

Journal of Algorithms and Computation

journal homepage: http://jac.ut.ac.ir

k-equitable mean labeling

P.Jeyanthi*1

¹Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur- 628 215, India

ABSTRACT

Let G=(V,E) be a graph with p vertices and q edges. Let $f:V\to\{0,1,2,\cdots,k\}$ $(1\leq k\leq q)$ be a vertex labeling of G that induces an edge labeling $f^*:E\to\{0,1,2,\cdots,k\}$ be given by $f^*(uv)=\left\lceil\frac{f(u)+f(v)}{2}\right\rceil$. A labeling f is called (k+1)-equitable mean labeling ((k+1)-eml) if $|v_f(i)-v_f(j)|\leq 1$ and $|e_{f^*}(i)-e_{f^*}(j)|\leq 1$ for $i,j=0,1,2,\cdots,k$ where $v_f(x)$ and $e_{f^*}(x), x=0,1,2,\cdots,k$ are the number of vertices and edges of G respectively with label x. A new concept namely k-equitable mean labeling of a graph is introduced in this paper.

Keyword: Mean labeling, equitable labeling, equitable mean labeling.

ARTICLE INFO

Article history:
Received 30 June 2012
Received in revised form 20
February 2013
Accepted 2 March 2013
Available online 01 July 2013

AMS subject Classification: 05C78.

1 Introduction

Cahit [1] proposed the idea of distributing the vertex and edge labels among $\{0, 1, 2, \dots, k-1\}$ as evenly as possible to obtain a generalization of graceful labeling as follows: For any graph G(V, E) and for any positive integer k, assign vertex labels from $\{0, 1, 2, \dots, k-1\}$ so that when the edge labels induced by the absolute value of the difference of the vertex labels, the number of vertices labeled with

^{*}Corresponding author: P. Jeyanthi. Email: jeyajeyanthi@rediffmail.com

i and the number of vertices labeled with j differ by at most one and the number of edges labeled with i and the number of edges labeled with j differ by at most one. A graph with such an assignment of labels is called k-equitable [2].

In [5] the notion of product cordial labeling was introduced. A product cordial labeling of a graph G with the vertex set V is a function f from V to $\{0, 1\}$ such that if each edge uv is assigned the label f(u)f(v), the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1, and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. A graph with a product cordial labeling is called product cordial graph.

Somasundaram and Ponraj [4] introduced the notion of mean labeling of graphs. A graph G with p vertices and q edges is called a mean graph if there is an injective function f from the vertices of G to $\{0, 1, 2, \dots, q\}$ such that when each edge uv is labeled with $\lceil \frac{(f(u)+f(v)}{2} \rceil$, then the resulting edge labels are distinct.

A new concept namely k-equitable mean labeling of a graph is introduced in this paper. The graphs considered in this paper are finite simple graphs. Let G = (V(G), E(G)) be a graph of order p and size q. The vertex set and the edge set of a graph G are denoted by V(G) and E(G) respectively. The disjoint union of two graphs G_1 and G_2 is the graph $G_1 \cup G_2$ with $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$. The disjoint union of m copies of the graph G is denoted by G. The graph G0 G1 is obtained by identifying an end vertex of a path G2 with any vertex of G3. Terms and notations not defined here are used in the sense of Harary[3].

For any integer n, $\lfloor n \rfloor$ denotes the greatest integer less than or equal to n and $\lceil n \rceil$ denotes the least integer greater than or equal to n.

2 k-equitable mean labeling

Definition 2.1. Let G = (V, E) be a graph with p vertices and q edges. Let $f : V \to \{0, 1, 2, \dots, k\} (1 \le k \le q)$ be a vertex labeling of G that induces an edge labeling $f^* : E \to \{0, 1, 2, \dots, k\}$ be given by $f^*(uv) = \left\lceil \frac{f(u) + f(v)}{2} \right\rceil$. A labeling f is called f is called f in an labeling f is labeling f is called f in an labeling f in a labeling f in an l

A graph G that admits (k + 1)-equitable mean labeling is called a (k + 1)-equitable mean graph ((k + 1) - emg).

Theorem 2.2. Let G be a (p,q)-connected graph. Then G is a (q+1)-emg iff G is a mean graph.

Proof: Suppose G is a (q+1)-emg. Then there is a vertex labeling $f: V \to \{0, 1, 2, \cdots, q\}$ that induces an edge labeling $f^*: E \to \{0, 1, 2, \cdots, q\}$ given by $f^*(uv) = \left\lceil \frac{f(u) + f(v)}{2} \right\rceil$ and satisfies $|v_f(i) - v_f(j)| \le 1$ and $|e_{f^*}(i) - e_{f^*}(j)| \le 1$ for $i, j = 0, 1, 2, \cdots, q$.

Since G has q edges and $|e_{f^*}(i) - e_{f^*}(j)| \le 1$, the edge labels are distinct. Otherwise if $e_{f^*}(i) \ge 2$ for some i, then $e_{f^*}(j) = 0$ for at least one label $j \ne i$.

Since G is a connected graph, $q \ge p-1$ and hence $q+1 \ge p$. If p=q+1 then all the vertex labels must be distinct and $v_f(i)=1$ for all $i=0,1,2,\cdots,q$.

If p < q + 1 then there is at least one label say i with $v_f(i) = 0$. If any label $j \neq i$ occurs more than once, we get a contradiction to $|v_f(i) - v_f(j)| \le 1$. Hence, the vertex labels are distinct. Thus f is a mean labeling. The converse part follows from the definition of the mean labeling of a graph.

Theorem 2.3. *G* is a 2-emg iff *G* is a product cordial graph.

Proof: Let f be a 2-eml of G. Then $f: V(G) \to \{0,1\}$ is a vertex labeling of G that induces an edge labeling f^* given by $f^*(uv) = \left\lceil \frac{f(u) + f(v)}{2} \right\rceil$ and it satisfies $|v_f(i) - v_f(j)| \le 1$ and $|e_{f^*}(i) - e_{f^*}(j)| \le 1$ for i, j = 0, 1.

Define $g: V(G) \to \{0, 1\}$ by g(v) = 1 - f(v) and $g^*(uv) = 1 - f^*(uv)$. Then, g is a vertex labeling of G with $v_g(0) = v_f(1)$ and $v_g(1) = v_f(0)$. Hence, $|v_g(0) - v_g(1)| \le 1$. Now g(u)g(v) = (1 - f(u))(1 - f(v)) = 1 - (f(u) + f(v)) + f(u)f(v).

If f(u) = 0 = f(v) then $f^*(uv) = 0$ and f(u) + f(v) - f(u)f(v) = 0. If both f(u) = 1 = f(v) then $f^*(uv) = 1$ and f(u) + f(v) - f(u)f(v) = 2 - 1 = 1. If one of f(u) and f(v) is zero, say f(u) = 0 and f(v) = 1 then $f^*(uv) = 1$ and f(u) + f(v) - f(u)f(v) = 1 + 0 = 1. Hence, $1 - (f(u) + f(v)) + f(u)f(v) = 1 - f^*(uv)$. Thus, we have $g^*(uv) = 1 - f^*(uv) = g(u)g(v)$. Therefore, $e_{f^*}(0) = e_{g^*}(1)$ and $e_{f^*}(1) = e_{g^*}(0)$ which implies that $|e_{g^*}(0) - e_{g^*}(1)| \le 1$. Hence, g is a product cordial labeling of G.

The proof of the converse is similar to the previous argument.

3 3-equitable mean labeling of some standard graphs

In this section, 3-equitable mean labeling of some families of graphs are exhibited.

Lemma 3.1. If a (p,q)-graph G admits a 3-eml f then $v_f(i) \ge \left\lfloor \frac{p}{3} \right\rfloor$ and $e_{f^*}(i) \ge \left\lfloor \frac{q}{3} \right\rfloor$, i = 0, 1, 2.

Theorem 3.2. (i) For any (p,q)-graph G, the graph 3mG is a 3-equitable mean graph.

(ii) For any (p,q)-3-equitable mean graph G, the graph (3m+1)G is a 3- equitable mean graph.

Proof: (i) Assign 0 to all the vertices of the first m copies of G, assign 1 to all the vertices of next m copies of G and assign 2 to all vertices of the remaining m copies of G. Thus, we have v(0) = v(1) = v(2) = mp and e(0) = e(1) = e(2) = mq.

(ii) Assign 0 to all the vertices of first m copies of G, assign 1 to all the vertices of next m copies of G and assign 2 to all the vertices of last m copies of G. The remaining one copy of G has the given 3-eml. Hence, (3m+1)G is a 3-emg.

Theorem 3.3. Let H be a (p,q) graph and consider 3m copies of H as H_i , $1 \le i \le 3m$. Let G be a graph obtained by identifying a vertex of H_i with a vertex of H_{i+1} for $1 \le i \le 3m-1$. Then G is a 3-emg.

Proof: For the given graph G, we have |V(G)| = 3mp - (3m-1) = 3m(p-1) + 1 and |E(G)| = 3mq. Let u_i be a vertex of H_i and u_{i+1} be a vertex of H_{i+1} such that u_i is identified with u_{i+1} for $1 \le i \le 3m - 1$. Now, assign 0 to all the vertices of H_i for $1 \le i \le m$, assign 1 to all the vertices of H_i for $m+1 \le i \le 2m$ except for u_{m+1} and assign 2 to all the vertices of H_i for $2m+1 \le i \le 3m$ except for the vertex u_{2m+1} . Then we have v(0) = m(p-1) + 1, v(1) = m(p-1), v(2) = m(p-1) and e(0) = mq, e(1) = mq, e(2) = mq. Hence, G is a 3-emg.

Theorem 3.4. If G(p,q) is a 3-emg then $\Delta(G) \leq 2r + t$ where q = 3r + t, $t \in \{0, 1, 2\}$.

Proof: Let f be a 3-eml of G and let S_0 , S_1 and S_2 be the subgraphs of G induced by the edges of G that have labels 0,1 and 2 respectively. Then $|E(S_0)| + E(S_1)| + |E(S_2)| = q$. Let $v \in V(G)$. If f(v) = 0 then $v \in V(S_0) \cup V(S_1)$, if f(v) = 1 then $v \in V(S_1) \cup V(S_2)$ and if f(v) = 2 then $v \in V(S_1) \cup V(S_2)$. Hence, $deg(v) \le |E(S_0)| + |E(S_1)|$ or $|E(S_1)| + |E(S_2)|$.

If q = 3r then $|E(S_0)| = |E(S_1)| = |E(S_2)| = r$ and hence $deg(u) \le 2r$. If q = 3r + 1 then $\{|E(S_0)|, |E(S_1)|, |E(S_2)|\} = \{r, r, r+1\}$ and hence $deg(u) \le 2r+1$. If q = 3r+2 then $\{|E(S_0)|, |E(S_1)|, |E(S_2)|\} = \{r, r+1, r+1\}$ and hence $deg(u) \le 2r+2$. Thus $\Delta(G) \le 2r+t$.

Theorem 3.5. The cycle C_n is a 3-emg iff $n \not\equiv 0 \pmod{3}$.

Proof: Suppose C_n is a 3-emg and $n \equiv 0 \pmod{3}$. Then n = 3r and hence e(0) = e(1) = e(2) = r and v(0) = v(1) = v(2) = r. If v(0) = r then $e(0) \le r - 1$ which is a contradiction. Therefore $n \not\equiv 0 \pmod{3}$. Conversely assume $n \not\equiv 0 \pmod{3}$. Let C_n be the cycle $v_1v_2v_3\cdots v_nv_1$. We consider the following two cases

Case (i): $n \equiv 1 \pmod{3}$. Hence, n = 3r + 1. Define a vertex labeling $f: V \rightarrow \{0, 1, 2\}$ by

$$f(v_i) = \begin{cases} 0 \text{ if } 1 \le i \le r+1\\ 1 \text{ if } r+2 \le i \le 2r+1\\ 2 \text{ if } 2r+2 \le i \le 3r+1 \end{cases}$$

Now, $v_f(0) = r + 1$, $v_f(1) = v_f(2) = r$, $e_{f^*}(0) = e_{f^*}(2) = r$ and $e_{f^*}(1) = r + 1$. Thus $|v_f(i) - v_f(j)| \le 1$ and $|e_{f^*}(i) - e_{f^*}(j)| \le 1$ for i, j = 0, 1, 2. Therefore f is a 3-eml.

Case (ii): $n \equiv 2 \pmod{3}$. Hence, n = 3r + 2. Define f by

$$f(v_i) = \begin{cases} 0 \text{ if } 1 \le i \le r+1\\ 1 \text{ if } r+2 \le i \le 2r+1\\ 2 \text{ if } 2r+2 \le i \le 3r+2 \end{cases}$$

Then, $v_f(0) = r + 1 = v_f(2)$, $v_f(1) = r$, and $e_{f^*}(0) = r$, $e_{f^*}(1) = e_{f^*}(2) = r + 1$. Hence, C_n is 3-emg. \square

Theorem 3.6. The path P_n is a 3-emg for all $n \ge 2$.

Proof: Let a path P_n be $v_1v_2v_3\cdots v_n$. Define a vertex labeling $f:V\to\{0,1,2\}$ as follows.

Case (i): $n \equiv 0 \pmod{3}$. Take n = 3r.

$$f(v_i) = \begin{cases} 0 \text{ if } 1 \le i \le r \\ 1 \text{ if } r + 1 \le i \le 2r \\ 2 \text{ if } 2r + 1 \le i \le 3r \end{cases}$$

Now,
$$v_f(0) = v_f(1) = v_f(2) = r$$
, $e_{f^*}(0) = r - 1$ and $e_{f^*}(1) = r = e_{f^*}(2)$.

Case (ii): $n \equiv 1 \pmod{3}$. Take n = 3r + 1.

$$f(v_i) = \begin{cases} 0 \text{ if } 1 \le i \le r+1\\ 1 \text{ if } r+2 \le i \le 2r+1\\ 2 \text{ if } 2r+2 \le i \le 3r+1 \end{cases}$$

Thus, $v_f(0) = r + 1$, $= v_f(1) = v_f(2) = r$ and $e_{f^*}(0) = e_{f^*}(1) = e_{f^*}(2) = r$.

Case (iii): $n \equiv 2 \pmod{3}$. Take n = 3r + 2.

$$f(v_i) = \begin{cases} 0 \text{ if } 1 \le i \le r+1\\ 1 \text{ if } r+2 \le i \le 2r+2\\ 2 \text{ if } 2r+3 \le i \le 3r+2 \end{cases}$$

Now, $v_f(0) = v_f(1) = r + 1$, $v_f(2) = r$ and $e_{f^*}(0) = e_{f^*}(2) = r$, $e_{f^*}(1) = r + 1$.

In the above three cases f satisfies $|v_f(i) - v_f(j)| \le 1$ and $|e_{f^*}(i) - e_{f^*}(j)| \le 1$ for i, j = 0, 1, 2. Hence,

 P_n is a 3-emg.

Figure 1

Theorem 3.7. If G is a 3-emg then $G@P_n$, where $n \equiv 1 \pmod{3}$ is a 3 - emg.

Proof: Let P_n be a path $u_1u_2u_3\cdots u_n$ and f be a 3-eml of P_n as Theorem 3.6. By the Case (ii) of Theorem 3.6 $v_f(0) = r + 1$, $= v_f(1) = v_f(2) = r$ and $e_{f^*}(0) = e_{f^*}(1) = e_{f^*}(2) = r$. Let g be a 3-eml of G and $u \in V(G)$ with g(u) = 0. Now, identify the vertex u with an end vertex of P_n whose label is 0. Define a labeling $h: V(G@Pn) \rightarrow \{0, 1, 2\}$ by

$$h(v) = \begin{cases} g(v) \text{ if } v \in V(G) \\ f(v) \text{ if } v \in P_n \end{cases}$$

Now $v_h(0) = v_g(0) + v_f(0) - 1 = v_g(0) + r$, $v_h(1) = v_g(1) + v_f(1) = v_g(0) + r$, $v_h(2) = v_g(2) + v_f(2) + v_f(2) + v_f(2) = v_g(2) + v_f(2) + v$ $r, e_{h^*}(0) = e_{g^*}(0) + r, e_{h^*}(1) = e_{g^*}(1) + r \text{ and } e_{h^*}(2) = e_{g^*}(2) + r. \text{ Thus } |v_h(i) - v_h(j)| = |v_g(i) - v_g(j)| \le 1$ and $|e_{h^*}(i) - e_{h^*}(j)| = |e_{g^*}(i) - e_{g^*}(j)| \le 1$. Hence, h is a 3-eml of $G@P_n$.

An example for a 3 - emg with $G = C_7$ and n = 4 is given in Figure 1 and Figure 2.

Figure 2

Theorem 3.8. The bistar B(m,n) with $m \ge n$ is 3-emg iff $n \ge \left\lfloor \frac{q}{3} \right\rfloor$.

Proof: Let $V(B(m,n)) = \{u, u_i : 1 \le i \le n\} \cup \{v, v_i : 1 \le i \le m\}$ and $E(B(m,n)) = \{uv\} \cup \{uu_i : 1 \le i \le m\}$ $n \} \cup \{vv_i : 1 \le i \le m\}$. Thus p = m + n + 2 and q = m + n + 1.

Define a vertex labeling f as follows:

Case (i): Suppose q =

$$f(u) = 0; f(u_i) = \begin{cases} 0 \text{ if } 1 \le i \le r \\ 1 \text{ if } r + 1 \le i \le n \end{cases}; f(v) = 1; f(v_i) = \begin{cases} 1 \text{ if } 1 \le i \le 2r - n - 1 \\ 2 \text{ if } 2r - n \le i \le m \end{cases}$$
Hence, $v_f(0) = r + 1, v_f(1) = v_f(2) = r$ and $e_{f^*}(0) = e_{f^*}(1) = e_{f^*}(2) = r$.

Case (ii): Suppose q = 3r + 1

$$f(u) = 0; f(u_i) = \begin{cases} 0 \text{ if } 1 \le i \le r \\ 1 \text{ if } r + 1 \le i \le n \end{cases}; f(v) = 1; f(v_i) = \begin{cases} 1 \text{ if } 1 \le i \le 2r - n \\ 2 \text{ if } 2r - n + 1 \le i \le m \end{cases}$$
Hence, $v_f(0) = r + 1, v_f(1) = r + 1, v_f(2) = r$ and $e_{f^*}(0) = r, e_{f^*}(1) = r + 1$ and $e_{f^*}(2) = r$.

Case (iii): Suppose q = 3r + 2.

$$f(u) = 0; f(u_i) = \begin{cases} 0 \text{ if } 1 \le i \le r \\ 1 \text{ if } r + 1 \le i \le n \end{cases}; f(v) = 1; f(v_i) = \begin{cases} 1 \text{ if } 1 \le i \le 2r - n \\ 2 \text{ if } 2r - n + 1 \le i \le m \end{cases}$$

$$\text{Hence, } v_f(0) = r + 1, v_f(1) = r + 1, v_f(2) = r + 1 \text{ and } e_{f^*}(0) = r, e_{f^*}(1) = e_{f^*}(2) = r + 1.$$

In all the above three cases f satisfies $|v_f(i) - v_f(j)| \le 1$ and $|e_{f^*}(i) - e_{f^*}(j)| \le 1$ for i, j = 0, 1, 2. Thus f is a 3-eml of B(m, n).

Conversely, suppose that $m \ge n$ and $n < \lfloor \frac{q}{3} \rfloor$. We have $q = 3 \lfloor \frac{q}{3} \rfloor + t$ where $t \in \{0, 1, 2\}$. Then $2\left\lfloor \frac{q}{3} \right\rfloor + t = q - \left\lfloor \frac{q}{3} \right\rfloor < q - n = m + n + 1 - n = m + 1 = \Delta(G)$. Hence, $\Delta(G) > 2\left\lfloor \frac{q}{3} \right\rfloor + t$. By Theorem **Theorem 3.9.** $K_{1,n}$ is 3-emg iff $n \le 2$.

Proof: Suppose that $n \le 2$. When n = 1, $K_{1,n} \cong P_2$ and when n = 2, $K_{1,n} \cong P_3$. Hence, by Theorem 3.6, $K_{1,n}$ is 3-emg.

Suppose $K_{1,n}$ is 3-emg. Then $\Delta(K_{1,n}) \leq 2 \left| \frac{q}{3} \right| + t$ where $t \in \{0,1,2\}$. Here $\Delta(K_{1,n}) = n = q$. By Theorem 3.4, $n \le 2 \left| \frac{q}{3} \right| + t \Rightarrow 3 \left| \frac{q}{3} \right| + t \le 2 \left| \frac{q}{3} \right| + t \Rightarrow \left| \frac{q}{3} \right| \le 0 \Rightarrow \left| \frac{q}{3} \right| = 0$. Hence, $n = t \le 2$.

3-equitable mean labeling of $T_n^{(k)}(n > 1)$ 4

 \dots , v_k ; $v_{k+1}v_{k+2}$, \dots , v_{2k-1} ; v_{2k} , v_{2k+1} \dots , v_{3k-2} ; \dots ; $v_{(k-1)(n-1)+2}$; \dots $v_{(k-1)n+1}$ } and with the edge set $E(T_n^{(k)}) = \{v_i v_{i+1} : 1 \le i \le (k-1)n\} \cup \{v_1 v_k, v_k v_{2k-1}, v_{2k-1} v_{3k-2}, \dots, v_{n-1} v_{n-1$ $v_{(k-1)(n-1)+1}v_{(k-1)n+1}$. Hence, we have p = (k-1)n+1 and q = kn.

Lemma 4.1. *If* $k \equiv 1 \pmod{3}$ *then* $T_n^{(k)}$ *is a 3-emg.*

Proof: Since $k \equiv 1 \pmod{3}$, $p \equiv 1 \pmod{3}$. Define a labeling $f: V(T_n^{(k)}) \to \{0, 1, 2\}$ as follows:

$$f(v_i) = \begin{cases} 0 \text{ if } 1 \le i \le \left\lfloor \frac{p}{3} \right\rfloor + 1\\ 1 \text{ if } \left\lfloor \frac{p}{3} \right\rfloor + 2 \le i \le 2 \left\lfloor \frac{p}{3} \right\rfloor + 1\\ 2 \text{ if } 2 \left\lfloor \frac{p}{3} \right\rfloor + 2 \le i \le p \end{cases}$$

Thus $v_f(0) = \left[\frac{p}{3}\right] + 1$, $v_f(1) = \left[\frac{p}{3}\right]$, $v_f(2) = \left[\frac{p}{3}\right]$. To find the values of $e_{f^*}(0)$, $e_{f^*}(1)$ and $e_{f^*}(2)$ we consider the following three cases.

Case (i): Suppose $n \equiv 0 \pmod{3}$. Take n = 3r. Then p = 3r(k-1) + 1 and $\left\lfloor \frac{p}{3} \right\rfloor = r(k-1)$. Hence,

 $e_{f^*}(0) = rk$ and $v_f(1) = v_f(2) = r(k-1)$ which implies that $e_{f^*}(1) = e_{f^*}(2) = rk$. **Case (ii):** Suppose $n \equiv 1 \pmod{3}$. Take n = 3r + 1. Then $\left\lfloor \frac{p}{3} \right\rfloor = \left\lfloor \frac{(3r+1)(k-1)+1}{3} \right\rfloor = \left\lfloor \frac{3r(k-1)+k-1+1}{3} \right\rfloor = \left\lfloor \frac{3r(k-1)+k-1+1}{3} \right\rfloor$ $r(k-1) + \left\lfloor \frac{k}{3} \right\rfloor = r(k-1) + \frac{k-1}{3}$. Hence, $v_f(0) = r(k-1) + \frac{k-1}{3} + 1$ which implies $e_{f^*}(0) = rk + \frac{k-1}{3}$. Again $v_f(1) = v_f(2) = r(k-1) + \frac{k-1}{3}$ implies that $e_{f^*}(1) = (3r+1)k - rk - \frac{k-1}{3} - rk - \frac{k-2}{3} = rk + \frac{k-1}{3}$ and $e_{f^*}(2) = rk - 1 + \frac{k-1}{3} + 2 = rk + \frac{k+2}{3}$.

Case (iii): Suppose $n \equiv 2 \pmod{3}$. Take n = 3r + 2. Then $\left\lfloor \frac{p}{3} \right\rfloor = \left\lfloor \frac{(3r+2)(k-1)+1}{3} \right\rfloor = r(k-1) + \left\lfloor \frac{2(k-1)}{3} \right\rfloor$. Hence, $v_f(0) = r(k-1) + \frac{2(k-1)}{3} + 1$ implies that $e_{f^*}(0) = rk + \frac{2(k-1)}{3}$, $v_f(1) = v_f(2) = r(k-1) + \frac{2(k-1)}{3}$ implies that $e_{f^*}(2) = rk - 1 + \frac{2(k-1)}{3} + 2 = rk + 1 + \frac{2(k-1)}{3}$ and $e_{f^*}(1) = 3rk + 2k - 2rk - 1 - \frac{4(k-1)}{3} = rk + 1 + \frac{2(k-1)}{3}$. In the above three cases f satisfies $|v_f(i) - v_f(j)| \le 1$ and $|e_{f^*}(i) - e_{f^*}(j)| \le 1$ for i, j = 0, 1, 2. Hence, f is a 3-eml of $T_n^{(k)}$.

Lemma 4.2. If $k \equiv 0 \pmod{3}$ and $n \equiv 0 \pmod{3}$ then $T_n^{(k)}$ is a 3-emg.

Proof: If $k \equiv 0 \pmod{3}$ then $q \equiv 0 \pmod{3}$. Since $n \equiv 0 \pmod{3}$, take n = 3r. Define a labeling f as follows:

$$f(v_i) = \begin{cases} 0 \text{ if } 1 \le i \le \left\lfloor \frac{p}{3} \right\rfloor + 1\\ 1 \text{ if } \left\lfloor \frac{p}{3} \right\rfloor + 2 \le i \le 2 \left\lfloor \frac{p}{3} \right\rfloor + 1\\ 2 \text{ if } 2 \left\lfloor \frac{p}{3} \right\rfloor + 2 \le i \le p \end{cases}$$

Thus $v_f(0) = \begin{bmatrix} \frac{p}{3} \end{bmatrix} + 1$, $v_f(1) = v_f(2) = \begin{bmatrix} \frac{p}{3} \end{bmatrix}$. Here $\begin{bmatrix} \frac{p}{3} \end{bmatrix} = \begin{bmatrix} \frac{(k-1)3r+1}{3} \end{bmatrix} = r(k-1)$. Hence, $v_f(0) = r(k-1)+1$, $v_f(1) = v_f(2) = r(k-1)q$. Thus $e_{f^*}(1) = 3rk - 2rk = rk$, $e_{f^*}(2) = rk$ and $e_{f^*}(3) = rk$. Hence, f satisfies $|v_f(i) - v_f(j)| \le 1$ and $|e_{f^*}(i) - e_{f^*}(j)| \le 1$ for i, j = 0, 1, 2. Therefore, f is a 3-eml of $T_n^{(k)}$. \square

Lemma 4.3. If $k \equiv 0 \pmod{3}$ and $n \equiv 0 \pmod{3}$ then $T_n^{(k)}$ is a 3-emg.

Proof: If $k \equiv 0 \pmod{3}$ then $q \equiv 0 \pmod{3}$. Since $n \equiv 0 \pmod{3}$, take n = 3r. Define a labeling f as follows:

$$f(v_i) = \begin{cases} 0 \text{ if } 1 \le i \le \left\lfloor \frac{p}{3} \right\rfloor + 1\\ 1 \text{ if } \left\lfloor \frac{p}{3} \right\rfloor + 2 \le i \le 2 \left\lfloor \frac{p}{3} \right\rfloor + 1\\ 2 \text{ if } 2 \left\lfloor \frac{p}{3} \right\rfloor + 2 \le i \le p \end{cases}$$

Thus $v_f(0) = \left\lfloor \frac{p}{3} \right\rfloor + 1$, $v_f(1) = v_f(2) = \left\lfloor \frac{p}{3} \right\rfloor$. Here $\left\lfloor \frac{p}{3} \right\rfloor = \left\lfloor \frac{(k-1)3r+1}{3} \right\rfloor = r(k-1)$. Hence, $v_f(0) = r(k-1)+1$, $v_f(1) = v_f(2) = r(k-1)q$. Thus $e_{f^*}(1) = 3rk - 2rk = rk$, $e_{f^*}(2) = rk$ and $e_{f^*}(3) = rk$. Hence, f satisfies $|v_f(i) - v_f(j)| \le 1$ and $|e_{f^*}(i) - e_{f^*}(j)| \le 1$ for i, j = 0, 1, 2. Therefore, f is a 3-eml of $T_n^{(k)}$. \square

Lemma 4.4. If $k \equiv 0 \pmod{3}$ and $n \equiv 1 \pmod{3}$ then $T_n^{(k)}$ is not a 3-emg.

Proof: Let f be a 3-eml of $T_n^{(k)}$. Then $v_f(0)$ is either $\left\lfloor \frac{p}{3} \right\rfloor$ or $\left\lfloor \frac{p}{3} + 1 \right\rfloor$. If we take n = 3r + 1 then $v_f(0)$ is either $r(k-1) + \frac{k}{3}$ or $r(k-1) + \frac{k}{3} + 1$. Hence, $e_{f^*}(0)$ is either $rk + \frac{k}{3} - 1$ or $rk + \frac{k}{3}$. Since $k \equiv 0 \pmod{3}$, we must have $e_{f^*}(0) = \frac{kn}{3}$.

Lemma 4.5. If $k \equiv 0 \pmod{3}$ and $n \equiv 2 \pmod{3}$ then $T_n^{(k)}$ is not a 3-emg.

Proof: Let f be a 3-eml of $T_n^{(k)}$. Then $v_f(0)$ is either $\left\lfloor \frac{p}{3} \right\rfloor$ or $\left\lfloor \frac{p}{3} \right\rfloor + 1$. If we take n = 3r + 2 then $v_f(0)$ is either $r(k-1) + \frac{2k-3}{3}$ or $r(k-1) + \frac{2k-3}{3} + 1$. Hence, $e_{f^*}(0)$ is either $rk - 2 + \frac{2k}{3}$ or $rk - 1 + \frac{2k}{3}$. Since $k \equiv 0 \pmod{3}$, we must have $e_{f^*}(0) = \frac{k(3r+2)}{3}$. which gives a contradiction. Thus $T_n^{(k)}$ is not a 3-emg. \square

Lemma 4.6. If $k \equiv 2 \pmod{3}$ and $n \equiv 0 \pmod{3}$ then $T_n^{(k)}$ is a 3-emg.

Proof: Define a labeling f as follows:

$$f(v_i) = \begin{cases} 0 \text{ if } 1 \le i \le \left\lfloor \frac{p}{3} \right\rfloor + 1\\ 1 \text{ if } \left\lfloor \frac{p}{3} \right\rfloor + 2 \le i \le 2 \left\lfloor \frac{p}{3} \right\rfloor + 1\\ 2 \text{ if } 2 \left\lfloor \frac{p}{3} \right\rfloor + 2 \le i \le p \end{cases}$$

Thus $v_f(0) = \left\lfloor \frac{p}{3} \right\rfloor + 1$, $v_f(1) = v_f(2) = \left\lfloor \frac{p}{3} \right\rfloor$ and $e_{f^*}(0) = e_{f^*}(1) = e_{f^*}(2) = \left\lfloor \frac{q}{3} \right\rfloor = \frac{kn}{3}$ Hence, f satisfies $|v_f(i) - v_f(j)| \le 1$ and $|e_{f^*}(i) - e_{f^*}(j)| \le 1$ for i, j = 0, 1, 2. Therefore, f is a 3-eml of $T_n^{(k)}$.

Lemma 4.7. If $k \equiv 2 \pmod{3}$ and $n \equiv 1 \pmod{3}$ then $T_n^{(k)}$ is a 3-emg.

Proof: Define a labeling f as follows:

$$f(v_i) = \begin{cases} 0 \text{ if } 1 \le i \le \left\lfloor \frac{p}{3} \right\rfloor + 1\\ 1 \text{ if } \left\lfloor \frac{p}{3} \right\rfloor + 2 \le i \le 2 \left\lfloor \frac{p}{3} \right\rfloor + 2\\ 2 \text{ if } 2 \left\lfloor \frac{p}{3} \right\rfloor + 3 \le i \le p \end{cases}$$

Then $v_f(0) = v_f(1) = \left\lfloor \frac{p}{3} \right\rfloor + 1$, $v_f(2) = \left\lfloor \frac{p}{3} \right\rfloor$. If we take n = 3r + 1 then $e_{f^*}(0) = rk + \frac{k-2}{3}$ and $e_{f^*}(1) = e_{f^*}(2) = rk + \frac{k-2}{3} + 1$. Hence, f satisfies $|v_f(i) - v_f(j)| \le 1$ and $|e_{f^*}(i) - e_{f^*}(j)| \le 1$ for i, j = 0, 1, 2. Therefore, f is a 3-eml of $T_n^{(k)}$.

Lemma 4.8. If $k \equiv 2 \pmod{3}$ and $n \equiv 2 \pmod{3}$ then $T_n^{(k)}$ is not a 3-emg.

Proof: Since $k \equiv 2 \pmod{3}$ and $n \equiv 2 \pmod{3}$, $k-1 \equiv 1 \pmod{3}$ and $p \equiv n(k-1)+1 \equiv n+1 \equiv 3 \equiv 0 \pmod{3}$. Hence, $v_f(0) = v_f(1) = v_f(2) = \left\lfloor \frac{p}{3} \right\rfloor = \left\lfloor \frac{(k-1)(3r+2)+1}{3} \right\rfloor = r(k-1) + \left\lfloor \frac{2k-1}{3} \right\rfloor = r(k-1) + \frac{2(k-2)}{3} + 1$. So, $e_{f^*}(0) = rk + \frac{2(k-2)}{3}$ and $e_{f^*}(2) = rk + 2 + \frac{2(k-2)}{3}$ which implies that $|e_{f^*}(0) - e_{f^*}(2)| = 2$. Thus, $T_n^{(k)}$ is not a 3-emg.

From the above lemmas we have the following theorem.

Theorem 4.9. $T_n^{(k)}$ is a 3-emg if

- (i) $k \equiv 1 \pmod{3}$
- (ii) $k \equiv 0 \pmod{3}$ and $n \equiv 0 \pmod{3}$
- (iii) $k \equiv 2 \pmod{3}$ and $n \equiv 1 \pmod{3}$
- (iv) $k \equiv 2 \pmod{3}$ and $n \equiv 0 \pmod{3}$.

Theorem 4.10. $K_{1,2n} \cup K_{1,n}$ *is a 3-emg.*

Proof: Let u and v be the central vertices of the star graphs $K_{1,2n}$ and $K_{1,n}$ respectively, u_1, u_2, \dots, u_{2n} be the vertices incident with u and v_1, v_2, \dots, v_n be the vertices incident with v. Hence, p = 3n + 2 and q = 3n. Now assign 0 to all the vertices of $K_{1,n}$, 1 to the vertices u, u_1, u_2, \dots, u_n and 2 to the vertices $u_{n+1}, u_{n+2}, \dots, u_{2n}$. Hence, $v_f(0) = n + 1$, $v_f(1) = v_f(2) = n$, $e_{f^*}(0) = e_{f^*}(1) = e_{f^*}(2) = n$. Thus, $K_{1,2n} \cup K_{1,n}$ is a 3-emg.

References

- [1] I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin., 23 (1987), 201-207.
- [2] I. Cahit, On cordial and 3-equitable labellings of graphs, Util. Math., 37 (1990), 189-198.
- [3] F. Harary, Graph Theory, Addison Wesley, Massachusetts, (1972).

- [4] S. Somasundaram and R. Ponraj, Mean labelings of graphs, Natl Acad, Sci. Let., 26 (2003), 210-213.
- [5] M. Sundaram, R. Ponraj and S. Somasundaram, Product cordial labeling of graphs, Bull. Pure and Applied Sciences (Mathematics & Statistics), 23E (2004), 155-163.