The first group of neural networks finds the faulty 

sensor by estimating the structural responses and comparing them with the responses 

obtained from the sensors. The second group has the task of estimating the response of the 

faulty sensor using data obtained from healthy sensors. To evaluate this method, the time 

history analysis of a 3-story benchmark building equipped with accelerometers and active 

actuators has been used. This evaluation is based on determining the probability of structural 

damage and the generation of fragility curves under forty ground motions. To develop 

fragility curves, the criteria specified in the FIMA 356 (IO, LS and CP) for the moment frame 

based on the inter-story drift are used. This study show that in the absence of the neural 

networks, sensor fault reduces the performance of the fuzzy controller and it is even possible 

to increase the structural responses compared to the structure without the controller. In 

addition, results demonstrate that the proposed control strategy can rectify the deterioration 

of sensor faults and decrease the probability of failure. 

 

Keywords: Fault Diagnosis, Fault-Tolerant Control, Fuzzy Logic Controller (FLC), Neural 

Networks, Probability of Damage. 

 

 

INTRODUCTION 

 

Researchers have used a variety of methods 

to reduce damage to structures as well as 

casualties. One of these methods is structural 

control, which is it in 4 forms: passive, semi-

active, active and hybrid. In the active control 

system, the controller determines the 

magnitudes of control forces using the 

responses measured by the sensors. These 

forces are applied to the structure by the 

actuators. In this method, if each part of the 
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control system does not work properly, the 

determined control forces may increase 

structural responses and the probability of 

failure instead of reducing the damage. 

Therefore, it is very important to have a 

robust controller that can work properly in 

different situations. One of the robust control 

systems is fault-tolerant control (FTC) 

system. 

FTC systems are useful controllers that are 

robust to possible problems in the control 

system, including faults in the actuators, 

sensors, etc. FTC systems are divided into 

two categories: 1) passive; and 2) active. In 

the passive method, the control rules are set 

in some way to be less sensitive to changes in 

situations and faults (Schulte and Gauterin, 

2015; Lebreton et al., 2016). In the active 

method, a Fault Detection and Isolation (FDI) 

mechanism is employed to determine when 

and how to improve the controller (Schuh et 

al., 2015; Lan and Patton, 2016). The active 

methods usually give better results because 

they can cover a wider range of different 

faults.  

Typically, two types of FDI are used in the 

FTC systems: 1) hardware redundancy; and 

2) analytical redundancy. In the first method, 

which is mostly used, the performance of 

different parts is controlled by using 

additional equipment to find the fault and its 

location in case of occurrence. In the second 

method, the logical relationship between the 

variables of different parts of the system is 

used to detect faults. Hardware redundancy 

methods require additional equipment, space 

and cost, and analytical redundancy methods 

require a precise model of the system. 

Because the second method requires a precise 

system model, it is mostly used for simple and 

linear systems (Raji et al., 2018; Fonod et al., 

2015). Sometimes methods such as artificial 

neural networks, fuzzy sets, etc. are used to 

find the relationship between different parts 

of the system (Shen et al., 2014; Choi et al., 

2015). One of the advantages of these 

methods is that they are capable of modeling 

complex and non-linear systems. 

The purpose of the risk study is to estimate 

the level of damage to the structures under 

different seismic intensities (Abdollahzadeh 

et al., 2015). One way to do this is to use 

fragility curves. These curves express the 

probability that limit states will exceed 

certain values as a function of seismic 

intensities such as spectral acceleration. 

Several ways are used to derive fragility 

curves. According to the sources of data, 

these ways can be divided into 4 categories 

as: Empirical, Judgmental, Analytical and 

Hybrid (Kwon and Elnashai, 2006). 

Analytical methods are usually among the 

most widely used methods that do not require 

empirical data. In these methods, the 

probability of failure in structures is 

calculated through methods such as nonlinear 

static, elastic spectral and nonlinear time 

history analyses (Padgett and DesRoches, 

2008). 

This paper proposes a fault-tolerant sensor 

control system for nonlinear structures. Fuzzy 

logic controller and artificial neural networks 

(NNs) are used for this purpose because they 

do not need the system mathematical model. 

The fuzzy controller acts as the main 

controller, and neural networks are used as 

FDI. Here, two groups of NNs are used; one 

to detect fault and the other to estimate the 

response of the faulty sensor. The effect of 

this control system on reducing the 

probability of failure is investigated by 

examining the fragility curves of a 3-story 

nonlinear building. 

 

STRUCTURAL DESCRIPTION AND 

CONTROL DEVICES 

 

To investigate the performance of the control 

system the SAC 3 story nonlinear benchmark 

building is employed. Although it is designed 

for the Los Angeles area, it has not actually 

been constructed. The specifications of this 
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building have been fully expressed by Ohtori 

et al. (2004). This building, which is shown 

in Figure 1, has a plan measuring 36.58 m by 

54.87 m and a height of 11.89 m. There are 4 

and 6 bays with a length of 9.15 meters for 

each bay in the north-south and east-west 

directions, respectively. The building uses the 

steel perimeter moment-resisting frames 

(MRFs) as a lateral load-resisting system. 

The interior frames of the building include 

simple joints. The floors are designed as 

composites and are assumed to be rigid on the 

horizon plane. Because the structure is 

regular in plan and height, only half of the 

structure is considered for analysis. In other 

words, an MRF in the north-south direction is 

analyzed with half of the seismic mass of the 

entire building. The periods of the first three 

modes of this frame are 1.01, 0.33 and 0.17 s, 

respectively. 

Due to severe earthquakes, the response of 

structures may become nonlinear due to the 

yielding of members. Sometimes this 

nonlinearity is ignored for simplicity. This 

simplification can make a significant 

difference in the response. In this paper, 

nonlinear behavior is considered by modeling 

plastic hinges with a bilinear hysteresis 

model. It is assumed that these hinges occur 

at the ends of the beams and columns of the 

moment frame. 

In this paper active actuators have been 

used to provide control forces. They are 

employed using Chevron braces arranged 

horizontally between two successive floors. 

The maximum force that any actuator can 

produce is limited to 1000 kN. Typically, this 

amount of force can be easily generated by 

actuators (Karamodin et al., 2012). Here, two 

actuators are assumed for each story to 

provide larger control forces. 

 

GROUND MOTION RECORDS 

 

To derive the fragility curves for a structure, 

it is very important to choose the appropriate 

ground motions that represent the seismic 

hazard in the target area. Usually the number 

of earthquakes recorded in each region is not 

enough to achieve the right accuracy. 

Somerville et al. (1997) provided 60 ground 

motions, including three sets of 20, for the 

Los Angeles area. The return period of these 

sets is 72, 474 and 2475 years and the 

probability of their exceeding in 50 years is 

50, 10 and 2 percent, respectively. These sets 

of ground motions are hereafter referred to as 

the 50 in 50 set, 10 in 50 set, and 2 in 50 set. 

According to Bazzuro and Cornell (1994), the 

use of 5 to 7 input motion could be 

appropriate to represent the seismic hazard of 

the target area. Therefore, in this paper, two 

sets (2 in 50 set and 10 in 50 set) are used to 

develop fragility curves. 
 

 
Fig. 1. Plan and elevation of 3 story nonlinear benchmark building  
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FRAGILITY ANALYSIS PARAMETERS  

 

The probability of seismic demand (D) 

exceeding the structural capacity limits (C) 

for different seismic intensities is defined as 

fragility as shown Eq. (1) (Baghban et al., 

2015, Mohammadizadeh et al., 2018). 
 

𝐹𝑟𝑎𝑔𝑖𝑙𝑖𝑡𝑦 =  𝑃[𝐷 ≥ 𝐶|𝑆] (1) 

 

Therefore, seismic demand and structural 

capacity need to be calculated to analyze 

fragility. 
 

Demand Model 

To develop fragility curves, it is necessary 

to determine the relationship between seismic 

intensity and seismic demand. This 

relationship (Eq. (2)) is usually considered as 

a power function (Padgett and DesRoches, 

2008): 
 

𝐷 = 𝑎𝑆𝑏 (2) 

 

where a and b: are unknown regression 

coefficients. To calculate these coefficients, 

the logarithmic transformation of Eq. (2) is 

used, which leads to Eq. (3). 
 

𝑙𝑛(𝐷) = 𝑙𝑛(𝑎) + 𝑏𝑙𝑛(𝑆) (3) 

 

In order to obtain a and b, nonlinear analysis 

of the structure and a linear regression are 

required. 

 

Performance Limit States 

Since the limit states are directly effective 

in fragility curves, the reasonable definition 

of these limits is very important (Erberik and 

Elnashai, 2004). In FEMA 356 (2000), three 

limit states are defined based on inter-story 

drift. These limits are the Immediate 

Occupancy (IO), the Life Safety (LS) and the 

Collapse Prevention (CP). For steel moment 

frames, the values specified by FEMA356 for 

the maximum inter-story drift ratio of the IO, 

LS and CP limit states are 0.7, 2.5 and 5%, 

respectively. These limits have been accepted 

and used by various researchers for 

generating fragility curves (e.g., Kazantzi, 

Righiniotis et al., 2008). Therefore, they have 

been selected as limit states in this study. 

 

FRAGILITY CURVES 

 

The fragility function can be determined 

using Eq. (4) when the performance limit 

states (d) are accepted as deterministic values. 
 

𝑃(𝐷 ≥ 𝑑|𝑆 = 𝑠)
= 1

− Φ (
ln (𝐶) − 𝜆𝐷|𝑆

𝛽𝐷|𝑆
) 

(4) 

 

where Ф( ): is the standard normal cumulative 

distribution function and λ and β: are 

parameters of the lognormal distribution 

calculated from Eq. (2). The fragility curves 

for representative structure are shown in 

Figure 2, considering the limit states of the 

FIMA. 

 

PROPOSED CONTROL STRATEGY 

 

Fuzzy Logic Controller (FLC) 

Recently, fuzzy controllers have been 

widely used in engineering sciences, 

including structural control (Karamodin et 

al., 2012; Ghaffarzadeh, 2013). There are 

many reasons to use these controllers. One of 

these reasons is their ability to control 

nonlinear systems. Another reason to use 

them is that they are not sensitive to 

uncertainty. They can also be used for 

systems whose mathematical models are not 

available. Therefore, here, these controllers 

are selected to control the nonlinear 

representative structure. 

To design an FLC, two main parts must be 

determined: structure (input and output 

variables, the number and type of 

membership functions (MFs), the type of 

inference mechanism, operators, and 

defuzzification method) and parameters 

(parameters relating to MFs and fuzzy rules). 
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Generally, the structure and parameters are 

determined by experts according to their 

knowledge of the system. However, this 

method may not lead to the best results. 

Here, a controller is designed for each 

story. These controllers include two inputs 

and one output. The input of each controller 

is the displacement and velocity of the floor 

and its output is the control force of that floor. 

5 triangular membership functions are chosen 

for each input and output. Inputs and output 

are normalized in the range of -1 to 1. The 

MAX–MIN fuzzy inference method and the 

mean of centroid defuzzification method is 

chosen for the controllers. A description of 

fuzzy variables is given in Table 1. To find 

optimal values for the membership function 

parameters as well as fuzzy rule base a 

genetic algorithm was used. The goal of this 

optimization algorithm was to reduce story 

drifts. More details on this method have been 

given in Karamodin et al. (2012). The optimal 

membership functions and the optimal fuzzy 

rule base determined by the genetic algorithm 

are shown in Figure 3 and Table 2, 

respectively. 

Table 1. Fuzzy variables 

Variable Definition 

PL 

PM 

PS 

ZO 

NS 

NL 

Positive and Large 

Positive and Medium 

Positive and Small 

Zero 

Negative and Small 

Negative and Large 
 

The fragility curves of the representative 

structure are shown in Figure 4 with and 

without the use of the fuzzy controller. 

Clearly, the controller has significantly 

reduced the probability of failure. 
 

Fault Detection and Isolation (FDI) 

Researchers usually design control 

systems on the assumption that system states 

are available and measurable. It is difficult to 

meet this assumption in full scale structures 

in civil engineering. Because the control of 

these structures requires the relative 

displacements and velocities of structure and 

the measurement of these relative values must 

be performed relative to a reference. But in 

these structures, it is possible to easily 

measure absolute acceleration with available 

sensors. 
  

  
Fig. 2. Fragility curves for uncontrolled structure 

   

Table 2. Fuzzy associative memory (FAM) 
   Displacement   

Velocity NL NS ZO PS PL 

NL None PS None None None 

NS ZO NS None None ZO 

ZO None None None NL None 

PS NL ZO ZO None NS 

PL None NS None NL NL 
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Fig. 3. Membership functions for inputs and output  

 

  
Fig. 4. Comparing fragility curves for uncontrolled and fuzzy logic controller 

 

In this paper, 4 sensors are used to measure 

the acceleration of floors and ground. These 

sensors, which measure the total acceleration 

of floors 1 to 3 and the ground, are hereafter 

referred to as sensors 1, 2, 3, and g, 

respectively. However, due to the fact that in 

this paper, the controller needs the relative 

displacement and relative velocity of the 

floors to determine the control forces, first by 

deducting the ground acceleration from the 

acceleration of the floors, the relative 

acceleration of the floors is calculated. Then, 

by integrating the relative acceleration 

values, the relative velocity and relative 

displacement of the floors are obtained. 

Here, two neural networks are employed 

to detect the faults. Both are used to estimate 

the velocity of the second floor. The first 

neural network tries to estimate the velocity 

of the second floor using the data obtained 

from the sensors 1 and g. The second neural 

network uses data from the sensors 3 and g to 

estimate this value. In addition, the velocity 

of this floor can be calculated using the data 

obtained from the sensors 2 and g. By 

comparing the three values obtained for the 

velocity of the second floor, the fault sensor 

can be detected. The schematic of this 

strategy is shown in Figure 5. 

Here, it is assumed that only one of the 

sensors will be defective and will no longer 

be able to measure the structural response and 

will only send noise to the controller. This 

noise is assumed to be identically distributed, 

statistically independent Gaussian white 

noise processes. When the three values 

obtained for the velocity of the second floor 

are close together, it indicates that all the 

sensors are healthy. But if, for example, 

sensor 1 fails, the estimated velocity for the 

second floor by the first neural network will 

be different from the other two values. In this 

way, it can be recognized that sensor 1 is 

defective. If instead of sensor 1, sensor 2 or 3 

is defective, they can be detected in a similar 

way. Sensor g malfunction is also detected 

when all three values obtained for the second 

floor velocity are different from each other. 

As mentioned earlier, two NN models of 

the structure are required for the proposed 
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FDI strategy. The first NN (second NN) 

estimates the velocity of the second floor 

based on the current and few previous 

histories of velocity and displacement of the 

first floor (third floor). These NNs have been 

trained through training data generated using 

the analysis of the representative structure 

under four ground motions. The sampling 

rate of the training data was 200 Hz for 80 s 

period, which leads to 16000 patterns for 

training, testing, and validation. To design 

neural networks, it is necessary to determine 

the number of inputs, outputs, hidden layers, 

and nodes in the hidden layers. They are 

usually determined by trial and error. Here, 

the most appropriate choice for inputs was to 

use the current and the two previous histories 

for the velocity and displacement. Moreover, 

for these networks, a hidden layer with ten 

nodes and the tanning activation function was 

accepted. The output activation function was 

also considered linear. 

Figure 6a shows velocity time history of 

second floor under one of the forty ground 

motions (the El Centro earthquake) as an 

example. To show the performance of FDI, it 

is assumed that the sensor 1 is fault at t=4 s. 

Figure 6b shows the difference between the 

values of velocity for second floor estimated 

by first NN and values measured by sensor 2 

and g. As it is obvious, because the first NN 

uses the data receiving from sensor 1 and g, 

until the sensor 1 is healthy, estimated error is 

small, but when the sensor 1 faults at t=4 s, 

the estimated error increases. Figure 6c shows 

the difference between the values of velocity 

for second floor estimated by second NN and 

values of sensor 2 and g. Because the second 

NN uses the data receiving from sensor 3 and 

g, fault in sensor 1 does no effect on the 

estimated error and the error remains small. 

 

Fault Accommodation 

Once the faulty sensor has been detected 

by the FDI, care must be taken to ensure that 

the controller's performance is not affected by 

the sensor malfunction as much as possible. 

In this paper, artificial neural networks have 

been used for fault accommodation. These 

NNs use the data of healthy sensors to 

estimate what the faulty sensor should 

measure. 

Here, three neural networks are needed to 

estimate the responses of floors 1 to 3. Each 

network estimates the displacement and 

velocity of one floor based on the current and 

two previous histories of velocity and 

displacement of adjacent floors. These NNs 

have been trained through training data 

created using the analysis of the 

representative structure. 16000 patterns were 

used for training, testing, and validation. One 

hidden layer with 20 nodes and the tanning 

activation function was adopted. The output 

activation function was also considered 

linear. 
 

 
Fig. 5. Schematic of FDI strategy 
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(a) 

 

(b) 

 

(c) 

Fig. 6. Velocity of story 2 and estimated error under El Centro earthquake: a) velocity of story 2; b) estimated error 

of the first NN; c) estimated error of the second NN 
 

As mentioned earlier, when one of the 

floor sensors (sensors 1-3) fails, the neural 

networks try to estimate the value of input 

required by the controller using the values of 

the adjacent floors. But when the ground 

sensor (sensor g) is defective, it is very 

difficult to estimate what the sensor should 

measure. In this situation, instead of relative 

accelerations between the floors and the 

ground, relative accelerations between the 

adjacent floors are used by the fuzzy 

controller. 

Figures 7 to 10 show the fragility curves 

for the structure, taking into account faults in 

various sensors. Clearly, when all the sensors 

are intact, the FLC (dashed lines) can greatly 

reduce the probability of damage compared to 

the uncontrolled structure (solid lines). This 

reduction is more noticeable in low intensities 

of ground motions. The fault of one of the 

sensors affects the performance of the FLC 

(dash-dot lines). In this case, in low seismic 

intensities, the controller cannot reduce 

responses as before, and in high seismic 

intensities, sometimes it increases them 

compared to the uncontrolled structure. Using 

the proposed controller (FTC) will greatly 

limit the effects of sensor fault (dotted lines). 

In fact, the FTC's performance is very close 

to the controller with healthy sensors. 
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Fig. 7. Fragility curves for different controllers (fault can occur in sensor of story 1) 

 

  
Fig. 8. Fragility curves for different controllers (fault can occur in sensor of story 2) 

 

  
 Fig. 9. Fragility curves for different controllers (fault can occur in sensor of story 3)  
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Fig. 10. Fragility curves for different controllers (fault can occur in sensor of ground) 

  

Although study on damage is the aim of 

this paper and developing the fragility curves 

can be enough for this purpose, usually time 

histories of response are depicted because 

they are more familiar for researchers. 

Relative displacement time histories of the 

story 3 under El Centro earthquake are shown 

in Figure 11 as an example for different 

controllers.  

Figures 11a and 11b show the relative 

displacement of the story 3 in the case of 

using fuzzy controller without FDI unit. 

Figure 11a shows the uncontrolled and 

controlled relative displacement responses 

when all the sensors are healthy. It is clear 

that the controller has been able to greatly 

reduce the relative displacement. Figure 11b 

shows the uncontrolled and controlled 

responses when the sensor 3 is faulty. 

Comparing these figures illustrates that the 

fault undermines the beneficial effects of 

active control. 

In Figure 11c, the response of the 

uncontrolled structure is compared with the 

response of the controlled structure 

considering the proposed FTC. This figure 

shows that the proposed control system has 

been quite effective in reducing the relative 

displacement of the story. 

 

 
(a) 
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(b) 

 
(c) 

Fig. 11. Relative displacement response of story 3 under El Centro earthquake: a) comparing uncontrolled and FLC 

when are sensors are healthy; b) comparing uncontrolled and FLC when sensor 3 is faulty; c) comparing 

uncontrolled and FTC when sensor 3 is faulty 
 

CONCLUSIONS 

 

In this paper, artificial neural networks were 

used to detect fault sensors and improve the 

performance of controller when one of the 

sensors fails. The control strategy included a 

fuzzy logic controller (FLC) which 

determined the control force of actuators and 

neural networks for fault detection, isolation 

(FDI) and accommodation. When a fault 

occurred, in the first step, the faulty sensor 

was detected by comparing the responses 

measured by the sensors with what were 

estimated by the neural networks. In the 

second step, after diagnosing the faulty 

sensor, using the information obtained from 

the healthy sensors, the neural networks 

estimated the inputs required by the 

controller, which could not be measured by 

the faulty sensor. To investigate the 

performance of the proposed control system, 

a three-story building was nonlinearly 

analyzed by 40 ground motions and its 

fragility curves were generated. 

The results illustrated that when all the 

sensors were healthy, the fuzzy controller was 

very effective in reducing the relative 

displacement and the probability of damage 

in the structure. This effect was more 

noticeable at low seismic intensities. If the 

FDI was not used, when one of the sensors 

failed, the fuzzy controller could not reduce 

the probability of damage as before, and even 

increase it in high seismic intensities. Using 
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the proposed controller (FTC) greatly 

eliminated the negative effects of sensor 

malfunction and it kept the controller as 

effective as before in reducing response. 
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