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Abstract 
In this study, density functional theory was used to investigate the effect of 

adsorption process and interaction between methanol as a fuel and graphene as a 
catalyst. Thermodynamic studies in this field have shown that Gibb's free energy is 
positive in most cases. Therefore, adsorption of methanol on graphene is very low and 
in the physical mode. Thus, other ways are required to increase adsorption on graphene 
surface. Changing pristine graphene (PG) to vacancy graphene (VG) or N-doped 
graphene (NG) can increase absorption, and convert their adsorption into chemical 
adsorption. Vacancy and N-doped in electronic structure of graphene increase 
adsorption of methanol to graphene. Increased absorption of VG and NG, in addition to 
changes in charge transfer causes significant changes in the location of HOMO and 
LUMO, which was confirmed by adsorption energy, NBO, QTAIM, and DOS. 
 
Keywords: Adsorption Energy; Density Functional Theory; Methanol; N-Doped Graphene; Vacancy 
Graphene. 
 

                                                        
* Corresponding author: Tel: +989186140862; Fax: +988433382132; Email: am.menatian@gmail.com 

Introduction 
Air pollution and greenhouse gases are the most 

important problems in the developed countries; the main 
source of which is emission of exhaust gases from 
motor vehicles. As the number of vehicles increases, 
greenhouse gas emission also increases, and global oil 
reserves decrease every day, as a result of which the use 
of alternative fuels will increase shortly. Methanol 
(CH3OH) is used as a liquid alternative fuel [1]. 
Transportation, storage, distribution, and the use of 

methanol are similar to traditional gasoline fuel. For this 
reason, it is the most suitable and practical fuel for 
engines [2, 3]. Ignition temperature of alcohol is higher 
than that of gasoline, making it easier to transport and 
store. Exhaust gases produced from combustion of 
gasoline have a higher concentration of particulate 
matter and nitrogen oxides than those produced from 
combustion of methanol. There is an oxygen atom in 
structure of methanol molecule, making mixture of 
gasoline and methanol to have more oxygen. There have 
been several studies on the use of methanol-gasoline 
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mixtures as fuel in spark ignition (SI) engines. CO and 
NOx emissions are reduced by increasing methanol in 
methanol/ gasoline mixture, while it is accompanied by 
fuel savings of 5.7–15% [4, 5). Thus, the combined use 
of fumigation methanol and oxidation catalyst leads to a 
decrease in the concentrations of HC, CO, and NOx, as 
well as particulate mass and number of the engine [6]. 
Graphene, a layer of graphite is the thinnest 2D 
material. Graphene index properties can be used in 
many technologies [7, 8]. Also, electrical properties of 
graphene can be altered by doping nitrogen atoms or 
creating vacancy. Graphene bed catalyst with nitrogen 
dope provides excellent activity and durability for 
methanol oxidation reaction [9, 10]. According to the 
previous density functional theory (DFT) studies on 
graphene, it has been found that defects in graphene or 
doping of elements, such as N, Pt, Pd, Ru, Al, Fe, and 
Mn to graphene increase graphene uptake [11-15]. 
Investigation of electrical properties of (N-doped and 
vacancy) graphene bonding structures is important in 
terms of state density [16, 17. Both methods (N-doped 
and vacancy) can change electrical demand for 
graphene. In VG, vacancy increases concentration of a 
zigzag edge of carbon atoms in the graphene, which in 
turn reduces gap energy and increases adsorption 
energy. Usually, in doping, hetero atoms replace carbon 
atom in the graphene carbon lattice, such as nitrogen 
atom, which greatly expands applications of graphene 
[18. 

In this study, DFT of adsorption energy of methanol 
on graphene is investigated with various configurations. 
Their effects on electronic structure of the modified 
surfaces are also evaluated. To the best of our 
knowledge, such studies have not been performed at this 
level before [19, 20. What seems important in this study 
is pivotal role of the combined use of CH3OH in fuel, 
development of progressive methods, and introduction 
of new adsorbents. In theory, properties of CH3OH 
interaction on surface of the above graphene are studied. 
Geometry, electronic structure, energy calculations, load 
analysis, and graphene energy gap mentioned in 
methanol adsorption are also assessed. For this purpose, 
basic information about the adsorbed methanol on 
graphene is determined, such as optimal orientation of 
interaction (adsorption) energy at various coverages and 
distances from graphene. Then, these data will be 
available as input for fine-tuning of molecular dynamics 
simulations of methanol adsorption process. 

 

Materials and Methods 
Optimization quantum chemistry and frequency 

calculations of all the geometric structures were 

performed using Gaussian 09 software package by DFT 
at the M062X method with 6-31 G (d) basis set, for 
obtaining real functions [21-24]. In this study, 
adsorption of MeOH onto surfaces of pristine graphene 
(PG), N-doped graphene (NG), and vacancy graphene 
(VG) was considered as adsorbent. There are three 
possible places for methanol to be adsorbed by graphene 
including top (methanol just on a carbon atom), bridge 
(methanol on a carbon-carbon bond), and hollow 
(methanol at the center of a graphene ring). Hydrogen 
atoms cap ends of these cells to neutralize electronic 
charge of terminal carbons. Methanol interacts with 
carbon, where changes, such as voids or nitrogen doping 
occur. The effects of these changes were also compared. 
Distance of methanol on graphene is the same for all the 
graphene settings and at a distance of fewer than 2Å. 
For comparing electrical changes of PG, VG, and NG, 
electronic structure descriptors must be calculated. 
Adsorption energy (Eads) and density of states (DOS) 
have been determined using the above theory level 
through energy of the highest occupied molecular 
orbital (HOMO) and energy of the lowest unoccupied 
molecular orbital (LUMO) from DFT, global 
electrophilicity index (ω), energy gap (∆Eg), chemical 
potential (µ), chemical hardness (ߟ), softness (S), the 
highest amount of electronic charge (∆Nmax), Gibbs̓ 
free energy (Gibbs), corrections ,and basis set 
superposition error (BSSE) [25].  

Adsorption energy (Eads) of CH3OH on graphene 
was specified using Eq. (1): 
∆Eads =E (adsorbent- CH3OH) - (Eadsorbent+ ECH3OH) + BSSE                       

(1) 
Where, E (adsorbent- CH3OH) is the total energy of 

adsorbent – CH3OH system, Eadsorbent, and ECH3OH are 
the total adsorbent energies of the isolated material and 
methanol, respectively. Energies were corrected by 
considering zero-point energy (ZPE) and BSSE using 
the Boys-Bernardi reciprocal method. 

After adsorption of CH3OH on different graphene 
configurations, charge transfer between them was 
investigated. Mechanism of interaction is as follows by 
comparing HOMO and LUMO between methanol and 
adsorbent after CH3OH adsorption:   
∆Eg= - (EHOMO -ELUMO)                                           (2) 
Where, EHOMO and ELUMO are the energies of HOMO 

and LUMO, respectively. 
Chemical potential (µ) is defined based on the 

subsequent equation [26]. 
µ = (ELUMO + EHOMO)/2                                           (3) 
Also, chemical hardness (η) can be calculated 

through the Koop-mans’ theorem (27).  ߟ = (ELUMO− EHOMO)/2                                             (4) 
In 1999, Parr et al., explained electrophilicity (ω) 
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ρ(r) is low. Nature of interactions is of the weak Van 
der Waals forces and if signs of ρ(r) and H oppose each 
other, the bond is partially covalent and partially 
electrostatic. 

The |(࢘)ࡳ|(࢘)ࢂ 	ratio is a suitable parameter to classify 
interatomic interactions. Electrostatic interactions are 
associated with |(࢘)ࡳ|(࢘)ࢂ ≤ 1,intermediate interactions 1 

(࢘)ࡳ|(࢘)ࢂ|> > 2, and the shared interactions |(࢘)ࡳ|(࢘)ࢂ > 2 (42). 

According to Table (4), where, |()|ீ()  is less than one in 
most cases and both Laplace and Hamilton values are 
positive or very low and electron densities are low, so 
the interaction is more likely to be of Van der Waals 
type. This is a weak attraction, but the effects of 
vacancy or doped increase electron density, which adds 
to adsorption property and transmits adsorption from 
Van der Waals force to electro-valence force. This 
confirms an increase in the adsorption energy. 

 
Conclusions 

In the present study, DFT calculations were 
performed to characterize adsorption ability of methanol 
onto pristine, vacancy, and N-doped graphene, and their 
results were compared. As expected and according to 
the previous DFT studies, our results showed that the 
effect of vacancy and N-doped on graphene increases 
absorption. However, vacancy was more efficient than 
N-doped, so VG had the highest and PG had the lowest 
adsorption among graphene in different configurations. 
Poor adsorption of this molecule by PG and strong 
adsorption by VG and NG were confirmed by 
adsorption energy (Eads), and analyses, such as NBO, 
QTAIM, and DOS. The following method was 
confirmed by data about methanol energy absorption on 

graphene. 
VG-CH3OH> NG-CH3OH> PG-CH3OH 
The interaction between methanol and graphene is of 

Van der Waals type. This force is a weak attraction and 
is considered as physical adsorption because values of 
Laplacian and Hamilton are positive or very low and 
electron density is low, but vacancy and N-doped effects 
increase electron density, which converts the force 
between methanol and graphene from Van der Waals to 
electro Valence, which is a chemical adsorption and 
increases adsorption energy. 
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