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1 Introduction

Cabhit [1] proposed the idea of distributing the vertex andesthbels among0,1,2,--- ,k — 1} as
evenly as possible to obtain a generalization of graceheliag as follows: For any grapB(V, E)
and for any positive integds; assign vertex labels frof@, 1, 2, - - - , k—1} so that when the edge labels
induced by the absolute value of théfdrence of the vertex labels, the number of vertices labeitgd w
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i and the number of vertices labeled wijtliffer by at most one and the number of edges labeled with
i and the number of edges labeled wijtHiffer by at most one. A graph with such an assignment of
labels is callek-equitable [2].

In [5] the notion of product cordial labeling was introducédproduct cordial labeling of a graph
with the vertex seV is a functionf from V to {0, 1} such that if each edgev is assigned the label
f(u)f(v), the number of vertices labeled with 0 and the number ofcestiabeled with 1 dier by at
most 1, and the number of edges labeled with 0 and the numleetgefs labeled with 1 fler by at
most 1. A graph with a product cordial labeling is called preticcordial graph.

Somasundaram and Ponraj [4] introduced the notion of mdaalitey of graphs. A graple with p
vertices andj edges is called a mean graph if there is an injective fundtisom the vertices o6 to
{0,1,2,---,q} such that when each edge s labeled withf "2 then the resulting edge labels
are distinct.

A new concept namelii-equitable mean labeling of a graph is introduced in thisspaphe graphs
considered in this paper are finite simple graphs. Get (V(G), E(G)) be a graph of ordep and
sizeq. The vertex set and the edge set of a grégpdre denoted by (G) andE(G) respectively. The
disjoint union of two graph&; andG; is the graphG; U G, with V(G U G;) = V(G,) U V(Gy) and
E(G, U G;) = E(Gy) U E(G,). The disjoint union of m copies of the graghis denoted bynG.The
graphG@P,, is obtained by identifying an end vertex of a p&hwith any vertex ofG. Terms and
notations not defined here are used in the sense of Harary[3].

For any integen, | n] denotes the greatest integer less than or equal to fr@ndenotes the least
integer greater than or equal to n.

2 k-equitable mean labeling

Definition 2.1. Let G = (V, E) beagraphwith pverticesandqedges. Let f : V — {0,1,2,--- ,k}(1 <
k < @) be a vertex labeling of G that induces an edge labeling f* : E — {0,1,2,---,k} be given by
f*(uv) = [M} Alabeling f iscalled (k+1)-equitable mean labeling ((k+1)-eml) if [v (i) =V (j)] <
1and|es-(i) —eq(j) < 1fori,j =0,1,2,---,kwhere v¢(x) and es:(X), x = 0,1,2,--- ,k are the
number of vertices and edges of G respectively with label x.

A graphG that admits K + 1)-equitable mean labeling is calledla 1)-equitable mean graphk(¢
1) — emg).
Theorem 2.2.Let G be a (p, g)-connected graph. Then Gisa (q+ 1)-emg iff G isa mean graph.

Proof: Suppos&isa (@+1)-emg. Thenthereis avertexlabelihgV — {0,1,2,---, g} thatinduces
an edge labeling* : E — {0,1,2,--- , q} given by f*(w) = [11] and satisfies (i) - vi(j) < 1
andles-(i) —ep(j)] < 1fori, j=0,1,2,--- Q.

SinceG hasq edges andes-(i) — es(j)| < 1, the edge labels are distinct. Otherwiseyif(i) > 2 for
somei, thenes-(]) = O for at least one labgl # i.

SinceG is a connected graply,> p—1 and hence + 1 > p. If p = g+ 1 then all the vertex labels
must be distinct and;(i) = 1 foralli=0,1,2,---,Q.
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If p < g+ 1then there is at least one label sayith v¢(i) = 0. If any labelj # i occurs more than
once, we get a contradiction e (i) — v¢(j)| < 1. Hence, the vertex labels are distinct. THuis a
mean labeling. The converse part follows from the definibbthe mean labeling of a graph. o

Theorem 2.3.Gisa 2-emg iff G isa product cordial graph.

Proof: Let f be a 2-eml ofG. Thenf : V(G) — {0, 1} is a vertex labeling o6 that induces an edge
labeling f* given by f*(w) = [{25"] and it satisfiesvi (i) - v (j)I < 1 andle-(i) - er-(j)| < 1 for
i,j=0,1.

Defineg: V(G) — {0,1} by g(v) = 1 - f(v) andg*(uv) = 1 - f*(uv). Then,gis a vertex labeling o6
with vy(0) = v¢(1) andvy(1) = v¢(0). Hence|vy(0) - vy(1)l < 1. Nowg(u)g(v) = (1 - f(u))(1-f(v)) =
1-(f(u)+ f(v)) + f(u)f(v).

If f(u)=0= f(v)thenf*(uv) = 0andf(u) + f(v) — f(u)f(v) = 0. If both f(u) = 1 = f(v) then
f*(uv) = Landf(u) + f(v) - f(uf(v) =2-1=1. If one of f(u) and f(v) is zero, sayf(u) = 0 and
f(v) = L thenf*(uv) = 1 andf(u) + f(v)— f(u)f(v) = 1+0= 1. Hence, - (f(u) + f(v)) + f(u)f(v) =
1-f*(uv). Thus, we havg*(uv) = 1-f*(uv) = g(u)g(v) . Thereforegs-(0) = g4 (1) andes- (1) = €4 (0)
which implies thatey: (0) — e, (1)l < 1. Henceg is a product cordial labeling @.

The proof of the converse is similar to the previous argument O

3 3-equitable mean labeling of some standard graphs

in this section, 3-equitable mean labeling of some famiiegraphs are exhibited.
Lemma 3.1. If a(p, )-graph G admitsa 3-eml f then v¢(i) > [ng and e;-(i) > L%J =012
Theorem 3.2. (i) For any (p, )-graph G, the graph 3mG is a 3-equitable mean graph.

(if) For any (p, g)-3-equitable mean graph G, the graph (3m+ 1)G isa 3- equitable mean graph.

Proof: (i) Assign O to all the vertices of the firgt copies ofG, assign 1 to all the vertices of next m
copies ofG and assign 2 to all vertices of the remaining m copie§.of hus, we have(0) = v(1) =
V(2) = mp ande(0) = &(1) = &(2) = mq.

(i) Assign 0 to all the vertices of firgh copies ofG, assign 1 to all the vertices of nextcopies of
G and assign 2 to all the vertices of lastcopies ofG. The remaining one copy @ has the given
3-eml. Hence, (B+ 1)G is a 3-emg. O

Theorem 3.3.Let H be a (p, ) graph and consider 3m copiesof H asH;,1 <i < 3m. Let G bea
graph obtained by identifying a vertex of H; with a vertex of Hj,; for 1 <i < 3m-1. ThenGisa

3-emg.
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Proof: For the given grapks, we havgV(G)| = 3mp—(3m-1) = 3m(p-1)+1 andE(G)| = 3mg. Let
u; be a vertex oH; andu;,; be a vertex oH,,; such that; is identified withu,.; for 1 <i < 3m- 1.
Now, assign 0 to all the vertices Bifi for 1 < i < m, assign 1 to all the vertices &f form+1 <i < 2m
except forun,,; and assign 2 to all the vertices df for 2m+ 1 < i < 3mexcept for the vertexym, 1.
Then we have/(0) = m(p— 1)+ 1, v(1) = m(p — 1), v(2) = m(p — 1) ande(0) = mg, &(1) = mq,
e(2) = mg. HenceG is a 3-emg. O

Theorem 3.4.1f G(p, q) isa 3-emg then A(G) < 2r + twhereq = 3r +t,t € {0, 1, 2}.

Proof: Let f be a 3-eml ofG and letSy, S; andS, be the subgraphs & induced by the edges &

that have labels 0,1 and 2 respectively. TH&(S,)| + E(S1)| + |[E(S,)| = 9. Letv e V(G). If f(v) =0
thenv € V(Sp) U V(S,), if f(v) = 1thenv e V(S;) U V(S,) and if f(v) = 2 thenv € V(S;) U V(Sy).
Hence deg(v) < |E(So)l + IE(S1)l or [E(S1)l + [E(S2)I.

If g = 3r then|E(Sp)] = |E(S1)| = |E(S2)] = r and hencedeg(u) < 2r. If g = 3r + 1 then
{IE(So)l, IE(S)I, IE(S2)I} = {r,r,r+1}and henceleg(u) < 2r+1. If g = 3r+2 then{|E(So)l, |IE(S.)I, [E(S2)|} =
{r,r + 1,r + 1} and henceleg(u) < 2r + 2. ThusA(G) < 2r +1t. |

Theorem 3.5. Thecycle C, isa 3-emg iff n # O(mod3).

Proof: SupposeC, is a 3-emg ana = 0(mod3). Thenn = 3r and hence(0) = ¢(1) = &2) = r and
v(0) = v(1) = v(2) = r. If v(0) = r thene(0) < r — 1 which is a contradiction. Thereforez 0(mod3).
Conversely assume = 0(mod3). LetC, be the cyclesv,vs - - - vvp. We consider the following two
cases.
Case (i):n = 1(mod3). Hencen = 3r + 1. Define a vertex labeling : V — {0, 1, 2} by
Oifl<i<r+1
f(v) =31lifr+2<i<2r+1
2if2r+2<i<3r+1
Now, v¢(0) =1+ 1,vi(1) = v¢(2) = 1, €:(0) = e1:(2) = r andes-(1) = r + 1. Thusjvs(i) —v¢(j)| < 1

and|e;-(i) — e-(j)] < 1 fori, j = 0,1, 2. Thereforef is a 3-eml.
Case (ii): n = 2(mod3). Hencen = 3r + 2. Definef by
Oifl<i<r+1

f(vi)=<1lifr+2<i<2r+1

2if2r+2<i<3r+2
Then,v¢(0) = r+1 =v¢(2),v¢(1) =r, ande;-(0) = r, ;- (1) = &;:(2) = r + 1. HenceC, is 3-emg. O
Theorem 3.6. The path P,, isa 3-emg for all n > 2.

Proof: Let a pathP, beviv,vs - - - v,,. Define a vertex labeling : V — {0, 1, 2} as follows.
Case (i): n = 0(mod3). Taken = 3r.

oifl<ic<r
f(v)=<1ifr+1<i<2r

2if2r+1<i<3r



25 P. JeyanthiJournal of Algorithms and Computation 44 (2013) PP. 21 - 30

Now, v¢(0) = vi(1) = v¢(2) = r, &:-(0) = r — 1 andes- (1) = r = e;-(2).
Case (ii): n = 1(mod3). Taken = 3r + 1.

Oifl<i<r+1

f(v) =31lifr+2<i<2r+1

2if2r+2<i<3r+1

Thus,v¢(0) =r +1,=v¢(1) = v¢(2) = r ande;-(0) = es-(1) = es:(2) = r.
Case (iii): n = 2(mod3). Taken = 3r + 2.

Oifl<i<r+1

f(vi) =31lifr+2<i<2r+2

2if2r+3<i<3r+2

Now, vi(0) =v¢(1) =r +1,v¢(2) =r andes(0) = e1:(2) = r, (1) = r + 1.
In the above three caséssatisfiegv; (i) — v¢(j)| < 1 andle;-(i) — e+ (j)l < 1 fori, j = 0,1,2. Hence,

P, is a 3-emg. O
2 0
2 0
1 G 1
° ® o °
0 0 P, 1 2
Figure 1

Theorem 3.7.1f G isa 3-emg then G@P,,, wheren = 1(mod3) isa 3 - emg.

Proof: Let P, be a pathu;u,uz---u, and f be a 3-eml ofP, as Theorem 3.6. By the Case (ii) of
Theorem 3.6/;(0) =r + 1, = v¢(1) = v¢(2) = r ande;:(0) = e4+(1) = e:(2) = r. Letg be a 3-eml of
G andu € V(G) with g(u) = 0. Now, identify the vertexi with an end vertex oP,whose label is O.
Define a labelind : V(G@Pn) — {0, 1, 2} by

h(y) = g(v) if ve V(G)
V)= f(v) if ve P,
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Now Vn(0) = vg(0)+Vv¢(0)—1 = vg(0)+r, V(1) = Vg(1)+Vi (1) = vg(0)+r1, Va(2) = Vg(2)+V:(2) = vg(2)+
r,en(0) = 5 (0)+r1, en(1) = e (1) +r anden(2) = eg(2) +r. Thus|va(i) — Va(j)I = Ivg(i) = vg(J)l < 1
andler (i) — en(])l = leg(i) — e (j) < 1. Hence his a 3-eml ofG@P,. O

An example for a 3 - emg witls = C; andn = 4 is given in Figure 1 and Figure 2.

(@)

o0
ks 4
NGO

1 1 G@P,

Figure 2

Theorem 3.8. The bistar B(m, n) withm> nis3-emgiffn > L%J

Proof: LetV(B(mn)) ={u,ui:1<i<nfu{vv:1<i<miandgE(B(mn)) ={uvjU{uy:1<i<
nNfuU{w;:1<i<m}. Thusp=m+n+2andg=m+n+1.
Define a vertex labeling as follows:
Case (i): Supposea = 3r.
O R T R S R 1V SIS TR V)N A
lifr+1<i<n 2if2r-n<i<m
Hencevs(0) =r + 1,v¢(1) = v¢(2) = r ande;-(0) = &1 (1) = e:(2) =r.
Case (ii): Suppose = 3r + 1.
F(U) = 0: F(U) = OHflsls_r CF) = 1 F(v) = 1!fls|32r—r1
lifr+1<i<n 2if2r-n+1<i<m
Henceyv;(0)=r +1,vi(1) =1 + 1,v{(2) =r andes-(0) =, e;-(1) =r + 1 ande;-(2) =r.
Case (iii): Supposea = 3r + 2.
O T I R T SR TR11V) 0 bl el
lifr+1<i<n 2if2r-n+1<i<m
Hencevi(0)=r+1,vi(1)=r+1,v;(2) =r + 1 andes(0) =r, e:(1) = e:-(2) = 1 + 1.
In all the above three caséssatisfiegv(i) — v¢(j)| < 1 andjes-(i) — e« (j)| < 1 fori, j =0,1,2. Thus
f is a 3-eml ofB(m, n).

Conversely, suppose that > nandn < |2]. We haveq = 3|§| + t wheret € {0,1,2}. Then

2[%J+t:q—[%J <g-n=m+n+1-n=m+1=A(G). Hence A(G) > 2[%J+t. By Theorem

3.4,B(m, n) is not 3-emg. O
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Theorem 3.9.Kyis3-emgiffn < 2.

Proof: Suppose that < 2. Whenn = 1, K;, = P, and whem = 2, K, , = P;. Hence, by Theorem
3.6,Ky Is 3-emg.
SupposeK; , is 3-emg. ThemM\(K,,) < 2|3 |+t wheret € {0,1,2}. HereA(K;,) = n = q. By

q
Theorem3.4ns2{%J+t:>3{gJ+t§2[3J {J<O:>[J 0. Hencen=t < 2. O

4 3-equitable mean labeling off{(n > 1)

We define the graph to be the graph with the vertex S¢¢T ) = (v, v, v,

s Vi Vier1Viee2s =+ 5 Vore1s Voks Voked ==+ 5 Vake2s ==+ 5 Vike)(n=1)+25 * - Ve @nd
Wlth the edge sef(T( W) = {Vivig s 1<i < (k- 1)n V1V, ViVok_1, Vo 1Vak_2, - - -
Vik-1)(n-1)+1V(k-1)n+1}. HeNce, we have = (k— 1)n+ 1 andq = kn.

Lemma 4.1. If k = 1(mod3) then T¥ isa 3-emg.

Proof: Sincek = 1(mod3), p = 1(mod3). Define a labeling : V(T®) — {0, 1, 2} as follows:
Oif1<i<|B]+1
f(w)={1if |B]+2<i<2|B]+1
2if2|8|+2<ix<p
Thusv;(0) = {%’J +1,v:i(1) = {%’J vi(2) = pr To find the values o&;.(0), e;(1) ande;-(2) we
consider the following three cases.
Case (i): Supposen = 0(mod3). Taken = 3r. Thenp = 3r(k—1) + 1 and §J =r(k — 1). Hence,
er(0) = rkandvs (1) = v¢(2) = r(k — 1) which implies thags- (1) = e (2) = r
Case (ii): Supposen = 1(mod3) Taken = 3r + 1. Then{pJ = {(3”1)““1)*% = PV(H); "‘1+1J
rk—1)+|&] = rk-1)+ 5 Hence vi(0) = r(k — 1) + I + 1 which |mp||esef (0) = rk+ &t
Againvs (1) = v¢(2) = r(k 1) + KL |mpI|es thates- (1) = (3r +Dk—rk—-Kl _rk-k2Z -rk4+ K1
andeq.(2) =rk-1+ K+ 2= rk + k2 k2,
Case (jii): Supposen = 2(mod3). Taken = 3r+2. Then[%’J = [WJ =r(k-1)+ [@J
Hencey;(0) = r(k-1)+ 252 +1 implies thaey. (0) = rk+ 252, vi(1) = v¢(2) = r(k-1)+252 implies
thater-(2) = rk—1+ 262 + 2 = rk+ 1+ 2 andey. (1) = 3rk+ 2k—2rk—1- 263 = rk+ 1+ 20,
In the above three casdssatisfiegv; (i) — v¢(j)| < 1 and|es-(i) — es-(j)| < 1 fori, j = 0,1, 2. Hence
f is a 3-eml of T, O

1

Lemma 4.2. If k = 0(mod3) and n = 0(mod3) then T isa 3-emg.

Proof. If k = 0(mod3) thenq = 0(mod3). Sincen = 0(mod3), taken = 3r. Define a labeling as
follows:
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Oif1<i<|B]+1
fw)={1if |B]+2<i<2|8]+1

2if2{‘—§J+25| <p
Thusv (0) = [‘—3’J+1,vf(1) = vi(2) = EEJ Here[%’J = [““”%J = r(k—1). Hencey;(0) = r(k-1)+1,
Vi(1) = v¢(2) = r(k—1)g. Thuses(1) = 3rk— 2rk = rk, e:(2) = rk andes(3) = rk. Hence,f

satisfiegv; (i) — vi(j)| < 1 andjey. (i) — e-(j)| < 1 fori, j = 0,1, 2. Thereforef is a 3-eml ofT¥. O
Lemma 4.3. If k = 0(mod3) and n = 0(mod3) then T isa 3-emg.

Proof. If k = 0(mod3) thenq = 0(mod3). Sincen = 0(mod3), taken = 3r. Define a labeling as
follows:

Oif1<i<|B]+1
fw)={1if |B]+2<i<2|8]+1

2if2|2|+2<ix<p
Thusvi(0) = | 8]+1,vi(1) = v(2) = Eg# Here| 8] = | 432 | = r(k-1). Hencey;(0) = r(k-1)+1,
Vi(1) = v¢(2) = r(k — 1)g. Thuses(1) = 3rk — 2rk = rk, e;-(2) = rk ande;(3) = rk. Hence,f
satisfiegv; (i) — v¢(j)| < 1 andjey.(i) - e-(j)| < 1 fori, j = 0,1, 2. Thereforef is a 3-eml ofT{¥. O

—

Lemma 4.4. If k = 0(mod3) and n = 1(mod3) then T is not a 3-emg.

Proof: Let f be a 3-eml ofT{¥. Thenv;(0) is eithertgpj or [gp + 1J. If we taken = 3r + 1 thenv;(0)

is eitherr(k— 1)+ £ orr(k— 1)+ £ + 1. Hencegy-(0) is eitherk + £ — 1 orrk+ £. Sincek = 0(mod3),

we must havey. (0) = . O

Lemma 4.5. If k = 0(mod3) and n = 2(mod3) then T is not a 3-emg.

Proof: Let f be a 3-eml off¥. Thenv;(0) is either[%’J or [%’J + 1. If we taken = 3r + 2 thenv;(0)
is eitherr(k — 1) + 22 orr(k — 1) + &2 + 1. Hencegy-(0) is eitherk — 2+ Z orrk — 1+ . Since
k = 0(mod3), we must havey-(0) = “%2. which gives a contradiction. Thig? is not a 3-emg. ©

Lemma 4.6. If k = 2(mod3) and n = 0(mod3) then T isa 3-emg.

Proof: Define a labeling as follows:
Oif1<i<|B]+1
fw)={1if |B]+2<i<2|8]+1
2if2|2|+2<ix<p
Thusvi(0) = | 8]+ 1,vi(1) = v¢(2) = | §] ander-(0) = er(1) = er-(2) = |§] = '§ Hence,f satisfies
vi (i) = v¢(j)l < 1 andles-(i) — er-(j)| < 1 fori, j = 0,1, 2. Thereforef is a 3-eml of T, O

—

Lemma 4.7. If k = 2(mod3) and n = 1(mod3) then T isa 3-emg.
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Proof: Define a labeling as follows:

Oif1<i<|B]+1
fw)={1if |B]+2<i<2|B]+2

2if2|8|+3<ix<p
Thenv;(0) = v¢(1) = {%’J +1,v(2) = pr If we taken = 3r + 1 thener.(0) = rk + 2 and
er(1) = er-(2) = rk+ %2 + 1. Hence,f satisfiesv(i) — vi(j)l < 1 andley-(i) — er(j)l < 1 for
i,j=0,12. Thereforef is a 3-eml ofT¥. O
Lemma 4.8. If k = 2(mod3) and n = 2(mod3) then T is not a 3-emg.
Proof: Sincek = 2(mod3) andn = 2(mod3),k — 1 = 1(mod3) andp=nk-1)+1=n+1=3=
0(mod3). Hence:(0) = vi(1) = vi(2) = | 2| = | €D+ | = p(k— 1)+ | 25| = r(k—-1)+ 22 41,
So,er-(0) = rk+ 252 andey.(2) = rk + 2 + 262 which implies thatey-(0) - ey (2)| = 2. Thus, T
is not a 3-emg. |

From the above lemmas we have the following theorem.
Theorem 4.9.TY¥ isa 3-emg if
(i) k= 1(mod3)
(i) k =0(mod3)and n = 0(mod3)
(iii) k= 2(mod3) and n = 1(mod3)
(iv) k =2(mod3) and n = 0(mod3).

Theorem 4.10.K ., U Ky, Isa 3-emg.

Proof: Letuandv be the central vertices of the star graphis, andK, , respectivelyp;, up, - - - , Uz
be the vertices incident with andv,, v,, - - - , v, be the vertices incident with Hence,p = 3n+ 2
andqg = 3n. Now assign O to all the vertices &, ,, 1 to the verticess, u;, Uy, - -- , U, and 2 to the
verticesun, 1, Uns2, - - - , Uzn. Hencev;(0) = n+ 1, v¢(1) = v¢(2) = n, &:-(0) = e4:(1) = e1-(2) = n.
Thus,Kyn U Ky Is @ 3-emg. O
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