
Journal of Algorithms and Computation

journal homepage: http://jac.ut.ac.ir

Constructions of antimagic labelings

for some families of regular graphs
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1 Introduction

All graphs considered in this paper are finite, simple, undirected and connected, unless stated
otherwise. In 1990, Hartsfield and Ringel introduced the concept of an antimagic labeling of a
graph. They conjectured that every connected connected graph other than K2 is antimagic. An
antimagic labeling of a graph G = (V,E) is a bijection from E to the a set of positive integers
{1, 2, . . . , |E|} such that all vertex weights are pairwise distinct, where the vertex weight of a
vertex v, wt(v), is defined as the sum of the labels of all the edges incident with the vertex v.
A graph G is called antimagic if there exists an antimagic labeling of G.
Some families of graphs, for example, path Pm , star Sm, cycle Cm, complete graph Km, wheel
Wm and bipartite graph K2,m, m ≥ 3, have been proved to be antimagic in [6]. For more than
two decades there have been many attempts to settle the conjecture but although there are
now many supporting results, there still are many gaps that need to be filled, for instance, see
[1, 3, 7, 8, 9]. More details about antimagic labeling can be found in the dynamic survey by
Gallian in [5], see also [2].
In this paper we construct antimagic labelings for regular complete multipartite graphs and
then extend them to other regular graphs.
We conclude this section with a definition, a representation of an edge labeling and some
notations that will be used throughout the paper.
The join graph G+H of the graphs G and H is the graph with V (G+H) = V (G)∪V (H) and
E(G+H) = E(G) ∪ E(H) ∪ { uv : u ∈ V (G) and v ∈ V (H)}.
An edge labeling l of a graph G will be described by an array L, not necessary rectangular.
Each row of L represents a vertex of G and the entries in the row are the edge labels incident
with the vertex.
We denote by T t the transpose of the array T and by wtG(v) the sum of the labels of all the
edges incident with v in a graph G (resp. by wtL(v) the sum of all entries in the row v, where
L is the array of the edge labels of the graph G), or simply, wt(v).

2 Results

The following lemma will be used as a base step for constructing the antimagic labelings of
regular multipartite graphs.

Lemma 1. For m ≥ 2, the complete bipartite graph Km,m is antimagic.

Proof. Let Tl, 1 ≤ l ≤ m, be the (m× 1)-array of the edges ei, 1 ≤ i ≤ m, of the regular
complete bipartite graph Km,m. We label the edges ei, 1 ≤ i ≤ m, in the row i of the array Tl

with i + (l − 1)m. Then the array A = T1T2 . . . Tm is the array of edge labels of Km,m, where
each row of A is the set of all the labels of the edges incident with a vertex in one partition
of vertices while each column is the set of all the labels of edges incident with a vertex in
the other partition of vertices. We next prove that all vertex weights of Km,m are pairwise
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distinct. Let ri and cj for 1 ≤ i, j ≤ m, be a row (vertex) and a column (vertex) of the array

A, respectively. By the construction of the array A, we have wt(ri) = m3
−m2+2m

2
+ (i − 1)m

and wt(cj) = m(m+1)
2

+ (j − 1)m2. It is clear that wt(ri) < wt(rf), for 1 ≤ i < f ≤ m and
wt(cj) < wt(cg), for i ≤ j < g ≤ m. We finally verify that each vertex weight of one partition
of the vertices is distinct from each vertex weight in the other partition of the vertices.
For m even, we have wt(cm

2
) = m3

−m2+m
2

< m3
−m2+2m

2
= wt(r1) and wt(rm) = m3+m2

2
<

m3+m2+m
2

= wt(cm

2
+1). Hence all the vertex weights are pairwise distinct.

For m odd, suppose wt(ri) = wt(cj), then we have m(m2 − 2jm + 2i − 1) = 0. Since m is a
positive integer, m2 − 2jm + 2i − 1 = 0. Therefore, j2 − 2i + 1 > 0 and must be a square.
This leads to i = j; substituting back into the equation we obtain m = 2j − 1. In this case
the labeling of Km,m is not yet antimagic. To obtain an antimagic labeling of Km,m we make a
small change by swaping the labels ⌊m

2
⌋ and ⌊m

2
⌋ + 1.

Theorem 2. For m ≥ 1, the complete 3-partite graph Km,m,m is antimagic.

Proof. Let L be the array obtained from the array A as the one given in the proof of Lemma
1 by arranging the vertices of Km,m, in which wtL(vi) ≤ wtL(vj), for 1 ≤ i < j ≤ 2m, that is,
each row in L represents a vertex of Km,m and the entries in each row represent the labels of
edges incident with that row (vertex). Let Tl, 1 ≤ l ≤ m, be the (2m × 1)-array of the edges
ei, 1 ≤ i ≤ 2m, where ei are the edges of Km,m,m that do not belong to Km,m. We construct
the array B of the edge labels of Km,m,m as follows.

Case 1: m even

(1) Label the edge ei, 1 ≤ i ≤ 2m, in the row i of the array Tl, 1 ≤ l ≤ m, with i+(l− 1)2m,
for 1 ≤ l ≤ m

2
; and i+ 2m2 + (l − (m

2
+ 1))2m, for m

2
+ 1 ≤ l ≤ m;

(2) Replace the edge labels in the array L with the new labels obtained by adding m2 to each
of the original edge labels;

(3) Form the array B as shown below.

T t
1

T t
2
...

T t
m

2

T1 T2 . . . Tm

2
L Tm

2
+1 Tm

2
+2 . . . Tm

T t
m

2
+1

T t
m

2
+2

...
T t
m
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By the construction of the array B, it is clear that the weight of each vertex (row) is less that
the weight of the vertex below, except in two cases that need to be verified.
Let ef,g be the edge label in the row f and the column g of the array B and let wt(rf) be the
weight of the vertex rf (row f).

(i) wt(T t
m

2

) and wt(rm

2
+1)

Since Σ
m

2

g=1em

2
,g+Σ2m

g= 3m

2
+1
em

2
,g =

4m3
−4m2+2m

4
< 6m3

−4m2+4m
4

= Σ
m

2

g=1e 3m

2
,g+Σ2m

g= 3m

2
+1
em

2
+1,g

and em

2
,g < em

2
+1,g, for

m
2
+ 1 ≤ g ≤ 3m

2
, wt(T t

m

2

) < wt(rm

2
+1).

(ii) wt(rm

2
+2m) and wt(T t

m

2
+1)

Since Σ
m

2

g=1em

2
+2m,g + Σ2m

g= 3m

2
+1
em

2
+2m,g =

6m3+4m2

4
< 8m3+4m2+2m

4

= Σ
m

2

g=1em

2
+2m+1,g + Σ2m

g= 3m

2
+1
em

2
+2m+1,g and em

2
+2m,g < em

2
+2m+1,g, for

m
2
+ 1 ≤ g ≤ 3m

2
,

wt(rm

2
+2m) < wt(T t

m

2
+1).

Case 2: m odd
This case is similar to Case 1 and so the details are omitted here. We only mention how to
construct the array Tl, 1 ≤ l ≤ m, and the array B.

(1) Label the edge ei, 1 ≤ i ≤ 2m, in the row i of the array Tl, 1 ≤ l ≤ m, with i+(l− 1)2m,
for 1 ≤ l ≤ m+1

2
; and i+ 2m2 +m+ (l − (m+1

2
+ 1))2m, for m+1

2
+ 1 ≤ l ≤ m;

(2) Form the array B as shown below.

T t
1

T t
2
...

T t
m+1

2

T1 T2 . . . Tm+1

2

L Tm+1

2
+1 Tm+1

2
+2 . . . Tm

T t
m+1

2
+1

T t
m+1

2
+2

...
T t
m

By the induction on n, we have

Corollary 3. For m ≥ 1, n ≥ 2, the complete n-partite graph Km,m, . . . ,m
︸ ︷︷ ︸

n times

, except K2 = K1,1,

is antimagic.
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1 2 3 4 5 6
1 7 8 9 10 19
2 7 11 12 15 20
3 8 11 13 16 21
4 9 12 14 17 22
5 10 13 14 18 23
6 15 16 17 18 24
19 20 21 22 23 24
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Figure 1: The graph K2,2,2,2 and its antimagic labeling.

Figure 1 illustrates K2,2,2,2 and its antimagic labeling.
Note that the complete graph Kn, n ≥ 3, has been proved to be antimagic in [6] and also in
[7]. This is a special case of Corollary 3 when m = 1, that is Kn = K1, 1, . . . , 1

︸ ︷︷ ︸

n times

.

We extend our results to more general regular graphs.

Lemma 4. Let G = mK2, m ≥ 1. Then G+ (2m− 1)K1 is antimagic.

Proof. The array of edge labels of G is L = (1 1 2 2 . . .m m)t. Let Tl, 1 ≤ l ≤ 2m − 1, be
the (2m× 1)-array of the edges ei, 1 ≤ i ≤ 2m, where the ei’s are the edges of G+ (2m− 1)K1

that do not belong to mK2. We construct the array B of the edge labels of G+ (2m− 1)K1 as
follows.

(1) Label the edge ei, 1 ≤ i ≤ 2m, in the row i of the array Tl, 1 ≤ l ≤ 2m − 1, with
i+ (l − 1)2m;

(2) Replace the edge labels in the array L with the new labels obtained by adding 2(2m−1)m
to each of the original edge labels;

(3) Form the array B as shown below.
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T t
1

T t
2
...
T t
m

T1 T2 . . . T2m−1 L

T t
m+1

T t
m+2
...

T t
2m−1

By the construction of the array B, it is clear that the weight of each vertex is less than the
weight of the vertex below with two exceptions that need to be verified.
Let ef,g be the edge label in the row f and the column g of the array B and let wt(rf) be the
weight of the vertex rf (row f).

(i) wt(T t
m) and wt(rm+1)

We have wt(T t
m) = 4m3 − 2m2 +m < 4m3 − 2m2 + 2m = wt(rm+1).

(ii) wt(r3m) and wt(T t
m+1)

We have the edge labels of r3m and T t
m+1 as shown below.

r3m : 2m 4m . . . (2m− 1)2m (2m− 1)2m+m

T t
m+1 : 1 + 2m2 2 + 2m2 . . . (2m− 1)2m2 2m+ 2m2

We have wt(r3m) = 4m3 + 2m2 −m < 4m3 + 2m2 +m = wt(T t
m+1).

Theorem 5. Let G be a k-regular (connected or disconnected) graph with p vertices and k ≥ 2.
Then the p-regular graph G+ (p− k)K1 is antimagic.

Proof. We can use the same construction as in the proof of Theorem 2 by replacing Km,m by
G.

By the induction on n, we obtain

Corollary 6. The (k + ns)-regular graph (((G + sK1) + sK1) + . . . ) + sK1
︸ ︷︷ ︸

n times

is antimagic, for

s = p− k.

Combining Lemma 1, Corollary 3, Lemma 4 and Corollary 6, we have

Theorem 7. Let G be a k-regular graph, where k ≥ 0 and s = p−k. Then the (k+ns)-regular
graph (((G+ sK1) + sK1) + . . . ) + sK1

︸ ︷︷ ︸

n times

is antimagic.
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